
1.  Introduction
Coupling functions are combinations of interplanetary parameters that are used to quantitatively predict terres-
trial space weather indicators and indices. They should have a linear relationship with the index or measured 
parameter that they aim to predict. There are a great many combinations that have been proposed and tested 
since correlations between interplanetary parameters measured by spacecraft and terrestrial disturbance indices 
became possible (Arnoldy, 1971). The concept of a combination of parameters capturing their net influence (i.e., 
a coupling function) grew out of the PhD studies of Perreault (1974). An excellent review of the development of 
coupling functions, the theories behind them and the empirical fits, has been given by McPherron et al. (2015).

Some coupling functions are theoretical in origin, whereas others are from empirical fits to data. However, in 
truth all are, to some degree, a hybrid of the two approaches. This is because theoretical coupling functions almost 
always have to employ some coefficients, exponents, or branching ratios that are defined empirically. Conversely, 
empirical coupling functions employ parameter selections and formulations that are based on theory. We also 
note the role of numerical global simulations in developing coupling functions. These have the advantage of 

Abstract  Using 65,133 hourly averages of transpolar voltage (ΦPC) from observations made over 25 yr 
by the SuperDARN radars, with simultaneous SML and interpolated am geomagnetic indices, we study their 
optimum interplanetary coupling functions. We find mean lags of 18, 31, and 45 min for ΦPC, am, and SML, 
respectively, and fit using a general coupling function with three free fit exponents. To converge to a fit, we 
need to average interplanetary parameters and then apply the exponent which is a widely used approximation: 
we show how and why this is valid for all interplanetary parameters, except the factor quantifying the effect of 
the clock angle of the interplanetary magnetic field, sind(θ/2), which must be computed at high time resolution 
and then averaged. We demonstrate the effect of the exponent d on the distribution, and hence weighting, of 
samples and show d is best determined from the requirement that the coupling function is a linear predictor, 
yielding d of 2.50 ± 0.10, 3.00 ± 0.22, and 5.20 ± 0.41 for ΦPC, am, and SML, respectively. To check for 
overfitting, fits are made to half the available data and tested against the other half. Ensembles of 1,000 fits 
are used to study the effect of the number of samples on the distribution of errors in individual fits and on 
systematic biases in the ensemble means. We find only a weak dependence of solar wind density for ΦPC and 
SML but a significant one for am. The optimum coupling functions are shown to be significantly different for 
ΦPC, am, and SML.

Plain Language Summary  Coupling functions are mathematical combinations of measured 
variables observed in the solar wind, just before it impacts near-Earth space. They are used to predict the effect 
that the solar wind will have (or, for retrospective studies, will have had) on the space-weather environment 
of the Earth. There is a very wide variety of proposed optimum forms for coupling functions in the literature, 
some of which work better than others and we show which performs best depends on which terrestrial 
disturbance indicator we are trying to predict and on what timescale. We look at the validity of some commonly 
used assumptions made when compiling a coupling function and, using an unprecedentedly large data set of 
different types of terrestrial space weather disturbance indicator, we derive the optimum coupling functions and 
their statistical uncertainties. We show that that the required coupling functions are significantly different in the 
three cases. The results establish some important principles for the development of these coupling functions and 
show they need to be tailored to the specific space weather disturbance indicator, timescale, and activity level 
that they aim to predict.
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testing the coupling function in unusual regions of parameter space; however, as always with models, the validity 
of the results depends on the assumptions, parameterizations, and resolutions used in setting up the model.

Coupling functions have generally, but not exclusively, taken the basic mathematical form of the product of 
measured parameters, each to the power of an exponent. Parameters used have been the interplanetary magnetic 
field (IMF), B = |B| or its transverse component perpendicular to the Sun-Earth line, B⊥; the solar wind speed, 
VSW; the solar wind number density NSW or its mass density ρSW = mSWNSW (where mSW is the mean ion mass); 
and (for timescales shorter than about 1 yr), a factor to allow for the orientation of the IMF in the Geocentric 
Solar Magnetospheric (GSM) frame of reference, such as a function of the clock angle in GSM, θ. Note that for 
coupling functions θ is defined as tan−1(|BY|/BZ) where BY and BZ are the Y and Z components of the IMF in GSM: 
the use of the modulus of BY means that any effects on coupling associated with its polarity would have to be 
added separately but avoids complications caused by discontinuities in clock angle between 0 and 2π that would 
otherwise arise. We here denote magnetic field exponents by a, mass density or number density exponents by b, 
solar wind speed exponents by c, and IMF orientation factor exponents by d.

Some improvements to this basic multiplicative form have been suggested in the form of additive terms. For 
example, Newell et al.  (2008) proposed the addition of a term designed to predict the dayside magnetopause 
reconnection voltage with a smaller term to predict the voltage generated by non-reconnection “viscous-like” 
interaction. Lockwood (2019) proposed a development to energy-transfer coupling functions whereby, in addition 
to the energy extracted from the dominant energy flux in the solar wind (namely the kinetic energy flux of the 
particles), the smaller one due to the solar wind Poynting flux is added. Given that the Poynting flux in the solar 
wind is two orders of magnitude smaller than the particle kinetic energy flux, this appears an unnecessary compli-
cation: however, the Poynting flux enters the magnetosphere without the relative inefficiency with which kinetic 
energy of the solar wind is converted into Poynting flux by currents flowing in the bow shock, magnetosheath 
and magnetopause (Cowley, 1991; Ebihara et al., 2019; Lockwood, 2004).

Other, more complex forms, with combinations of additive and multiplicative terms have been proposed (e.g., 
Borovsky, 2013; Luo et al., 2013). The formulation of Luo et al. (2013) aims to take account of daily and seasonal 
variations in the terrestrial space weather index predicted (that are due to station locations and orientation of the 
Earth's dipole) and non-linearities caused by the expansion and contraction of the polar cap as solar wind driving 
varies. It also removes rapid fluctuations using low-pass filters. The result is that it is highly complex and, as 
noted by McPherron et al. (2015), it is unclear how many free parameters are present in this coupling function, 
but they estimate that it is at least 35. Because these more complex formulations add to the number of free fit 
parameters, this greatly increases the problem of statistical “overfitting” (Chicco, 2017). Overfitting occurs when 
a fit has too many degrees of freedom and it can start to fit to the noise in the training data, which is not the same 
as the noise in the test or operational data. As a result, the fit has reduced predictive accuracy. This is a recognized 
pitfall when signal-to-noise ratio in the data is low, as is usually the case in disciplines such as climate science 
(Knutti et al., 2006) or population growth (Knape & de Valpine, 2011), but has not often been considered in space 
physics in the past. However, this is now changing with the advent of systems analysis of the magnetosphere 
and the application of machine-learning techniques to space weather data (e.g., Camporeale,  2019; Stephens 
et al., 2020). Overfitting is a problem for the generation of coupling functions because there are a great many 
sources of noise, not all of which have been recognized and some of which we cannot do much about when we 
take note of the need to have large datasets to cover all potential regions of solar wind/magnetosphere parame-
ter space. The noise sources in correlative solar wind-magnetosphere studies include: instrumental observation 
errors in interplanetary measurements and in the terrestrial disturbance index or indicator; propagation errors 
between the spacecraft observing the solar wind conditions and near-Earth space (these include using the correct 
time lag but, more importantly, spatial structure in interplanetary space that means the solar wind sampled by 
the spacecraft is not always the same as that which impinges on Earth's magnetosphere); the effects of the bow 
shock in changing near-magnetopause characteristics of the magnetosheath, relative to the undisturbed solar 
wind outside the bow shock; gaps in data sequences; effects of averaging and timescale; non-linear responses of 
the magnetosphere; pre-conditioning of the magnetosphere, and the effects of prior solar wind/magnetosphere 
coupling history; dipole tilt effects on ionospheric conductivities, magnetospheric structure, and current sheets.

Hence the effect of adding more terms, even if based on sound physical theory, is not always a positive one. For 
example, Lockwood (2019) showed that although adding the solar wind Poynting flux term does increase the 
correlation with the geomagnetic am index and that the increase for daily or shorter timescales is a small but 
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statistically significant improvement (at over the 3σ level), the improvement for annual or Carrington rotation 
means was not statistically significant: hence in the latter cases no statistically significant improvement was 
achieved, despite the number of free fit variables being doubled from 1 to 2 and the additional term being based 
on theory. It should also be noted that the branching ratios used with additive terms can become inappropriate 
if conditions move outside the region of parameter space that was used to derive them. Of course, the same is 
true for all coefficients and exponents in any coupling function, but effects are particularly serious for coupling 
functions using additive terms because an incorrect branching ratio can cause one of the two terms to become 
spuriously dominant. A common example is averaging timescale which, in general, has different effects on differ-
ent terms and so the ratio of the two that is appropriate to one timescale may not apply on another.

Table 1 lists a number of coupling functions that have been developed, based on theory and/or empirical fitting 
(Balikhin et al., 2010; Bargatze et al., 1985, 1986; Borovsky, 2013; Burton et al., 1975; Cowley, 1984; Feynman 
& Crooker, 1978; Finch & Lockwood, 2007; Kan&Lee, 1979; Lockwood, 2019; Lockwood, Bentley, Owens, 
Barnard, Scott, Watt, & Allanson, 2019; Lockwood et al., 2014; Luo et al., 2013; McPherron et al., 2015; Milan 
et al., 2012; Murayama, 1982, 1986; Newell et al., 2007; Perreault & Akasofu, 1978; Scurry & Russell, 1991; 
Siscoe et al., 2002; Svalgaard & Cliver, 2005; Temerin & Li, 2006; Vasyliunas et al., 1982; Wang et al., 2014; 
Wygant et al., 1983). This list is very far from complete, but examples have been chosen to illustrate both the 
variety and the similarities of proposed formulations, and also some of the principles of the physical theories 
used to develop them.

Table 1 gives the timescale τ on which each coupling function was derived and/or has been tested and/or de-
ployed. It is noticeable that at larger τ, simpler coupling functions have been very successful in yielding very 
high correlations (Finch & Lockwood, 2007). These high correlations are achieved because averaging over long 
intervals gives cancellation of noise. The averaging timescale of the interplanetary and the terrestrial data that are 
compared is a crucial consideration because solar wind parameters have a variety of autocorrelation times which 
means that their distributions of values change with τ in different ways (Lockwood, Bentley, Owens, Barnard, 
Scott, Watt, & Allanson, 2019; Lockwood, Bentley, Owens, Barnard, Scott, Watt, et al., 2019). However, this is 
not often considered when compiling a coupling function and τ is not even explicitly defined in several publica-
tions (in several cases in Table 1, τ could only be inferred from the data plots presented).

One idea that has been proposed is that there is a “universal coupling function” that best predicts all terrestrial 
space weather indices and indicators (Newell et al., 2007, 2008). This idea runs counter to the method now rou-
tinely used to reconstruct interplanetary parameters from historic observations of geomagnetic activity. These 
reconstructions exploit the finding that different geomagnetic indices have different responses to interplanetary 
parameters and so combinations of historic index observations can be used to infer the separate interplanetary 
parameters. This was inherent in the reconstruction of open solar flux from historic observations of geomagnetic 
activity by Lockwood et al. (1999) but first used to extract more than one parameter by Svalgaard et al. (2003), 
who noted that on annual timescales the IMF B and solar wind speed VSW could both be derived from any com-
bination of geomagnetic indices that had different dependencies on these two parameters (i.e., different optimum 
coupling functions). This has been exploited by Svalgaard and Cliver (2007), Rouillard et al. (2007), Lockwood 
et al. (2009), Lockwood and Owens (2011), and Lockwood et al. (2014). These methods and results have devel-
oped from simple single fits to large ensembles of fits allowing for uncertainties and been reviewed by Lock-
wood (2013). If different indicators of geomagnetic activity have different optimum coupling functions, it means 
that other space weather activity indicators, such as transpolar voltage, cannot share the same optimum coupling 
as all, if any, of the geomagnetic activity indices.

We here investigate the differences between the optimum coupling functions for transpolar voltage ΦPC, the glob-
al am geomagnetic index, and the nightside northern hemisphere auroral oval index, SML, using simultaneous 
data. The am index (Mayaud, 1980) has been shown to have the most uniform response to solar wind forcing 
with Universal Time and time of year by virtue of the relative uniformity of the observing network and its use of 
area-based weighting functions (Lockwood, Chambodut, et al., 2019). However, it has the disadvantage of a time 
resolution of only 3 hr. The SuperMAG project's SML index (Newell & Gjerloev, 2011) has the great advantage 
of being available at 1 min resolution. It is based of the same concepts as the auroral electrojet AL index (Davis 
& Sugiura, 1966) and is, like AL, a sensitive indicator of the substorm current wedge. We use it here because it 
employs data from magnetometers at middle and low geomagnetic latitudes as well as at auroral latitudes whereas 
AL uses only a ring of auroral stations. This means that SML avoids the non-linearity of the AL response during 
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very disturbed times when the auroral oval moves a long way equatorward of the AL stations. That having been 
said, we have carried out all the studies presented here using both SML and AL and the results are very similar 
indeed. Neither SML nor AL are global indices in the same way as am, because both use only data from northern 
hemisphere stations. This means that they have an additional noise source caused by the seasonal effect on the 
electrical conductivities of the northern hemisphere ionosphere. This noise is only averaged out in studies that use 
averages taken over multiples of whole years. The dataset of transpolar voltage ΦPC measurements used here are 
the hourly means of 2-min integrations of SuperDARN radar data from 1995 to 2019 presented by Lockwood and 
McWilliams (2021). Like the SML and AL data they are from the northern hemisphere only as radar coverage of 
the southern hemisphere polar and auroral regions is not yet adequate. Even in the northern hemisphere there are 
gaps in the radar coverage and, furthermore, within the radars’ fields of view there is often a lack of radar echoes 
(see, e.g., Shepherd, 2007). To deal with this, the Doppler shifts of radar echoes are fitted to a convection model 
in the “map-potential technique.” Lockwood and McWilliams  (2021) found good agreement between hourly 
means of 2-min integrations of the derived ΦPC values with those from over-passes by Low-Earth Orbit (LEO) 
satellites, provided that the mean number of radar echoes for the 30 2-min integrations exceeded 255. This yield-
ed a dataset of 65,133 valid hourly ΦPC values from the 210,384 potential values in the interval 1995–2020, a ratio 
of roughly 30%. We here use hourly means of SML from the same hours as the valid ΦPC values and interpolate 
the three-hourly am values to the same times as the valid ΦPC estimates.

Table 1 shows that many of the proposed coupling functions predict a role of solar wind number density NSW or 
mass density ρSW = mSWNSW (where mSW is the mean ion mass) as contributing to solar wind energy coupling and/
or to the driving of magnetospheric convection. For energy considerations, this is mainly because ρSW and NSW 
control the dominant (kinetic) energy flux in the solar wind, ρSWVSW

3/2, but it has been shown that solar wind dy-
namic pressure (PSW = ρSWVSW

2) also has an independent effect (Lockwood, McWilliams, et al., 2020; Lockwood, 
Owens, Barnard, Haines, et al., 2020; Lockwood, Owens, Barnard, Watt, et al., 2020). This is partly through 
altering the cross-sectional area that the magnetosphere presents to the solar wind flow (Vasyliunas et al., 1982) 
and also via the compression of the near-Earth tail, which enhances the magnetic energy density stored there for 
a given open magnetospheric flux, thereby enhancing the current in the auroral electrojet of the substorm current 
wedge when that stored energy is released during a substorm expansion phase (see review by Lockwood, 2013). 
Such a dependence of geomagnetic disturbance in the substorm current wedge region was isolated and identified 
by Finch et al. (2008). This would be in addition to the dependence on ρSW and VSW due to the energy flux in the 
solar wind and/or any effect on the magnetic reconnection at the magnetopause which generates the open flux. 
In addition, the squeezing of the near-Earth tail by PSW would elevate the magnetic shear across the cross-tail 
current sheet, and hence the total current in that sheet. This could enhance the nightside reconnection voltage ΦN 
that closes open field lines. The expanding contracting polar cap (ECPC) model predicts that this would elevate 
the transpolar voltage ΦPC which is influenced at any one instant by the reconnection voltages in both the dayside 
magnetopause ΦD and the cross-tail current sheet ΦN (Cowley & Lockwood, 1992; Lockwood, 1991; Lockwood 
& McWilliams, 2021). However, we need to consider the averaging timescale used, τ. If τ is short compared to 
the substorm cycle duration we would expect ΦPC to reflect the enhanced ΦN, and so show some dependence on 
PSW from this effect of squeezing the tail. On the other hand, if τ is long compared to the substorm cycle duration, 
the average ΦN tends to ΦD and we would therefore expect ΦPC to show only any dependence that ΦD has on PSW 
which appears to be considerably smaller (Lockwood & McWilliams, 2021). However, we note that it has long 
been proposed that PSW has an effect on ΦD by increasing the magnetic field strength in the near-magnetopause 
sheath and hence the magnetic shear across the dayside magnetopause during southward IMF (e.g., Scurry & 
Russell, 1991). Such an effect was inferred from cusp latitude shifts by Newell and Meng (1994).

This discussion of the role of solar wind dynamic pressure is just one example of an important general point—
namely that there are a great many processes simultaneously at play in driving the terrestrial space weather 
response. To allow for these, solar wind coupling functions have evolved away from having theoretically derived 
exponents a, b, c, and d (which were often integers or ratios of integers) to empirically fitted non-integer values. 
Hence for the example of PSW effects on the near-Earth tail we do not complicate the coupling function with an 
additional term or weighting branching ratio, rather we allow the exponents b and c (in the terms ρSW

b and VSW
c) 

to vary to allow for such an effect and we would expect such an effect of PSW to raise the exponent b and raise c by 
twice as much. Hence combinations of mechanisms can be allowed for as long as their effects are multiplicative. 
To bring theoretical and empirical approaches together, Borovsky (2013) used the approach of making a complex 
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theoretical derivation and then reducing to a simple multiplicative form with approximations to derive exponents; 
however, the uncertainties introduced by any one approximation are not always apparent.

There is one last important point to note about coupling functions that is discussed further in the final section of 
the present paper. None of the forms listed in Table 1 allow for the pre-existing state of the magnetosphere. There 
are many reasons to expect non-linear magnetospheric responses. For example, the response to a given solar wind 
forcing quantified by a coupling function will depend on how much open magnetospheric flux already exists at 
the time but in addition is very likely to also depend on how enhanced the ring current is at the time and/or the 
state of the mid-tail plasma sheet and cross-tail current sheet. These effects all depend upon the prior history of 
solar wind-magnetosphere coupling. There are also regular diurnal and annual effects to consider such as dipole 
tilt effects and seasonal effects in the ionosphere. If they are neglected, all these factors are a source of noise for 
correlation studies between interplanetary coupling functions and terrestrial disturbance indices.

In this article, we do not attempt to compare the performance of the large number of proposed coupling functions. 
Such test have been carried out in the past, often as part of an evaluation of a newly proposed function. Detailed 
tests against model output were carried out for three coupling functions by Spencer et al. (2009) and the per-
formance of seven coupling functions in predicting mid-latitude geomagnetic range indices was compared for a 
range of timescales τ between 1 day and 1 yr by Finch and Lockwood (2007). Newell et al. (2007) compared 20 
coupling functions against 10 terrestrial indices at hourly resolution. Rather than compare individual coupling 
functions, we here establish some general principles using a few examples and apply a generalized common form 
of coupling function to an unprecedently large dataset containing two different indicators of terrestrial space 
weather disturbance (the transpolar voltage and two geomagnetic indices) to see if they are significantly different 
or can be predicted by a common “universal” coupling function.

1.1.  Coupling Functions Based on Energy Considerations

Lockwood, Bentley, Owens, Barnard, Scott, Watt, and Allanson (2019) and Lockwood, Bentley, Owens, Barnard, 
Scott, Watt, et al. (2019) have shown that the am, AL, and SML geomagnetic indices, which all respond primarily 
to the substorm current wedge, are all well predicted over a range of timescales by the estimated power input to 
the magnetosphere, Pα (Vasyliunas et al., 1982). This coupling function is given by the product of the dominant 
energy flux in the solar wind (due to the kinetic energy of the particles), the cross-sectional area of the dayside 
magnetosphere that it is incident upon, and a dimensionless transfer function (tr the fraction of the incident power 
that crosses the magnetopause into the magnetosphere).

𝑃𝑃𝛼𝛼 =
{

(𝜌𝜌𝑠𝑠𝑠𝑠𝑉𝑉 2
𝑠𝑠𝑠𝑠)∕2

}

𝑉𝑉𝑠𝑠𝑠𝑠 × (𝜋𝜋𝜋𝜋2
𝑜𝑜) × 𝑡𝑡𝑟𝑟� (1)

where Lo is the effective radius of cross-section of the magnetosphere presented to the solar wind flow.

The dayside magnetosphere is assumed to be constant in shape so that Lo = cLs where c = Lo/Ls is the dayside 
magnetopause shape factor (assumed constant) and Ls is the stand-off distance of the nose of the magnetosphere 
which is derived from pressure balance between the geomagnetic field and dynamic pressure of the solar wind, 
PSW (Farrugia et al., 1989):

𝐿𝐿𝑜𝑜 = 𝑐𝑐𝑐𝑐𝑠𝑠 = 𝑐𝑐𝑐𝑐1(𝑀𝑀2
𝐸𝐸∕𝑃𝑃𝑠𝑠𝑠𝑠𝜇𝜇𝑜𝑜)

1∕6� (2)

where k1 is the pressure factor for shocked supersonic flow around a blunt nose object, ME is the magnetic mo-
ment of the Earth, and μo is the permeability of free space (a.k.a., the magnetic constant). Vasyliunas et al. (1982) 
use a dimensionless transfer function of the form:

𝑡𝑡𝑟𝑟 = 𝑘𝑘2 𝑀𝑀−2𝛼𝛼
𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑(𝜃𝜃∕2)� (3)

where the solar wind Alfvén Mach number is MA = VSW (μoρSW)1/2/B, and k2 is a constant and α is called the 
“coupling exponent” that arises from the unknown dependence of tr on MA and is the one free fit parameter. θ 
is the IMF clock angle in the GSM frame of reference. The dependence of tr on MA arises from the fact that the 
dominant energy flux in the undisturbed solar wind, the kinetic energy flux of the particles, is converted into 
the Poynting flux that enters the magnetosphere by the currents that flow in the bow shock and magnetosheath 
(Cowley, 1991; Ebihara et al., 2019; Lockwood, 2004, 2019). From Equations 1–3
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𝑃𝑃𝛼𝛼 = 𝑘𝑘 𝑘𝑘2𝛼𝛼 𝜌𝜌 (2∕3−𝛼𝛼)
𝑠𝑠𝑠𝑠 𝑉𝑉 (7∕3−2𝛼𝛼)

𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑(𝜃𝜃∕2)� (4)

where {ME
2/3c2k1k2π/(2μo

(1/3−α))} are rolled into the constant k. However, note that the secular variation in ME, and 
hence k, can be allowed for in long-term reconstructions of space weather conditions using models of the intrinsic 
geomagnetic field (Lockwood et al., 2017). Despite allowing for B, ρSW, VSW, and θ, the coupling function Pα has 
only the one free fit parameter, the coupling exponent α that arises from an unknown dependence of the transfer 
function on the solar wind Mach number. This means that Pα is much less prone to overfitting than functions that 
have separate exponents for the parameters. (Essentially, the exponents of B, ρSW, VSW are related by the theory, 
and all are determined by just α).

The IMF orientation factor sind(θ/2) was not treated as an independent variable by Vasyliunas et al. (1982). How-
ever, these authors did outline a test which was used to find that d = 2 was the required factor for the optimum 
(best-fit) α. The same test for other applications of the formulation by Lockwood, Bentley, Owens, Barnard, Scott, 
Watt, and Allanson, (2019) and Lockwood, Bentley, Owens, Barnard, Scott, Watt, et al. (2019) found a slightly 
different α (and that it varies with timescale) and this made d = 4 marginally better. Table 1 shows that sind(θ/2) is 
a commonly used IMF orientation factor for low τ, particularly with d = 4. However, a range of d between 1 and 
6 has been proposed in the literature. We here note that the test by Vasyliunas et al. (1982) has the very important 
implication that the optimum d is not independent of the other parameters in the coupling function.

Vasyliunas et al. (1982) are somewhat uncertain as to whether they should employ the transverse component of 
the IMF, B⊥ (the magnitude in the GSM YZ plane), or the full IMF magnitude B = (BX

2 + B⊥
2)1/2. They found 

it made only a minor difference in practice but opted to use B⊥ in their text and equations. Their argument was 
that BX is not relevant because the field was draped over the nose in the magnetosheath. However, this choice is 
somewhat inconsistent theoretically because the IMF enters into their coupling function only through the Alfvén 
Mach number MA in the interplanetary (unshocked) field and that depends on B and not on B⊥. On the other 
hand, B⊥sind(θ/2) is physically meaningful as a way of quantifying the southward component if the IMF in GSM 
coordinates.

1.2.  Coupling Functions Based on Voltage Considerations

In addition to planetary geomagnetic activity, we here aim to predict transpolar voltage ΦPC for which we might 
expect a coupling function based on the IMF to be more appropriate. Many studies (e.g., Cowley, 1984; Reiff & 
Luhmann, 1986), suggest that the transpolar voltage ΦPC is well predicted by the dawn-to-dusk interplanetary 
electric field

𝐸𝐸𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑠𝑠𝑠𝑠𝐵𝐵𝑆𝑆 ≈ 𝐵𝐵⟂𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑(𝜃𝜃∕2)� (5)

Because the voltage applied by the solar wind across the diameter of the magnetosphere is 2LoESW, we can define 
the reconnection efficiency (the fraction of incident interplanetary field lines captured by magnetopause recon-
nection) η as

𝜂𝜂 = Φ𝑃𝑃𝑃𝑃∕(2𝐿𝐿𝑜𝑜𝐸𝐸𝑠𝑠𝑠𝑠)� (6)

We can then make the same assumption about the dayside magnetopause as was used to generate Pα and again use 
pressure equilibrium with the solar wind dynamic pressure (Siscoe et al., 2002)

Φ𝑃𝑃𝑃𝑃 = 2𝜂𝜂 𝜂𝜂𝜂𝜂𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠 = 2𝜂𝜂𝜂𝜂 𝜂𝜂𝑠𝑠𝑠𝑠
{

2𝑘𝑘𝑘𝑘2
𝐸𝐸∕(𝜇𝜇𝑜𝑜𝜌𝜌𝑠𝑠𝑠𝑠𝑉𝑉 2

𝑠𝑠𝑠𝑠
}1∕6 = 𝜂𝜂 𝜂𝜂𝑠𝑠𝑠𝑠𝜅𝜅

{

𝜌𝜌𝑠𝑠𝑠𝑠𝑉𝑉 2
𝑠𝑠𝑠𝑠
}−1∕6� (7)

where 𝐴𝐴 𝐴𝐴 = 2𝑐𝑐
{

2𝑘𝑘𝑘𝑘2
𝐸𝐸∕𝜇𝜇𝑜𝑜

}1∕6 . From Equations 5–7 we have a theoretical prediction of ΦPC, which we denote by 
ΦSW (the predicted value of ΦPC from solar wind parameters)

Φ𝑠𝑠𝑠𝑠 = 𝜂𝜂 𝜂𝜂 𝜂𝜂⟂ 𝜌𝜌 −1∕6
𝑠𝑠𝑠𝑠 𝑉𝑉 2∕3

𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑(𝜃𝜃∕2)� (8)

Note that the reconnection efficiency η is very unlikely to be a constant. For example, increased solar wind dy-
namic pressure may increase the magnetic shear across the relevant current shear by compressing the field and 
various factors may vary the fraction of the dayside magnetopause covered by the magnetopause reconnection 
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X-line (or X-lines; Walsh et al., 2017). Hence, we should expect the optimum exponents for B, ρSW, and VSW to 
differ somewhat from the 1, −1/6, and 2/3, respectively, predicted by the simple Equation 8.

Borovsky and Birn (2014) argue that η is determined by the local Alfvén speeds on the two sides of the magne-
topause to the extent that the interplanetary electric field is irrelevant. That being the case any similarity of an 
empirical coupling function to predict ΦPC and Equation 8 would be a coincidence. From reconnection rate theory 
and by making approximations Borovsky and Birn (2014) arrive at two distinct coupling functions for predicting 
dayside reconnection voltage here termed ΦBB. The sharp transition point between the two regimes where these 
apply is solar wind Alfvén Mach number, MA ≈ 6. For MA < 6 they find the approximate form B0.51Nsw

0.24Vsw
1.49 

sin2(θ/2) and for MA> 6 they find the approximate form B1.38Nsw
−0.19Vsw

0.62 sin2(θ/2).

1.3.  Coupling Functions From Empirical Fits

Like many of the papers listed in Table 1, we here make empirical fits using a general multiplicative form of 
coupling function Cf, given by

𝐶𝐶𝑓𝑓 = 𝐵𝐵𝑎𝑎
⟂ 𝜌𝜌 𝑏𝑏

𝑠𝑠𝑠𝑠𝑉𝑉 𝑐𝑐
𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑(𝜃𝜃∕2)� (9)

This general form which can reproduce Pα for any α (a = 2α, b = 2/3−α, and c = 7/3− 2α), ESW (for a = 1, b = 0 
and c = 1),ΦSW (for a = 1, b = −1/6, and c = 2/3) as well as ΦBB (for MA < 6, a = 0.51, b = 0.24, and c = 1.49 
and for MA> 6, a = 1.38, b = −0.19, and c = 0.62). As shown by Table 1, this form also encompasses a wide 
variety of the proposed empirical coupling functions. Note that this form could also reproduce the often-used 
“epsilon” factor, ε (for which a = 2, b = 0, and c = 1) but that is not considered further in this paper because 
ε is based on the incorrect assumption that the relevant energy flux in the solar wind is the Poynting flux (see 
Lockwood, 2013, 2019) and, although this can be made consistent with other energy coupling functions such as 
Pα (i.e., correctly based on the dominant solar wind kinetic energy flux) this is only achieved using an extreme 
value of unity for the coupling exponent α, and this does not agree at all with experimental estimates. This the-
oretical flaw is the reason why ε performs considerably less well than Pα on all averaging timescales (see Finch 
& Lockwood, 2007).

It should be noted that not all proposed coupling functions, not even all the simple ones, fit the general formula-
tion given in Equation 9, particularly those that employ additive terms. An important example is that by Boyle 
et al. (1997) who propose the use of 10−4VSW

2 + 11.7 B sin3(θ/2) to predict ΦPC, which it does exceptionally well: 
the reasons for its success will be analyzed later in this paper. In general, the problem with additive terms is that, 
unless each term is describing a distinct physical mechanism, they are purely numerical fits to the available data. 
Adding terms until a fit is achieved without a theoretical basis does make the risk of overfitting greater: essential-
ly one can fit any time series with combinations of other time series if one is free to select enough of them until a 
good fit is obtained. Physics-based coupling functions are usually fundamentally multiplicative in form although 
some factors can be broken down into the sums of additive terms for theoretical reasons (e.g., Borovsky, 2013; 
Lockwood, 2019; Newell et al., 2008).

The following sections describe how there are a number of procedural issues to resolve for studies using even the 
relatively simple form of coupling function generalized by Equation 9. For this reason, in the present paper we do 
not extend the present study to formulations involving additive terms.

1.4.  Frequently Neglected Factors in Deriving Coupling Functions

There are a number of factors that have often been neglected when deriving coupling functions, the most im-
portant being: (a) the effect of data gaps; (b) the effects of data averaging; (c) the effect of the number of data-
points available; (d) the differences between the various terrestrial space weather indicators; (e) overfitting; (f) 
non-linearity and pre-conditioning of the magnetosphere; (g) measurement errors; (h) propagation lags; (i) spatial 
structure in interplanetary space; (j) effects of the bow shock; (k) seasonal effects; and (l) dipole tilt effects. We 
address just some of these in this article. The effect of data gaps was studied by Lockwood, Bentley, Owens, 
Barnard, Scott, Watt, and Allanson (2019) who introduced synthetic gaps at random (but to give the same distri-
bution of durations as had occurred for early interplanetary observations) into continuous and near-continuous 
data and studied the errors introduced. These errors were not only in the greater uncertainty of one individual fit, 
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but also in systematic deviations in the means and modes of the distributions of ensembles of many fits. It is often 
assumed that the effect of data gaps averages out, but this is not the case: data gaps introduce noise into the cor-
relation studies and fitting procedures, facilitating overfitting which generates both random and systematic errors.

Correlations of coupling functions with terrestrial space weather indicators naturally increase with increased av-
eraging timescale τ because the noise in both time series is increasingly averaged out (Finch & Lockwood, 2007). 
However, there are problems associated with averaging high-resolution interplanetary field data in relation to 
the IMF orientation and these are often not addressed. McPherron et al. (2015) correctly used hourly data which 
they obtained by passing 1-min data through low-pass filter by taking a 61-point running average and resampled 
every hour to obtain centered hourly averages. They note that this improves the hourly average coupling functions 
by eliminating errors resulting from the use of hourly averages of IMF components in calculating the transverse 
component B⊥ and the clock angle θ. This is certainly true and in the next section we investigate how good this 
procedure is and why it is needed. We also point out there is a second issue to consider about the effects of data 
averaging.

1.5.  The Effect of Averaging Procedure

The magnetosphere responds to integrated forcing (Lockwood et al., 2016). For example, if we have a terrestrial 
indicator that responds to the energy input into the magnetosphere and a coupling function that quantifies that 
energy input, over a period τ we require the total of that energy input. Similarly, for a predictor of transpolar volt-
age we want the integral of the open flux generated in the interval. Hence for any empirical coupling function Cf 
(Equation 9) we want the integrated solar wind forcing over the time interval. By the definition of the arithmetic 
mean, this means we need a coupling function for the interval τ given by

(1∕�)∫

�

0
���� =< �� >� = < ��

⟂ � �
��� �

�� ����(�∕2) >�� (10)

where the values Cf, B⊥, ρSW, VSW, and θ are all values from high-time resolution measurements. However, this 
has usually in the past been approximated using the seemingly similar formula

[𝐶𝐶𝑓𝑓 ]𝜏𝜏 = < 𝐵𝐵⟂ > 𝑎𝑎
𝜏𝜏 . < 𝜌𝜌𝑠𝑠𝑠𝑠 > 𝑏𝑏

𝜏𝜏 . < 𝑉𝑉𝑠𝑠𝑠𝑠 > 𝑐𝑐
𝜏𝜏 . < 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃∕2) > 𝑑𝑑

𝜏𝜏� (11)

In addition, in many cases the average clock angle has been computed from the means of the IMF Y and Z com-
ponents, that is, [θ]τ is used for θ and <B⊥>τ is replaced by [ B⊥]τ, where

[𝜃𝜃]𝜏𝜏 = 𝑡𝑡𝑡𝑡𝑡𝑡−1(| < 𝐵𝐵𝑌𝑌 >𝜏𝜏 |∕ < 𝐵𝐵𝑧𝑧 >𝜏𝜏 )� (12)

and

[�⟂]� = (< �� >2
� + < �� >2

� )
1∕2� (13)

This generates major errors because both BZ and BY can have both polarities within the averaging interval τ. We 
here use the notation that using means of the IMF components generates a coupling function [Cf*]τ that has two 
separate problems. The problems caused by [θ]τ and [B⊥]τ were addressed by the averaging procedure adopted by 
McPherron et al. (2015) who evaluated both at high time resolution before averaging and so avoided using either 
[θ]τ and [B⊥]τ (this is hereafter referred to as the MEA15 procedure and is what we will use in later sections). In 
Figure 1 we highlight its importance but also deconvolve it from a second effect. Note that exactly the same oper-
ations are used in generating <Cf>τ, [Cf]τ, and [Cf*]τ and the difference between them is purely the order in which 
they are carried out: <Cf>τ can be characterized as the parameters being “combined-then-averaged,” whereas for 
[Cf]τ and [Cf*]τ they are “averaged-then-combined.” (The difference between [Cf]τ and [Cf *]τ is that for the latter 
“averaged-then-combined” is even applied to the derivations of clock angle θ and transverse magnetic field, B⊥ 
from the IMF BZ and BY components).

Figure 1a demonstrates that it is far from a valid assumption to take <Cf>τ and [Cf*]τ to be the same, using the ex-
ample of the Vasyliunas et al. (1982) energy transfer coupling function Pα for a coupling exponent α = 1/3 (hence 
this Pα is an example of Cf with a = 2/3, b = 1/3, c = 5/3, and we here have used d = 4). The specific exponents 
do not change the general principles demonstrated by Figure 1. The raw data in Figure 1 are the 9,930,183 valid 
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Figure 1.
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1-min resolution values of Pα and the 11,646,678 valid 1-min resolution values of the IMF clock angle θ in GSM 
and transverse field B⊥ available from the Omni2 dataset for 1995–2020, inclusive (King & Papitashvili, 2005). 
This interval is used because data gaps are both much rarer and shorter than before 1995 because of the advent 
of the Wind, Advanced Composition Explorer (ACE), and Deep Space Climate Observatory spacecraft (Lock-
wood, Bentley, Owens, Barnard, Scott, Watt, & Allanson, 2019). The averaging time in this example is τ = 1 hr. 
Figure 1a compares <Pα>τ and [Pα*]τ and the linear correlation coefficient between the two is very poor indeed, 
being just 0.26. Note that in Figure 1a both <Pα>τ and [Pα*]τ have been normalized by dividing by Po, the overall 
mean of Pα: this has the advantage of canceling out all the constants in the theoretical derivation of Pα. Rather 
than presenting scatter plots with massively overplotted points, Figure 1 employs “data density” plots (2-dimen-
sional normalised histograms) with the fraction of samples, n/Σn, color-coded on a logarithmic scale with n being 
the number of sample pairs in small bins. In Figure 1a there are 100 bins of width 0.08 for both axes. Note that in 
all the data density plots presented in this paper, the lower limit of the color scale is chosen to be below the “one-
count level”, log10(1/Σn) as this ensures that even just one sample in a bin shows up as a blue pixel. Figure 1b 
identifies why the agreement in Figure 1a is so poor: it is for G, which is Cf (in this case is Pα) without the IMF 
orientation term, that is,

𝐺𝐺 = 𝐶𝐶𝑓𝑓∕𝐹𝐹 (𝜃𝜃) = 𝐶𝐶𝑓𝑓∕𝑠𝑠𝑠𝑠𝑠𝑠4(𝜃𝜃∕2) = 𝐵𝐵𝑎𝑎
⟂ 𝜌𝜌 𝑏𝑏

𝑠𝑠𝑠𝑠 𝑉𝑉 𝑐𝑐
𝑠𝑠𝑠𝑠� (14)

This is a factor that we will use again later in deriving optimum values for the exponent d. Figure 1b compares the 
combine-then-average values and the average-the-combine values for G (for the same example as shown in Fig-
ure 1a and in the same format), <G>τ, with a corresponding average-then-combine value [G]τ = <B⊥>a <ρSW>b 
<VSW>c: again, all values have been normalized by dividing by the overall mean, Go. Note that we here use <B⊥>a 
and not [B⊥]τ

a (where [B⊥]τ is defined by Equation 13)—in other words we have moved to the MEA15 procedure 
in order to remove the IMF component-averaging effect on B⊥. The agreement is here is very good indeed, with 
values close to the diagonal line.

However, the agreement in Figure 1b is still not quite perfect. Small differences remain because of the difference 
between “Hölder means” (or a “power means”) [<Xp>τ]

1/p of a general variable X and the corresponding arithme-
tic means <X>τ and hence between <Xp>τ and <X>τ

p. Figure 1b shows these differences are very small indeed 
for the variables X, the exponents p and the timescales τ involved in G in the example shown in Figure 1 and can 
be neglected. However, in general, arithmetic and Hölder means are related by what is called the “Hölder path” 
which results in the Hölder mean increasing with p (the arithmetic mean being the Hölder mean for the special 
case of p = 1). From comparison of Figures 1a and 1b, we know that the poor correlation in Figure 1a must be 
arising from the IMF orientation term, F(θ) = sin4(θ/2) and/or not using the MEA15 procedure to averaging of B⊥. 
Figure 1c compares the combine-then-average values of the clock angle θ, <θ>τ with the average-then-combine 
value [θ]τ, given by Equation 12, in the same format as Figure 1a (for bins of 2° × 2°) and although a great many 
points line up along the diagonal, there is considerable spread, especially at θ near zero or 180° (strongly north-
ward and strongly southward IMF, respectively). Figure 1d makes the same comparison for the transverse field 
estimate, B⊥. Note that if we use the IMF magnitude B instead of B⊥ in the coupling function, this effect does not 
arise; however, as found by Vasyliunas et al. (1982), tests show that using B⊥ usually results in somewhat higher 
correlations. Figure 1e is for the same comparison for sin4(θ/2) and the spread is greatest at the southward IMF 
end of the range.

Figure 1f demonstrates that the MEA15 averaging essentially removes all problems associated with B⊥ by avoiding 
[B⊥]τ. However, Figure 1g shows that a problem still remains with the clock angle term sin4(θ/2). This is because 

Figure 1.  Comparison of combine-then-average, average-then-combine and our compromise hybrid procedure for averaging 1-min data into 1-hr data (τ = 1 hr). 
In all panels, the horizontal axis gives the result of the combine-then-average approach which is what we ideally would wish to use to mimic solar wind forcing 
of the magnetosphere. The vertical axes in (a–e) give the result of an average-then-combine procedure. In each case the fraction of samples n/Σn is color-coded 
on a logarithmic scale, where n is the number of samples in small bins. The raw data used are 9,930,183 valid 1-min integrations of estimated power input to the 
magnetosphere, Pα, and 11,646,678 valid 1-min values of the IMF clock angle θ and tangential component B⊥ observed between 1995 and 2020 (inclusive). (a) The 
coupling function Pα for α = 1/3 and d = 4 (the normalizing factor Po is the arithmetic mean of Pα for all datapoints) in bins of Pα/Po of size 0.08. The x-axis shows 
the means of 1-min values of Pα, <Pα>1hr and the y axis the values [Pα *]1hr computed from 1-hr averages (including computation of the clock angle [θ]1hr and the 
transverse magnetic field [B⊥]1hr from hourly means of the IMF components <BZ>1hr and <BY>1hr). (b) The corresponding plot for G, which is Pα without the IMF 
orientation factor. (c) The IMF clock angle (in the GSM frame of reference) θ in bins that are 2° × 2°. (d) The tangential IMF component B⊥ = (By

2 + Bx
2)1/2 in bins of 

0.5 nT × 0.5 nT. (e) For sind(θ/2) in bins 0.01 × 0.01. (f) Compares <B⊥>a with <B⊥
a> (where a = 2α for the Pα coupling function). (g) Compares <sin(θ/2)>d with 

<sind(θ/2)>. (h) The y-axis is the result of our hybrid averaging procedure for Pα, [P′α]1hr, defined by Equation 15.
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the arithmetic and Hölder means are appreciably different for this parameter. There is still a good correlation in Fig-
ure 1g and many of the points line up along the ideal diagonal: hence it is tempting to say this is just one more (small) 
source of noise and so it is valid to use <sin(θ/2)>d instead of <sind(θ/2)>. However, there is a subtle point here: the 
spread shown in Figure 1g increases with d because the difference between arithmetic and power means increases 
with exponent. Hence using <sin(θ/2)>d discriminates against higher d by introducing more noise and so such 
studies will tend to derive a value for d that is too low, unless the larger-d fits are artificially enhanced by overfitting.

We can understand why the IMF orientation term is so different from the other three by looking the variability of 
the various factors within the averaging period. Figure 1 of Lockwood, Bentley, Owens, Barnard, Scott, Watt, and 
Allanson (2019) showed that the autocorrelation time of the IMF orientation is considerably shorter than for the 
other parameters and so most of the variability of Pα on sub-hour timescales originates from the IMF orientation 
term. This is true for all coupling functions. If a parameter X is constant over the averaging time, then both the 
Hölder mean [<Xp>τ]

1/p and the arithmetic mean are equal to that constant value of X and <Xp>τ = <X>τ
p. On 

the other hand, if X varies a great deal during the averaging interval, then the Hölder mean is greater/smaller than 
the arithmetic mean for p greater/smaller than unity. Hence the much greater variability in the IMF orientation 
is the reason why the term in coupling functions accounting for its effect behaves so differently from the other 
terms. (However, note that if we increase the averaging timescale τ, the other parameters will also start to suffer 
from the same problem as the clock angle term.)

We conclude that the often-used average-then-combine procedure generates large errors for the IMF orientation 
terms in deriving an empirical coupling function Cf, even for τ = 1 hr. The MEA15 averaging procedure removes a 
great deal of the problem (at last for τ = 1 hr), but a second error (due to the difference between Hölder means and 
arithmetic means) remains for the clock angle term. This generates a problem when using an iterative procedure, 
such as the Nelder-Mead simplex search method used here (Lagarias et al., 1998; Nelder & Mead, 1965) to fit the 
exponents a, b, c, or d. This is because of the need to compute the mean of the combination of the samples (and 
in the dataset used in Figure 1 there are 9,930,183 valid 1-min samples of Pα) at the start of every round of the 
iteration. We have achieved this in some cases, but it takes enormous amounts of computer time and sometimes 
fails to converge. Fortunately, Figure 1 points to a compromise. It suggests we can use a hybrid approach of using 
<B⊥>a, <ρSW>b, and <VSW>c, but must use <sind(θ/2)> and not <sin(θ/2)>d for the IMF orientation term. This 
yields a mean coupling function estimate for averaging time τ of

[� ′
� ]� = < �⟂ > �

� . < ��� > �
� . < ��� > �

� . < ����(� ∕2) >�� (15)

Figure 1h compares <Pα>τ and [P′α]τ and it shows that agreement is very good with all points lying close to 
the diagonal line and the correlation coefficient is 0.997. We have repeated this test for all permutations of the 
maximum and minimum estimates of the exponents a, b, c, and d derived here and it is always valid to this level 
for τ = 1 hr Equation 15 is practical for use in an iterative fit procedure because for a given d we can compute 
<B⊥>τ, <ρSW>τ,<VSW>τ, and <sind(θ/2)>τ just once before each iteration and then readily iterate a, b, and c to the 
optimum fit using the Nelder-Mead simplex search. This can then be repeated for different values of d. We have 
carried out some sample tests of our analysis that compared the results of fits using the ideal mean <Cf>τ and our 
pragmatic hybrid solution [C′f]τ and the results were almost identical. However, we were limited in the number of 
these tests that we could carry out by the extremely large compute time caused by the need to average the whole 
dataset at each iteration step to define the exponents when using <Cf>τ. We have repeated all calculations using 
the average-than-combine procedure [Cf]τ (but using the MEA11 procedure for B⊥ and θ to avoid [θ]τ and [B⊥]τ) 
and, as described later, the fits obtained were always poorer because of the effect highlighted in Figure 1g.

2.  Data Employed
We use the dataset of hourly mean transpolar voltage ΦPC observed over the years 1995–2020 (inclusive) by the 
northern-hemisphere SuperDARN array of coherent-scatter HF radars, as described by Lockwood and McWil-
liams (2021). These hourly data are means of 30, 2-min integrations. We adopt the requirement that the hourly 
mean of the number of radar echoes available, ne, exceeds a minimum value nlim = 255. This threshold was 
derived by Lockwood and McWilliams (2021) as the optimum compromise between having enough echoes that 
the influence of the model used in the “map-potential” data-assimilation technique is small, but not so large 
that the distribution of ΦPC values is greatly distorted by the loss of low-flow, low-ne samples. Lockwood and 
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McWilliams (2021) also found that this threshold gave peak correlation be-
tween the radar ΦPC estimates and those from nearby passes of low altitude 
polar-orbiting spacecraft. The condition that ne> nlim = 255 yields a total of 
65,133 ΦPC samples in the dataset.

We wish to compare the optimum coupling function for the global param-
eter ΦPC with that for global geomagnetic activity. We here use the am ge-
omagnetic index (Mayaud,  1980) and the SuperMAG SML index (Newell 
& Gjerloev, 2011). Results are presented here for the SML index but were 
also generated for AL and the results were very similar. The am index has 
the most uniform network, in both hemispheres, of observing stations and 
uses weighting functions to yield the most uniform response possible to solar 
wind forcing with Universal Time and time of year (Lockwood, Chambodut, 
et al., 2019). It is based on the range of variation of the horizontal field com-
ponent in 3-hr windows. To get a data series that is simultaneous with the 
ΦPC data, we here linearly interpolate the three-hourly am values to the mid-
points of the hours used to generate the ΦPC data. This is only done for the 
ΦPC samples that meet the ne> nlim = 255 criterion and so we end up with 
a dataset of 65,133 interpolated am samples that are simultaneous with the 
ΦPC data. The advantage of using am is that it is the geomagnetic index that 
is by far the most free of seasonal and hemispheric effects which introduce 
noise in correlation studies, and it is genuinely global. The disadvantage is 
that it is three-hourly and the interpolated values will reflect this timescale. 
We also compare with simultaneous hourly means of the SML index, by av-
eraging 1-min values over the same hour as used to average the radar data. 
Note that SML comes from northern hemisphere stations and so contains an 
annual variation caused by seasonal changes in ionospheric conductivities: 
this is an additional noise factor for correlative studies that could potentially 
be reduced using a model of the effect of the conductivities.

Figure 2 compares these hourly datasets of ΦPC, am, and SML by presenting data density plots of the normalized 
geomagnetic indices (the am index in Figure 2a, am/<am> and the SML index in Figure 2b, SML/<SML> where 
the means are taken over the whole dataset) as a function of the simultaneous normalized transpolar voltage, 
ΦPC/<ΦPC>. In both cases, means of the normalized geomagnetic index (with error bars between the 1−σsigma 
points of the distribution) are also plotted for coarser bins of ΦPC/<ΦPC>. Figure 2a shows that the am index is, 
on average, close to proportional to ΦPC, but with considerable scatter. This proportionality of mid-latitude range 
indices and transpolar voltage, such as am and kp, has been discussed by Thomsen (2004). The variation of SML 
with ΦPC is a bit more complex with only a small increase at ΦPC/<ΦPC> below about 0.5 (i.e., ΦPC below about 
20 kV), above which SML increases in magnitude more rapidly with ΦPC than does am. The scatter is somewhat 
higher for SML because, coming from one hemisphere, it contains noise associated with the seasonal variation 
in ionospheric conductivities. In contrast, am has very little such noise, being compiled from matching rings of 
stations in both hemispheres (and using weighting functions to account for any inhomogeneity) and has been 
shown to have an extremely flat response in both UT and time-of-year to solar wind forcing as a result (Lock-
wood, Chambodut, et al., 2019).

To derive the coupling functions, we use 1-min resolution averages of the Omni dataset of near-Earth measure-
ments of interplanetary space made from craft in halo orbits around the L1 Lagrange point (King & Papitash-
vili, 2005). From this we generate running means using 1-hr (61-point) boxcar averages of B⊥, ρSW, VSW, and 
sind(θ/2) for the value of d we are investigating (the using the MEA15 averaging procedure). Mean values are only 
considered valid when the number of samples is large enough to make the error in the mean less than 5%, thresh-
olds that were determined by Lockwood, Bentley, Owens, Barnard, Scott, Watt, and Allanson (2019) for each 
parameter by the random removal of 1-min samples from hourly intervals for which all 60 samples were availa-
ble: because of its much lower auto-correlation function (acf), the most stringent requirement is set by the IMF 
orientation factor which requires 82% of samples (i.e., 43 out of the 60). The averaging generates a sequence of 

Figure 2.  Data density plots of normalized geomagnetic indices as a function 
of normalized transpolar voltage, ΦPC/<ΦPC> (a) the am index and (b) the 
SML index. The fraction of samples (on a logarithmic scale) in bins that are 
0.03 wide in the x dimension and 0.06 in the y dimension. The black points 
are means in bins of ΦPC/<ΦPC> that are 0.1 wide and the black error bars are 
between the 1σ points of the distribution of normalized geomagnetic index in 
the bin. The mauve line is a third-order polynomial fit to the data.
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hourly running means that are 1 min apart. We combine these into mean cou-
pling function [C′f]1hr using our hybrid averaging formula (Equation 15). For 
test purposes only we also generate [Cf]1hr using the average-then-combine 
procedure (Equation 11, with MEA15 averaging to generate hourly means of 
θ and B⊥). We then select the value at each time of the transpolar voltage and 
am dataset, allowing for the appropriate propagation lag, δtp.

To determine the required propagation lags we make the initial assumption 
that the IMF orientation factor is sin3(θ/2) (i.e., d = 3), although this is re-
fined in Section 3 of this article. We have carried out a sensitivity test to show 
that this choice does not influence the optimum derived lags. The Omni data 
have been propagated from the point of observation to the nose of the magne-
tosphere (King & Papitashvili, 2005): any variable error in that propagation 
will be a source of noise in our correlation studies. We then add a lag δt to 
allow for propagation across the magnetosheath to the dayside magnetopause 
and then to the relevant part of the ionosphere. We then vary δt between 
−60 min and +120 min and for each lag evaluate the linear correlation coef-
ficients between ΦPC and am and the optimum coupling function, Cf (for the 
assumed value for d of 3). Note that here and hereafter we refer to the hourly 
coupling function generated by our hybrid averaging procedure [C′f]1hr as just 
Cf, unless we are making a comparison with the results of the often-used av-
erage-then-combine procedure, in which case we distinguish between [C′f]1hr, 
[Cf]1hr, and [Cf*]1hr. We want Cf to be linearly related to the terrestrial ac-
tivity indicator and so we maximize the linear correlation coefficient, r. (In 
later sections we will investigate the use of this metric). The exponents a, b, 
and c at each δt were determined using the Nelder-Mead simplex method to 
minimize (1−r) (Lagarias et al., 1998; Nelder & Mead, 1965). From this the 
optimum exponents a, b, and c (for the assumed d = 3) and the correlation 
coefficient r were determined at each lag δt.

The lag correlograms, r(δt) obtained this way are shown in the top panel of 
Figure 3: mauve is for ΦPC, the blue is for the interpolated am and the green 
is for SML. The vertical dashed lines mark the lags δtp giving peak correla-
tion. The bottom panel shows the best-fit exponents a, b, and c as a function 
of lag δt: it can be seen that they do vary somewhat with δt but only to a 
small extent around the optimum lags. δtp. From Figure 3, we determine the 
optimum lags are δtp = 18.5 min for ΦPC, δtp = 31.0 min for the interpolated 
am, and δtp = 45.0 min for SML. Note that the much greater persistence in 
the plot for am, because of it is interpolated from three-hourly data, and this 
makes the peak for am lower and broader. The survey of the ΦPC dataset by 
Lockwood and McWilliams (2021) demonstrates how ΦPC responds to both 
the reconnection rate at the dayside magnetopause ΦD and reconnection in 

the cross-tail current sheet tail ΦN (good proxies for which is the AL and SML auroral electrojet indices), as 
predicted by the ECPC model (Cowley & Lockwood, 1992; Lockwood, 1991). Indeed, in the approximation that 
the polar cap remains circular at all times, ΦPC is the average of ΦD and ΦN (Lockwood, 1991). Lockwood and 
McWilliams (2021) show that for low −AL, the lag of ΦPC after solar wind forcing is about 5 min, which is con-
sistent with the expected response delay of ΦD, but the lag of the AL response (and hence inferred ΦN) is 35 min, 
similar to the lag for am that is derived here. Hence we would expect the average lag for ΦPC, which is generated 
by a combination of ΦD and ΦN, to be around 20 min, as is indeed found to be the case in Figure 3. However, we 
note that there is considerable variability in the lags connected with ΦN, partly because of the variability in sub-
storm growth phase duration (Freeman & Morley, 2004; Li et al., 2013) but also because, depending on the onset 
location, the precipitation in the initial part of the expansion phase can suppress ionospheric flow by enhancing 
conductivity, giving an addition delay in the appearance of the full voltage due to ΦN (Grocott et al., 2009).

Figure 3.  (Top) Lag correlograms (linear correlation coefficient, r, as a 
function lag, δt) of predicted variations using 61-point boxcar (running) means 
of the coupling function Cf from 1-min interplanetary parameters with hourly 
observations of the transpolar voltage ΦPC (in mauve), the interpolated am 
geomagnetic index (in blue) and hourly means of the SML index (in green). 
Note. That unless otherwise stated, Cf in this and later figures refers to hourly 
means [C′f ]1hr, derived from our hybrid formulation, Equation 15. The ΦPC, 
am, and SML data are all for the full 25-yr dataset, but only for hours when 
the number of SuperDARN radar echoes ne exceeds the threshold nmin. This 
yields N = 65,133 data points. The hourly am data are derived from the 
observed three-hourly am values using PCHIP interpolation to the mid-points 
of the hourly integration periods for the radar data. The lag δt = 0 means 
that the radar data and the Omni interplanetary data are averaged over the 
same one-hour interval and positive δt corresponds to the interplanetary data 
leading the terrestrial data. The exponent d is assumed to be 3 but tests of 
values between 1 and 6 made negligible differences to the optimum values 
of δt, δtp, derived. The dark gray, lighter gray, and lightest gray areas define, 
respectively, the 1σ, 2σ, and 3σ uncertainty bands in the lag δtp and are defined 
using the Meng-Z test (see text for details). The vertical dashed lines give the 
lag δtp that yields the peak r, rp, which is 0.862 at δtp = 18.5 ± 1.3 min for ΦPC, 
0.818 at δtp = 31.5 ± 4.0 min for am, and 0.803 at 45.3 ± 7.0 min for SML, 
the quoted uncertainties being at the 2σ level. (Bottom) The best-fit exponents 
a, b, and c as a function of δt (lines marked by squares, triangles, and circles, 
respectively), derived using the Nelder-Mead search algorithm to maximize r.



Journal of Geophysical Research: Space Physics

LOCKWOOD AND MCWILLIAMS

10.1029/2021JA029946

16 of 41

The optimum coupling exponents at these lags are, for example, a = 0.672, b = 0.017, and c = 0.561 for ΦPC (for 
this assumed d of 3). Below we derive an optimum value for d (of 2.50) for which the a, b, and c values are similar 
to, but still a little different from, these values. The final values are given in Table 2, along with their estimated 
uncertainties. The gray areas in Figure 3 define the 1σ, 2σ, and 3σ uncertainties in the δtp estimates. These are 
evaluated by looking at the significance S of the difference between the correlation at a general lag r(δt) and its 
peak value at the optimum lag δtp (where r = rp) where S = 1−p, and p is the probability of the null hypothesis 
that r and rp are actually the same. S is computed using the Meng-Z test (Meng et al., 1992) for the significance 
of the difference between correlation rAB (between two variables A and B) and rAC (between A and C) allowing 
for the fact that B and C may be correlated (|rBC| ≠ 0). S is, by definition, zero at the optimum lag δtp, and the 1σ, 
2σ, and 3σ uncertainties are the lags at which S has risen to 0.68, 0.95, and 0.997, respectively. For ΦPC the 2σ 
uncertainty band is ±1.3 min; for am it is ±4.0 min; and for SML it is ±6.1 min. Note that these uncertainties are 
smaller than in many studies because the number of samples is so large. Because Figure 3 was generated using 
an assumed value of d = 3, it was repeated for a range of selected values of d between 1 and 7 (which Section 3.2 
shows covers the range of interest), the differences between the derived optimum lags were always considerably 
smaller than the above 2σ uncertainties.

For completeness and to enable reproducibility, the precise and full details of the procedure for determining ex-
ponents and their uncertainties is defined in advance here for the case of ΦPC (and is implemented in subsequent 
sections for SML and am as well as for ΦPC). The optimum lag δt between ΦPC and Cf of 18.5 min derived in 
Figure 3 is employed. The value of the exponents are then found by varying d between 1 and 7 (a range larger 
than the largest suggested in the literature) in steps of 0.001 (a value found by iteration to be about 1% of the 
uncertainty in d, δd). For each d, the values of a, b, and c that give the peak correlation r between ΦPC and Cf are 
found using the Nelder-Mead simplex search algorithm (specifically the algorithm minimizes 1−r). The optimum 
value of d is then determined by searching for the value for which the combination of best-fit exponents a, b, c 
with d that give a Cf that has a fully linear relationship with ΦPC. This is done using a quadratic polynomial fit of 
suitable functions of Cf and ΦPC, as given by Vasyluinas et al. (1982) who devised the method. The polynomial 
uses least-squares fitting and the uncertainties in the derived coefficients are computed using the standard tech-
nique employing the reduced chi-square statistic. Linearity is achieved when the coefficient for the squared term 
in the quadratic fit falls to zero and this defines the optimum value of d. The distribution of p-values of d (and 
hence the uncertainty δd at a given probability) is found from the p-values of the squared term coefficient when it 
equals zero. The optimum d defines the optimum values of the other three exponents, a, b, and c (i.e., that give the 
maximum correlation between Cf and ΦPC for that d). To determine the uncertainty in, for example, the exponent 

T Lag, δt (min) Cf

Optimum values

d rp rp
2 a b c

ΦPC 18.5 ± 1.3 Best fit 2.50 ± 0.08 0.865 0.748 0.643 ± 0.022 0.018 ± 0.014 0.552 ± 0.048

18 ΦSW for constant η 4 0.823 0.677 1 −0.167 0.667

18 ΦBB for MA < 6 2 0.816 0.667 0.51 0.24 1.49

19 ΦBB for MA> 6 2 0.770 0.592 1.38 −0.19 0.62

am 31.0 ± 4.0a bestfit 2.87 ± 0.18 0.858b 0.736b 0.800 ± 0.025 0.360 ± 0.069 2.562 ± 0.069

47b Pα for α = 0.34 2 0.742b 0.550b 0.680 0.327 1.652

-SML 45.0 ± 6.1c Best fit 5.20 ± 0.41 0.792d 0.627d 0.662 ± 0.034 0.061 ± 0.027 1.746 ± 0.091

45d Pα for α = 0.26 4 0.640d 0.409d 0.520 0.407 1.813

Note. Uncertainties in a, b, and c allow for both the fit uncertainties at a given d and the uncertainty caused by the uncertainty in d. The correlation coefficients are 
for all available data for 1995–2020: for ΦPC this means the hourly 65,133 samples with the mean number of radar echoes exceeding 255; for am this means the 
69,028 three-hourly means with simultaneous interplanetary data yielding a valid hourly coupling function; and for SML this means the 241,848 hourly means with 
simultaneous interplanetary data yielding a valid hourly coupling function. The best-fit exponents are derived always from the 65,133 samples (using the optimum lag), 
using interpolated values in the case of am and simultaneous means for SML.
aFor interpolated one hourly data. bFor all three-hourly data. cFor simultaneous one-hourly data. dFor all one-hourly data.

Table 2 
The Best Fit Exponents a, b, c, and d and the Resulting Peak Correlation Coefficient rp for the Terrestrial Parameters ΦPC, am, and SML From Fits Using the Data 
From the Range of Dates Given in the Footnotes
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a, we vary it around its optimum value and study how the optimum correlation coefficient varies (found using the 
Nelder-Mead method by fitting b and c for each a using the optimum d and δt). As before, we use the Meng-Z 
test (Meng et al., 1992) for the significance of the difference between two correlations to find the values of a for 
which the correlation is lower than the optimum value at given p-value of the null hypothesis that the correlation 
is the same as the peak. Finding the values of a that give these p-values of 68%, 95%, and 97.7% gives us the 
uncertainty bands in a at the 1σ, 2σ, and 3σ levels. The same procedure was then repeated for exponents b and c.

3.  The IMF Orientation Factor
As discussed by Vasyliunas et al. (1982), the optimum IMF orientation factor is not independent of the other fit 
exponents. In addition, Section 1.4 has described how, because its much greater rapid variability, we have to deal 
with it differently when generating average coupling functions. Section 3.1 discusses the distributions of IMF 
orientation factors before in Section 3.2 we evaluate the optimum values of d for ΦPC, am, and SML.

3.1.  Occurrence Distributions of IMF Orientation Factors and the Effect of Averaging Timescale

Figure 4 shows the distributions of various parameters relevant to the IMF orientation factor, all panels being 
for 1-min integrations of data and in the GSM frame of reference. Figure 4 is for 11,646,678 1-min Omni data 
samples from 1995 to 2020, inclusive. The vertical axis is the fraction of samples n/Σn in 100 bins of width that 
are 1% of the range of the horizontal axis. The sequence of Figures 4a–4e are from Lockwood, Bentley, Owens, 
Barnard, Scott, Watt, et al. (2019) and explain how strange, highly asymmetric distributions of 1-min samples of 

Figure 4.  Distributions of 1-min interplanetary parameters relating to IMF orientation factors, F(θ) in the GSM frame of 
reference. Histograms of various parameters are presented from Σn = 12,126,247 1-min resolution Omni samples from 1995 
to 2020 (inclusive): n is the number samples in bins that are 0.5% of the x-axis length in each case. The vertical dashed mauve 
lines are the mean values. (a) The IMF BZ component (in GSM coordinates). (b) The IMF BY component. (c) |BY|/BZ. (d) The 
IMF clock angle (in GSM), θ = tan−1(|BY|/BZ). (e) sin(θ/2). (f) sin2(θ/2). (g) sin4(θ/2). (h) sin6(θ/2). (f) sin2(θ/2). (i) BS/4.5 
where BS is the half-wave rectified southward field in GSM, BS = B⊥cos(θ) for θ > π/2 and BS = 0 for θ ≤ π/2 and B⊥ is the 
transverse component of the IMF, B⊥ = (BT

2 + BT
2)1/2). (j) U(θ)cos(θ) where U(θ) = 1 for θ > π/2 and U(θ) = 0 for θ ≤ π/2. 

For panels (e–j) the same vertical scale is used but an increasingly larger fraction of samples occur in bin 1 and exceed this 
scale: hence the value of n/Σn for bin one is given by the legend for panels (f–j).
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the various coupling functions come about from a near-Gaussian distribution of the IMF BZ component, which is 
very close to symmetric around zero, and a double-peaked distribution of the IMF BY component, which is also 
very close to symmetric around zero. As discussed above, the most commonly adopted form of the IMF orienta-
tion factor has been sind(θ/2) with d = 4 although a range of d from 1 to 6 has been proposed. Figure 4f shows that 
d = 2 yields a symmetric distribution around an average of 0.5 with dominant isolated peaks in the bins closest to 
0 and 1. On the other hand, Figure 4g shows that d = 4 yields a highly asymmetric distribution with an even-larger 
isolated peak in the bin nearest 0 and only a very small one in the bin nearest 1. The peak in the lowest bin is even 
larger for d = 6, shown in Figure 4h and larger again for two other commonly used “half-wave rectified” IMF 
orientation factors BS in Figure 4i (where BS = −BZ for BZ < 0 and BS = 0 for BZ ≥ 0) and U(θ)cos(θ) in Figure 4j 
(where U(θ) = 0 for θ < 90° and U(θ) = −1 for θ ≥ 90°). The distributions for BS and U(θ)cos(θ) are very similar 
because U(θ)cos(θ) = BS/B and the factor 4.5 is used to display BS on the same scale because it makes the mean 
value the same as for U(θ)cos(θ) and very similar to that for sin6(θ/2).

These strange distributions of IMF orientation factors have great significance for statistical studies of the perfor-
mance of a proposed coupling function because they determine the weighting given to a given clock angle θ in 
a correlation study. This means that when we alter d, we are not just investigating the how the IMF orientation 
influences solar wind-magnetosphere coupling, we are also changing the statistical weighting given to certain 
IMF orientations in our correlation studies. For BS and U(θ)cos(θ) the value is zero for 50% of the dataset (for 
BZ> 0) and so the coupling function is more weighted to accurate prediction of quiet times, which is probably not 
what is wanted in many applications. Figure 4h shows the distribution is not quite so extreme for sin6(θ/2), but 
it has the same basic form. As we reduce d, that weighting shifts until for d = 2 the distribution is dominated by 
two equal peaks close to due northward and close to due southward IMF. For d = 1 (Figure 4e) it is dominated by 
close to purely southward IMF. The key point is that the choice of the IMF orientation factor is also setting the 
weighting given to certain data in the statistical fit of the coupling function if we use an overall fit-quality metric 
such as correlation coefficient or root-mean-square deviation.

Figure 1 of Lockwood, Bentley, Owens, Barnard, Scott, Watt, and Allanson (2019) shows why the IMF orienta-
tion factor has a key role in setting the variability of a coupling function. It is because its autocorrelation function 
(acf) falls much more rapidly with time lag for any other solar wind parameter. For a lag of 1 hr, the autocorrela-
tion function for sin4(θ/2) in near-Earth space is 0.45, whereas for the solar wind number density NSW it is 0.88, 
for the IMF B it is 0.93, and for the solar wind speed VSW is 0.99. Hence short-term variability of a coupling 
function is set by that in the IMF orientation factor whereas, as shown below, this factor essentially becomes 
constant at timescales of a year or more. This exemplifies the general fact that the IMF orientation factor distri-
bution depends critically on averaging timescale which is here illustrated by Figure 5 for the commonly adopted 
sin4(θ/2) factor. We take running boxcar (running) means of the 1-min data over intervals τ and deal with data 
gaps by only retaining averages that are made up of a fraction of the potential maximum number samples that 
exceeds f(τ), the minimum needed to keep errors due to data gaps below 5%. The minimum fractions f(τ) needed 
were computed by introducing random synthetic data gaps into continuous IMF data, computing the error caused 
and repeating 10 times for each hourly mean, as carried out for τ = 1 hr by Lockwood, Bentley, Owens, Barnard, 
Scott, Watt, and Allanson (2019). For example, Figure 1b of Lockwood, Bentley, Owens, Barnard, Scott, Watt, 
and Allanson (2019) shows that we require f(τ) > 0.82 to keep errors in the hourly mean IMF orientation factor to 
below 5%. As τ increases, it becomes increasingly hard to find intervals with no data gaps and hence to compute 
the threshold; however, at the same time f(τ) falls with increased τ and for τ > 1 day we set the f(τ) requirement 
threshold value to be the same as for 1 day.

As τ is increased, the central limit theorem (Fischer, 2010) applies and the distribution of any parameter narrows 
toward a delta function at the overall mean (i.e., the value derived for a τ equal to the duration of the whole 
dataset). However, because of the unusual form of the distribution at τ = 1 min, the distribution for sin4(θ/2) 
evolves through a series of forms and how it does so is determined by the timescales of the variability in the IMF 
orientation. For τ = 15 min the distribution is quite similar to that for τ = 1 min, but the peak at sin4(θ/2) = 0 has 
diminished and more samples occur at larger values. For τ = 1 hr (the timescale used in this article), this results 
in a near-linear distribution, but still with a pronounced peak at 0. By τ = 6 hr the distribution has evolved into 
very close to a lognormal form and by τ = 1 day it is close to a Gaussian form that is symmetrical about the over-
all mean value (the mauve vertical dashed line). Further increases in τ cause the width of the distribution about 
the overall mean to decrease. For τ = 1 yr, the distribution is narrow and hence the IMF orientation factor can, 
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to within a reasonably small error, be taken to be constant. This is why successful coupling functions at annual 
timescales usually do not contain a factor that allows for IMF orientation. Note that all parameters in a coupling 
function, not just the IMF orientation, follow the central limit theorem, but the other factors tend to start (for 
1-min observations) from a log-normal form and then evolve into the narrowing Gaussian and do not start from 
the unusual distributions for the IMF orientation factors (Lockwood et al., 1999).

The averaging timescale τ has significance on two levels. Here, we study it purely in the context of averaging data 
and the changes of the distribution that are associated with the reduction in noise brought about by the averaging. 
However, it should be noted that τ also has significance on a physical level. This is because the IMF orientation 
in the upstream solar wind will be influenced by the passage of the solar wind through the bow shock and mag-
netosheath and there will be time constants for changes in the coupling of energy, mass and momentum from 
the near-magnetopause sheath into the magnetosphere (e.g., changes in the reconnection rate and in the X-line 
latitude and orientation). These will almost certainly act as a low-pass filter on the IMF orientation variations, but 
it is not yet clear what averaging timescale τ will best mimic the effects of this low-pass filter and how it might 
vary with solar wind conditions. The optimum τ will depend on the terrestrial parameter considered. For exam-
ple, studies using ground-based radars show rapid responses in ionospheric flows and the location of the inferred 
open/closed boundary in the cusp region (almost immediately after the arrival of the Alfvén wave down the field 
line from the magnetopause to the ionosphere). However, flows over the polar cap (quantified by the transpolar 
voltage) evolve more slowly and do not fully respond until 15–20 min later (Lockwood & McWilliams, 2021), 
consistent with the Expanding-Contracting Polar Cap model (Morley & Lockwood, 2005, 2006)—although we 
note that quasi instantaneous responses are also possible if the magnetosphere has been pre-conditioned by prior 

Figure 5.  Distributions of the IMF orientation factor F(θ) = sind(θ/2) for d = 4, where θ is the IMF clock angle in GSM 
coordinates, for data averaging timescales τ of: (a) 1 min; (b) 15 min; (c) 1 hr (used in this paper); (d) 2 hr; (e) 6 hr; (f) 1 day; 
(g) a solar rotation period of 27 days, and (h) 1 yr. The numbers of samples, n, as a fraction of the total number Σn, in bins 
0.01 wide are shown in each case and the dataset used is the same as in Figure 4. The vertical mauve dashed lines are for the 
overall average of all samples. The vertical green line is at θ = 90° for which the IMF lies the GSM equatorial plane. Note. 
That the lowest bin in sin4(θ/2), which is 0–0.01, corresponds to a range in θ of 0°–36.9° whereas the highest bin (0.99–1) 
corresponds to 171.9°–180°.
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magnetopause reconnection (Morley & Lockwood, 2005). Hence determining the timescale that is relevant to a 
given response is a multi-faceted and complex problem.

Figure 6 is the same as in Figure 5, but for another value for d that has been proposed in the literature, namely 
d = 2 (e.g., Borovsky, 2013; Kan & Lee, 1979; Lyatsky et al., 2007). This reveals the sin2(θ/2) has very different 
behavior to sin4(θ/2). At all τ, the distribution is symmetric about 0.5 and the mean value (vertical dashed line) 
and the value for in-equatorial field (vertical green line) are both always at 0.5. For τ up to about 15 min, this 
yields a uniform distribution with sin2(θ/2) with just small peaks at zero and unity that decay as τ is increased. 
This even distribution makes sin2(θ/2) an attractive choice if studying timescales up to about 15 min. However, 
for τ = 1 hr and above the distribution takes on some undesirable characteristics, with most samples coming from 
near-in-equatorial field and fewer from the extremes near 0 and 1. As discussed below this has some consequences

In the literature values for d between 1 (Borovsky, 2008; Fedder et al., 1991) and 6 (Balikhin et al., 2010; Temerin 
& Li, 2006) have been proposed and used. From the above, the choice of IMF orientation factor and of the averag-
ing timescale both have a subtle effect on the coupling function fitting by changing the weighting given to the data 
samples. The central limit theorem means that the same effect applies to other factors in the coupling function, 
but the effects are less marked because they do not start from as extreme a distribution for 1-min values as does 
the IMF orientation factor. One key insight here is that we should not expect a coupling function that works well 
at one timescale to be equally effective at another. Hence some of the differences between the coupling functions 
proposed in Table 1 will have arisen from the different averaging timescales used.

The behavior in Figures 5 and 6 is very different to that obtained by an average-then-combine procedure given 
by Equation 12 (not shown). In these cases, the distribution tends to maintain its high-resolution form up to τ of 
about 1 day when it starts to narrow under the central limit theorem. However, as τ is further increased it gets 
noisy and broadens again as the means of both the Y and Z components of the IMF tend to zero. The key point 

Figure 6.  Distributions of the IMF orientation factor F(θ) = sind(θ/2) for d = 2, in the same format as Figure 5 and for the 
same dataset. Here, the lowest bin in sin2(θ/2), which is 0–0.01, corresponds to a range in θ of 0°–11.5°, whereas the highest 
bin (0.99–1) corresponds to 168.5°–180°.
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is that this behavior is purely an artifact of the average-then-combine proce-
dure, and the combine-then average is what mimics the physics of the mag-
netosphere. The distributions of the other parameters in the coupling function 
are largely log-normal and also influence the net distribution of Cf, but it is 
the IMF orientation factor that has the most marked effect, and the imprint 
of its strange distributions is clearly seen in Cf (Lockwood, Bentley, Owens, 
Barnard, Scott, Watt, et al., 2019; Lockwood, Chambodut, et al., 2019).

3.2.  Optimum Exponent d of the IMF Orientation Factor

In Section 2 we defined the optimum lags for the interplanetary data, δtp, 
and found that they were not significantly influenced by the choice of the 
exponent d in the sind(θ/2) IMF orientation factor. In this section, we define 
the optimum d using those lags. We vary d over the full proposed range (we 
used values from 1 to 7.5 in steps of 0.001) and using the optimum lags δtp, 
we optimized a, b, and c to maximize the correlation r at each d. The results 
are shown for Figure 7, using the same format as Figure 3.

The top panel of Figure 7 shows that for ΦPC, am, and SML, the correlation 
has a peak at quite low d, specifically d = 2.1 for ΦPC (in mauve) and d = 1.3 
for am (in blue) whereas for SML (in green) the peak correlation is at d = 3.7, 
very close to the value found by MEA17 for AL. The bottom panel shows how 
the other exponents (a, b, and c) depend slightly on d. Note that we have also 
used the MEA15 averaging methods to generate hourly coupling functions 
Cf, [Cf]1hr using Equation 11 (not shown): as expected from Figure 1g, the 
correlations for [Cf]1hr were systematically lower than for [C′f]1hr. For a few 
sample values of d (specifically 2, 3, 4, and 6) we also repeated the compu-
tation using <Cf> 1hr (Equation 10): in each case, iteration took over a 1,000 
times longer than the corresponding fit using [C′f]1hr, but the results for a, 
b, c, and r were all the same for <Cf> 1hr and [C′f]1hr to within the estimated 
uncertainties. From Figure 7a, it appears that the sin2(θ/2) IMF orientation 
factor performs best for ΦPC and that an even lower d is best for am because 
they yield higher correlation coefficients.

However, as discussed in the previous section, some of this is the favorable distribution of samples that averaging 
brings about and the subsequent weighting of IMF orientations in deriving the correlation coefficient. This is 
demonstrated by Figure 8 for fits to the ΦPC data. Figures 8a and 8b show that for a d value that is too low or too 
high the relationship between Cf and ΦPC is not linear (with curvature in the opposite sense in the two cases). 
Figure 8c is for the peak correlation (d = 2.2) and it can be seen that the variation is not linear, but d is slightly too 
small, giving the same curvature as seen in Figure 8a. Figure 8d shows that it requires a slightly larger d (=2.5) to 
give a linear variation, even though the correlation is slightly lower and the rms deviation is slightly larger than 
for d = 2.2 that yields peak correlation. The reason lies in the effect of the distribution of Cf values on the fits. 
The color contours reflect the point made in relation to Figure 4, namely that higher d causes a greater density 
of points at low Cf and so biases the fits to lower values of ΦPC and hence northward IMF. This can be seen by 
comparing the color contours in the Figures 8a–8d.

An interesting point to note is that the variation in Figure 8c could be interpreted as a saturation effect at work, 
whereas it is in reality the application of a value of d that is too high. Saturation is identified when the observed 
ΦPC is not as high as we would expect for a given coupling function for the prevailing interplanetary conditions 
(Hairston et al., 2005; Shepherd, 2007). Such an empirical identification and quantification of a saturation affect 
assumes that the coupling function had been made to have a linear variation with ΦPC and Figure 8 demonstrates 
that deriving the coupling function using correlation coefficient can give a non-linear variation of Cf with ΦPC. 
It seems likely that saturation is a real phenomenon—for example, it is generated by MHD simulations Kubota 
et al. (2017) and we note that saturation the maximum ΦPC/<ΦPC> in Figure 8 is near 2.7 which corresponds to 
100 kV (<ΦPC> = 37 kV) and saturation has generally been reported at larger ΦPC, typically 150–200 kV and 
certainly at a level above 100 kV. In addition, the curvature caused by excessively large d extends throughout 

Figure 7.  Analysis of the effect of the exponent of the d of the 
F(θ) = sind(θ/2) IMF orientation factor for all N = 65,133 samples which meet 
the criterion of the hourly mean number of radar echoes ne> nmin = 255. For 
each value of d, the value of the other three exponents a, b, and c are derived 
by the Nelder-Mead simplex search method to maximize the correlation 
coefficient r between the hourly lagged coupling function Cf. The results 
for observed ΦPC are in mauve, interpolated hourly values of am are in blue 
and hourly means of SML in green. The vertical dashed lines mark the peak 
correlation in each case, the vertical solid lines the optimum d (that gives 
linearity and determined from Figures 9–11) and the gray areas the 1σ, 2σ, and 
3σ uncertainty bands of the optimum d. (a) The correlation coefficients, r, as a 
function of d. (b) The best fit values of the exponents a (identified by squares), 
b (triangles), and c (circles) as a function of d.
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all values of ΦPC—unlike saturation effects. But we conclude most of the data in Figure 8 are not influenced by 
saturation. Furthermore, the variation that looks like saturation in Figure 8d is generated by an exceptionally 
large d (=6.5) whereas the effect of statistical weighting is to tend to underestimate d when using correlation. 
However, we must remain aware that non-linearity introduced into the coupling function, caused by statistical 
biasing toward certain IMF clock angles, can cause us to underestimate or overestimate the true saturation effect.

There is second way to derive d that avoids the possibility of statistical bias, and this is presented in the Section 3.3.

3.3.  Test of the IMF Orientation Factor and Linear Regression Coefficients

Vasyliunas et al. (1982) provide a test for the optimum form of the IMF orientation factor F(θ), such as sind(θ/2). 
This is based on the fact that we want the coupling function Cf to be linearly related to the terrestrial response 
at all activity levels and not be biased in the way illustrated by Figure 8. To evaluate this, we use the function G 
(i.e., Cf without the F(θ) factor, defined by Equation 14). We want Cf to vary linearly with the terrestrial index T 
(which is either ΦPC, SML, or am in the current article). Hence we want

� = �� �� + �� = �� �� (�) + ��� (16)

where sT and iT are the best-fit linear regression coefficients. This yields a requirement that

𝐹𝐹 (𝜃𝜃) = (1∕𝑠𝑠𝑇𝑇 ) × (𝑇𝑇 − 𝑖𝑖𝑇𝑇 )∕𝐺𝐺� (17)

which we can test for. Equation 17 stresses the point that d is not an independent fit variable from the other expo-
nents because for a given a, b, and c and set of interplanetary data, G is proscribed which means there is a unique 
exponent d in F(θ) = sind(θ/2) that ensures the linearity of Cf = G.F(θ) with T. The supplementary material to 
Lockwood, Bentley, Owens, Barnard, Scott, Watt, et al. (2019) showed that this test yields F(θ) = sin4(θ/2) for 

Figure 8.  Data density plots of normalized coupling function Cf /<Cf > as a function of normalized transpolar voltage 
ΦPC/<ΦPC> in a similar format as Figure 2 (except mean values are shown in red and without standard deviations for clarity 
and the color scale is linear in fraction of samples, rather than logarithmic). The orange dashed line in each panel is the best 
linear regression to the individual data pairs and the green dashed line is the best second-order polynomial fit. The panels are 
for (a) d = 1.1. (b) d = 2.2. (c) d = 6.5. (d) d = 2.5. In each panel, the best-fit exponents a, b, and c are given for the d used 
(as in Figure 7), as is the correlation coefficient, r and the rms deviation of the normalized Cf and ΦPC value pairs, Δrms.
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a T for the SML index and a coupling function Cf of Pα. We here repeat that test for ΦPC, am, and SML using our 
generalized form for Cf. Our procedure takes each value of d in Figure 7 (which was varied between 1 and 7.5 
in steps of 0.001) and the best-fit a, b, and c for that d (which are given in Figure 7b) and compute G, F(θ), and 
Cf and the linear regression coefficients between Cf and T, sT and iT. To test if the linear Equation 17 applies, we 
can divide the data up into equal-width averaging bins of F(θ) for which we evaluate the means of both F(θ) and 
(T−iT)/G. If the means for the bins of <(T−iT)/G> are proportional to the means <F(θ)>, then Equation 16 ap-
plies, and we know that F(θ) is of the correct form for the proposed G to give a linear coupling function. Note that 
averaging into bins of F(θ) removes the bias of the sample numbers toward low θ as the means are not weighted 
by the number of samples that are in the bin. This is a particular problem for higher values of d.

Figures 9–11 give the results of this test of the required F(θ) (i.e., d value) for ΦPC, am, and SML, respectively. 
Figures 9a–9c are examples of plots of <(ΦPC − iΦ)/G> against <F(θ)> for F(θ) = sind(θ/2) for three different 
values of d. Figures  10a–10c, and 11a–11c are the corresponding plots of <(am−iam)/G> and of <(SML−iSML)/
G>, respectively, as a function of <F(θ)>. In all cases we use the derived optimum G for the value of d in question 
(i.e., using the coefficients a, b, and c given in Figure 7b). Averaging is carried out over 25 bins of F(θ) of width 
0.04, covering the full range of 0–1. In Figures 9–11, the Parts (a), (b) and (c) are for, respectively, d below, equal 
to, and above the optimum value which is derived below: they show that the best fit quadratic polynomial (the red 
line) and this is not linear in the Parts (a) or (c) (the green line gives the best linear regression which will be the 
same as the red line for a linear dependence). Figures 9a, 10a, and 11a, the coefficient of the power-2 term in the 

Figure 9.  Tests of the IMF orientation term, F(θ) = sind(θ/2) for the transpolar voltage ΦPC. (a–c) show plots of the means of 
RΦ = (ΦPC−iΦ)/G as a function of mean F(θ), both averaged for 25 bins of F(θ) that are 0.04 wide. G is given by Equation 14, 
where Cf is the optimum coupling function for the optimum exponents a, b, and c for the d in question, as shown in Figure 7. 
(a) For d = 1.5. (b) For the derived optimum d of 2.50. (c) For d = 5. The green and red lines are linear and quadratic fits, 
respectively, to the mean values. The values of the linear regression coefficients sΦ and iΦ (see Equations 16 and 17) are 
given in (b), where the sΦ values are for B⊥ in nT, NSW in 106 m−3, VSW in km s−1, and mSW in kg. The mauve line in (d) is the 
coefficient of the quadratic term of the second-order polynomial fit to the means, aΦ, shown as a function of d: the optimum 
d gives a proportional relationship between <RΦ> and <F(θ)>, that is, when aΦ = 0, marked by the vertical dashed line. 
Under the mauve line in three shades of gray are the 1σ, 2σ, and 3σ uncertainty bands in aΦ, the limits to which define the 
corresponding uncertainty bands in the optimum d, giving a 2σ uncertainty in the optimum d of ±0.08. Note. That in this case 
for ΦPC the differences between the uncertainty bands are often so small that they cannot be discerned; they are more clearly 
seen in Figure 10 for am and Figure 11 for SML. (b) Confirms this proportional relation at this optimum d = 2.50 for which 
the exponents are given in Table 2.
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best fit quadratic polynomial is positive, whereas for the Figures 9c, 10c, and 11c it is negative—that is, the cur-
vature of the best fit of the polynomial is in the opposite sense to in the corresponding Figures 9a, 10a, and 11a. 
For the Figures 9b, 10b, and 11b, the fit is linear, and this is what makes the d used in these cases the optimum 
value as it means the coupling function is linearly related to the terrestrial index.

The derivation of the optimum value of d is shown in the Figures 9d, 10d, and 11d which plot the power-2 term 
coefficient in the best fit-quadratic (aΦ for ΦPC, aam for am, and aSML for SML) as a function of the exponent d 
over the full range of values proposed in the literature. The uncertainty band of this coefficient, at the 1σ, 2σ, and 
3σ levels (derived for the polynomial fit using the reduced chi-square statistic), are shown in shades of gray in 
all Figures 9–11 (but more easily discerned in Figures 10 and 11). The optimum d for ΦPC, am, and SML are the 
values that make, aΦ, aam, and aSML (respectively) equal to zero–that is, for which the variation is linear. The 1σ, 
2σ, and 3σ uncertainties in d are where the edges of the uncertainty bands in aΦ, aam, and aSML fall to zero and this 
yields the vertical uncertainty bands around the optimum d that are shown.

Figure 9 shows that the required d is 2.50 ± 0.08 (at the 2σ uncertainty level) for ΦPC, Figure 10 shows that it is 
3.97 ± 0.18 for am and Figure 11 shows that it is 5.20 ± 0.41 for SML. Hence the optimum IMF orientation fac-
tors for ΦPC, am, and SML are not the same within 2σ uncertainties and in all three cases are larger than the value 
derived by correlation. Essentially SML requires a function, that is, most like a half-wave rectified function and 
ΦPC requires a function that is least like one. The optimum d and their uncertainty bands for ΦPC, am, and SML 
are also shown in Figure 7 which reveals that the uncertainties do not overlap even at the 3σ uncertainty level. 
Note that the commonly used value of d = 4 is too large for ΦPC and am but too small for SML. Some agreement 
between the behavior of am and SML is to be expected because both are dominated, at high activity at least, by the 
effect of the substorm current wedge and so do show considerable agreement (Adebesin, 2016; supplementary 
information to Lockwood, Bentley, Owens, Barnard, Scott, Watt, & Allanson, 2019). However, they are different 
indices and, as indicated by Figure 2, they have a different relationship to the transpolar voltage. The values of sT 
and iT for the optimum d are given in Figures 9b, 10b, and 11b.

Figure 10.  The same as Figure 9 for the am index. The blue line in (d) is the best-fit coefficient of the quadratic term of 
the polynomial fits illustrated in (a), (b), and (c), aam, under which the three gray areas define the 1σ, 2σ, and 3σ uncertainty 
bands in aam, the limits to which define the vertical uncertainty bands in the optimum d as shown. The optimum d giving the 
proportional relationship is d = 2.87 ± 0.18 for which the exponents a, b, and c are given in Table 2.
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The question then arises as to why the correlations r at these optimum d are slightly lower than the peak correla-
tions that are always found at slightly lower d, as can be seen in Figure 7a. The answer can be found by referring 
back to the analysis of the d = 2 case and the F(θ) = sin2(θ/2) factor presented in Figure 5. This series of distribu-
tions shows that the dataset becomes weighted toward the middle of the range of sin2(θ/2) values as the timescale 
is increased and there are fewer data constraining the large and low values. This is clearly demonstrated by the 
distribution for these data with τ = 1 hr in Figure 5c. Hence although sin2(θ/2) gives very slightly higher rp, it is 
only because the dataset becomes weighted toward the center of the distribution with weaker weighting given to 
the extremes of low and high F(θ). To test this conclusion, we carried out correlations where the data were di-
vided into 25 bins of F(θ) and for each bin, samples were selected at random such that all the F(θ) bins contained 
the same number of samples (the number that were in the least-populated bin), thereby removing the sampling 
bias at the expense of losing data. The peak correlations were indeed shifted to larger d and closely matched the 
values derived in Figure 7. These correlation tests are still not bias-free because reducing the samples to the min-
imum number in any one bin means that fits for some d have systematically higher sample numbers than others. 
Nevertheless, this test is enough to confirm that the choice of d does influence the correlation coefficients by 
preferentially weighting certain clock angles.

In contrast, in fitting the quadratic polynomial to the bins in Figures 9a–9c, 10a–10c, and 11a–11c, equal weight 
is given to the data points for the different F(θ) bins, despite the fact that there are different numbers of samples 
in those bins. Hence, unlike the correlation coefficient r, these fits are not influenced by the distribution of sam-
ples. Hence, they provide a better test of the optimum form of F(θ) that best describes the physics of solar-wind 
magnetosphere coupling than do the correlation coefficients.

It can be seen from the bottom panel of Figure 7 that, in general, the uncertainty in d introduces only small chang-
es in the best-fit exponents a, b, and c. However, the changes across the uncertainty bands are not zero. Hence 
when we compute the uncertainties in a, b, and c we need to fold in both the fit uncertainties at the optimum d 
and effect of the uncertainty in that optimum d.

Figure 11.  The same as Figures 9 and 10 for the SML index. The green line in (d) is the best-fit aSML under which the three 
gray areas define the 1σ, 2σ, and 3σ uncertainty bands in aSML, the limits to which define the vertical uncertainty bands in the 
optimum d shown. The optimum d giving the proportional relationship is d = 5.20 ± 0.41 for which the exponents a, b, and c 
are given in Table 2.
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With all four exponents and the linear regression coefficients now defined, the predicted terrestrial index can then 
be determined from:

����� = �� �� + �� = ��
{

<� >� < ��� >� < ��� >� < ��
�(�∕2) >
}

+ ��� (18)

4.  First-Order Check for Overfitting
We here fit with three free fit parameters (a, b, and c), and are pre-determining two others (d and the optimum 
lag, δtp) which can influence the results and hence, even for such a large dataset, overfitting could be a problem. 
An initial test is to check that correlations are not unrealistically high. We carried out tests for the effect of the 
noise introduced into our correlations by the use of interplanetary data from spacecraft in a halo orbit around 
the L1 Lagrange point: the point being that the solar wind that is sampled by the spacecraft is not, in general, 
the same as hits Earth because of spatial structure in the interplanetary medium. We computed our generalized 
coupling function, covering the full range of a, b, c, and d indicated by Figure 7b, using data from both the ACE 
in a “halo” orbit around the L1 point and the THEMIS-B spacecraft for 2010–2019 (inclusive) when the latter was 
outside the bow shock in the near-Earth solar wind. THEMIS stands for “Time History of Events and Macroscale 
Interactions during Substorms” and for the time interval studied the THEMIS-B craft was in Geocentric orbits 
and between about 55 RE and 65 RE from Earth (where RE is a mean Earth radius, 6,370 km) which resulted in 
it being in the undisturbed solar wind ∼70% of the time, in the shocked solar wind of the magnetosheath about 
15% of the time and inside the magnetosphere for the remaining 15%. For both ACE and THEMIS-B, several 
sample coupling functions for d = [2:1:6] were computed at 1-min resolution and then averaged with a 60-point 
running mean into hourly values with 1-min cadence. The coupling functions from the two craft were correlated 
over intervals 2 days long, giving 48 fully independent samples in each period. The optimum lag in each case 
was determined as a function of time and the peak correlation evaluated from the lag correlograms. The results 
did vary a little with the coupling function exponents used and, in particular, correlations were lower for higher 
d, indicating that spatial structure in the IMF orientation was one of the larger causes of noise. For the 70% of 
time when THEMIS-B was in the solar wind the distribution of correlation coefficients between the hourly means 
of the same coupling function at the two craft typically had a mode value of 0.96 and a mean value of 0.84. As 
expected, the lower correlation coefficients were all associated with lower correlations of the IMF orientation 
term. It was found craft locations made little difference with only a very small reduction in correlation seen when 
the L1 craft was at its greatest distance from the L1 point. However, the mean correlation was increased to 0.92 
for data when the am planetary index exceeded 70 nT, indicating spatial structure has less effect during space 
weather events, presumably as they are driven by large interplanetary structures such as Coronal Mass Ejections 
and Corotating Interaction regions. The same study was repeated for the 15% of time that THEMIS-B was in the 
magnetosheath. Correlation coefficients were considerably lower, with a mode value of 0.81 and a mean value 
of 0.75. This agrees well with studies by Šafránková et al. (2009), Borovsky and Yakymenko (2017), and Walsh 
et al. (2019) who show that passage through the bow shock is a major source of noise for coupling functions 
measured in the undisturbed solar wind. From these and our own studies correlations above 0.9 for hourly data in 
the undisturbed solar wind are a warning that the data have most likely been overfitted. Note also we have only 
considered one potential source of noise and we should regard 0.8–0.9 as about the best correlation that we can 
achieve for hourly means using upstream data from the undisturbed solar wind. Note that correlations of up to 
about 0.98 are possible using annual means of data because so much of the noise is canceled out at this timescale. 
When correlating with terrestrial indices such as AL, SML, am, and the transpolar voltage ΦPC, we were surprised 
to find that correlations were systematically slightly higher for L1 craft than for THEMIS-B as we expected the 
latter to have less spatial structure error: this hints that instrument calibration issues generate larger differences 
than spacecraft location errors.

We here also test for overfitting in a straightforward way by dividing the data into just two “folds” (while noting 
that machine-learning techniques often use several more folds for different tasks) of roughly equal numbers of 
samples and then fitting to the one half and the testing against the independent second half. Note also that test-
ing also raises another set of complications with a variety of performance metrics available for consideration 
(Liemohn et al., 2018), and the most appropriate one (or ones) for the application in question should be deployed, 
especially in the context of forecasting (Owens, 2018).
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We here use the optimum lags δtp and d exponents derived above and consider only linear correlation coefficient 
and root mean square (rms) error as test metrics. The results are demonstrated in Figures 12 and 13. The fit da-
taset used to define exponents a, b, c (for the predetermined d for the parameter in question) was for 2012–2019, 
inclusive and the resulting values are given in the legend to Figure 12. The same exponents and regression coef-
ficients were then applied to generate the predicted values for both the fit and the test subsets (1995–2011) using 
Equation 18. Because there are so many datapoints, information is lost in a scatter plot because so many points are 
overplotted: Figures 12 and 13 are therefore presented as datapoint density plots. Comparing Figures 12 and 13 
there are no obvious differences in behavior, which is quantified by the correlation coefficients r and the rms 
deviations Δ between observed and predicted values. For the predicted and observed ΦPC, r is 0.853 and 0.886 
for the fit and test sets, respectively, and Δ is 12.9 and 10.4 kV. Hence, by both metrics, the test set is actually 
performing slightly better than the fit set. For the predicted and observed am, r is 0.813 and 0.822 for the fit and 
test sets, respectively, and Δ is 10.1 and 10.7 nT. Hence in this case the correlation is very slightly better for the 
test set, but the rms deviation is slightly better for the fit set. For the predicted and observed SML, r is 0.808 and 

Figure 12.  Data-point density plots of predicted against observed values of (a) the transpolar voltage ΦPC, (b) the am 
geomagnetic index, and (c) the −SML index, each for their optimum d value defined in Section 3. These data are for the fit 
dataset which is for 2012–2020. In both cases, the optimum fit of Cf has been scaled to the data by ordinary least squares 
linear regression. The numbers samples n (as a faction of the total number Σn) in bins, which are 1 kV × 1 kV wide in (a), 
1 nT × 1 nT wide in (b), and 5 nT × 5 nT wide in (c), are color-coded on the logarithmic scales given. The diagonal mauve 
lines mark perfect agreement of observed and predicted values. The correlation coefficient r and the rms deviation Δ of 
observed and predicted values are given in each panel, along with the total number of valid data-point pairs, Σn.

Figure 13.  Same as Figure 12 but for the independent test dataset from 1995 to 2011, computed using the best-fit exponents, 
regression coefficients, and optimum lags derived as used for the fit dataset (2012–2020). The correlation coefficients r and 
the rms deviations Δ are very similar to the corresponding values for the fit dataset shown in Figure 12. For these plots, the 
data had no role at all in deriving the fit exponents and coefficients.
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0.764 for the fit and test sets, respectively, and Δ is 84.4 and 83.8 nT. Hence in this case the situation is the oppo-
site to that for am, but differences are again very small. In all cases, the performance of the fits on the test set is 
essentially the same as for the fitting set and there is no doubt that the coupling functions have predictive power.

Note from the plots presented in Figures 12 and 13 the influence that the d value has on where data are in param-
eter space. For ΦPC (which requires d = 2.5) there is a high density of samples over a large segment of the best-fit 
diagonal line. For am (which requires a higher d = 3.0) the highest density of data is more closely confined to near 
the origin and this effect is even more marked for SML (which requires a yet higher d = 5.23). The key point is 
that the influence of northward IMF conditions on the derived general coupling function is greater for SML than 
it is for am and ΦPC which needs to be remembered when we evaluate its performance.

5.  Estimation of Uncertainties and the Influence of the Number of Samples
Figure 14 presents distributions of fitted values of the exponents a, b, and c for three subsets of the transpolar 
voltage data and compares them to the value for the full set of N = 65,133 samples (given by the vertical dashed 
line in each case). The distributions are generated by taking 1,000 random selections of 𝐴𝐴 𝐴𝐴 samples (from the total 
of NT = 65,133 samples with ne> nmin = 255 available): the values of N used were NT/25 = 2,606 (on average, 
corresponding to 1 yr of data); NT/10 = 6,513 (on average, corresponding to 2.5 yr of data) and NT/2.5 = 26,503 
(on average, corresponding to 10 yr of data). The fraction of samples n/Σn are plotted in bins of width (1/30) of 
the maximum range of each exponent shown. In each case, three histograms are shown: the light gray histogram 
bounded by the mauve line is for NT/25 samples, the darker gray bounded by the blue line is for NT/10 and the 

Figure 14.  Distributions of fitted values of exponents a (left panel), b (middle panel), and c (right panel) for fits to the 
transpolar voltage, ΦPC, drawn from the entire 25-yr dataset of 65,133 values with ne> nmin = 255. The fraction of samples 
n/Σn in bins of width (1/30) of the maximum range of each exponent are plotted. In each case, three histograms are shown: 
(a) The light gray histogram bounded by the mauve line is for (1/25) of the whole dataset (N = 2,606 samples, on average 
corresponding to 1 yr of data). (b) The darker gray bounded by the blue line is for (1/10) of the whole dataset (N = 6,513 
samples, on average corresponding to 2.5 yr of data). (c) The darkest gray bounded by the black line is for (1/2.5) of the 
whole dataset (N =  26,503 samples, on average corresponding to 10 yr of data). The standard deviation of the distribution is 
given in each case with the generic name σxi where x is the exponent in question and i is the number of the dataset number. 
The distributions are generated by taking 1,000 random selections of 𝐴𝐴 𝐴𝐴 samples from the total of 65,133 samples with 
ne> nmin = 255 available. The vertical dashed lines give the values for the full set of 65,133 samples.
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darkest gray bounded by the black line is for NT/2.5. The distributions are generally symmetric about the optimum 
value for the whole dataset, but not always so for the smallest N and, as expected, they narrow down toward the 
value for the full dataset as N is increased. The standard deviations of the distributions are given in each case on 
the plot. This analysis was repeated for the geomagnetic indices and the results were very similar (not shown). 
Distributions are broader and peaks lower for am and SML than for ΦPC, which is expected because all plots 
presented thus far have had greater noise and larger uncertainties for the fits to the geomagnetic data. Figure 14 
stresses how much in error an individual fitted value can be if smaller datasets are used. However, that both the 
mean and the mode of some of the distributions are shifted from the value for the whole dataset when N is low, 
meaning that there are systematic errors as well as random errors when sample numbers are low.

To determine the uncertainties in exponents a, b, and c from our full dataset we assigned one of the three expo-
nents a fixed value that was then varied round its optimum value and the other two were fitted using the same 
Nelder-Mead simplex search procedure that was used to fit all three exponents in previous plots (again, we are 
using the optimum d and lag δtp defined previously). The significances S of the difference between the correlation 
at a general value of the exponent and its peak value for the optimum exponent was then evaluated. As before, 
we evaluate S = 1−p (where p is the probability of the null hypothesis that the correlations are the same) using 
the Meng-Z test and find the exponents value at the 1σ, 2σ, and 3σ uncertainty levels. This yields the uncertainty 
associated with the fit at the optimum d, which was added in quadrature with the uncertainty caused by the un-
certainty range in that optimum d. The resulting 2σ uncertainties are given with the optimum values in Table 2.

6.  Significance of the Differences Between Fits for Transpolar Voltage and 
Geomagnetic Activity
A notable feature established earlier is that the optimum d for ΦPC, am, and SML are not the same: the shaded 
areas of Figure 7 show that the uncertainties do not overlap for even the 3σ level. Form Table 2 we can see that 
the exponents a, b, and c (of B, ρSW, and VSW, respectively), are also, in general, different. We conclude that there 
is no such thing as a universal coupling function and optimum coupling functions must be tailored to the index 
or indicator that they aim to predict. We have carried out a number of experiments of the kind illustrated in Fig-
ure 14 using randomly sampled subsets of the data and found that some exponents that appeared to be the same, 
within predicted uncertainties, are found to be different, to very high significance, when we use the full dataset.

7.  Matching the Distributions of Coupling Functions and Observed Parameters
Thus far in this article, we have noted that the optimum coupling function depends upon averaging timescale and 
on which terrestrial activity indicator is predicted. In this section, we make the point that it also depends on the 
application for which it is intended to be used. If we require a coupling function to predict the largest events it is 
most important to match the large-value tail of the distribution of activity indicators. However, we may require a 
climatology that also predicts integrated values accurately. Examples of such applications are in integrated radi-
ation doses for humans and spacecraft electronics and transformer degradation levels cause by geomagnetically 
induced currents. In such cases we need the coupling function to match the full distribution of values and not just 
the large event tail.

This point is here illustrated by Figure 15 which compares the distributions of three empirical coupling func-
tions to the observed distribution of valid hourly transpolar estimates from the survey of Lockwood and McWil-
liams (2021). The observed distribution of normalized transpolar voltage, ΦPC/<ΦPC> is given by the black line 
that bounds the area shaded gray. The origin of this distribution is analyzed by the yellow and cyan lines that 
show the component distributions for northward and southward IMF, respectively. These show that above-aver-
age transpolar voltages are dominated by, but are not exclusively for, data for southward IMF. Conversely, ΦPC 
below about 0.8<ΦPC> are dominated by northward IMF samples. The mauve and blue lines are the distributions 
of the coupling functions Cf defined by Equation 9 with optimum fits (peak correlation within the requirement of 
linearity) for ΦPC (in mauve) and for SML (in blue), the exponents a, b, c, and d for which are given in Table 2. 
The green line is the distribution for the coupling function CBEA predicted by the Boyle et al. (1997) formula. The 
plot shows that the empirical function coupling function Cf matches the large tail of the observed distribution 
well (ΦPC/<ΦPC> above about 1.4 in the case of the mauve line and above about 2.2 in the case of the blue line) 
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but gives an extremely poor match at low and even mode values of the distribution. On the other hand, CBEA is a 
very good match to the whole distribution.

A quantitative assessment of the similarity of two distributions can be made using quantile-quantile (q-q) plots. 
These are presented in Figure 16, overlaid on data density plots which give an indication of the scatter in the 
agreement between the coupling function and ΦPC. The q-q plots contain 1,000 points so the largest point is for 
the top 0.1% of the distributions. The two distributions are identical if the points lie along the line of equality (the 
dashed cyan lines in Figure 16). Figure 16c shows that the two distributions are very similar for CBEA, and only 
begin to diverge at ΦPC above about 2.75<ΦPC> (the 98.4 percentile, i.e., for the largest 1.6% of samples). The 
deviation shows that CBEA is a bit “thick-tailed” (also called fat tailed or heavy tailed) in its distribution at large 
values compared to the observed distribution. The q-q plot for Cf with d = 2.5 (the optimum fit to ΦPC) does not 
diverge from the observed distribution quite as much as CBEA at the very largest values but is very slightly thick-
tailed at most values above the mode. The q-q plot for Cf with d = 5.2 (the optimum fit for SML) is very far from 
the ideal match given by the cyan dashed line and so the distributions are very different. It should be remembered 
that the SML data used in Figures 15 and 16 are simultaneous with the ΦPC data and so these figures stress how 
different the optimum coupling functions for different parameters (in this case ΦPC and SML) can be.

It is important to note that none of these differences between the observations and coupling function distributions 
are captured by correlation coefficient r which is largest for Cf with d = 2.50 (the optimum fit to ΦPC, shown 
in Figure 16a) and is somewhat lower for CBEA (Figure 16c), despite the fact that it reproduces the core of the 
distribution exceedingly well, and considerably lower for Cf with d = 5.20 (the optimum fit to SML, shown in 
Figure 16b).

Figure 15.  Distributions of observed normalized transpolar voltage, ΦPC/<ΦPC>: the gray area bounded by the black line is 
for all 65,133 ΦPC hourly estimates for 1995–2019 for which the mean number of SuperDARN radar echoes exceeds 255; the 
cyan line is for those for which the lagged hourly IMF was northward (BZ ≥ 0 in GSM) and the yellow line for those for which 
it was southward (BZ < 0 in GSM). The green line is the distribution predicted by the Boyle et al. (1997) formula, CBEA and 
the mauve line the prediction for the best fit empirical coupling function, Cf, given by Equation 9 with d = 2.50 and the other 
exponents given in Table 2. The blue line is the distribution of the best-fit Cf to hourly means of the SML index (d = 5.20 with 
the other exponents also given in Table 2).
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8.  Discussion and Conclusions
We have analyzed the optimum coupling functions for a dataset of 65,133 hourly mean transpolar voltage esti-
mates ΦPC observed between 1995 and 2020 by the northern-hemisphere SuperDARN radar network and match-
ing sets of fully simultaneous am and SML index values, in the case of am these were linearly interpolated to the 
center times of the radar data hours from the three-hourly index. We have fitted using a generalized mathematical 
function that encompasses many proposed coupling functions and have carried out only a twofold test for overfit-
ting (i.e., dividing the data into a fitting and a test data set roughly equal sample sizes).

Our aim in this article has been to establish some important principles concerning how the data can be averaged 
and fitted to ensure the IMF orientation term used does not bias the data in a way that does not match the physics 
of solar wind-magnetosphere coupling and also to ensure that the coupling functions derived are linear predictors 
of ΦPC, am, and SML.

Table 2 gives optimum values and the 2σ uncertainties derived here. Also given are the correlation coefficients r 
obtained and the fraction of the variance explained, r2. Note that correlations for SML and am here are for all the 
available data from 1995 to 2020 (but using the exponents derived here from the data subsets that are simultane-
ous with the radar data that meet the ne> 255 criterion (roughly a third of the full data). In addition, for am the 
raw three-hourly data are used to evaluate r and r2 rather than the interpolated hourly values. The correlations for 
ΦPC are for only the ne> 255 data. It should be remembered that the noise introduced by spatial structure in the 
solar wind and the bow shock, on its own, limits r to about 0.9 (r2 to about 0.81) and there are other noise sources 
(propagation lag uncertainty, instrumental errors in both the interplanetary data and the terrestrial disturbance 
indicator, seasonal, and/or UT effects on terrestrial data, data gaps, effects of averaging, nonlinearity of response, 
and dipole tilt effects). The values in Table 2 are slightly higher than previously proposed coupling functions, 

Figure 16.  Data density plots with overlaid quantile-quantile (q–q) plots (white points joined by a red line) normalized 
coupling function predictions (Cf/<Cf>) against normalized transpolar voltage (ΦPC/<ΦPC>) for: (a) The optimum empirical 
coupling function, Cf, given by Equation 9 for the hourly mean ΦPC data (exponents given in Table 2 and distribution given by 
the mauve line in Figure 15). (b) The best-fit empirical coupling function, Cf, for the hourly mean SML data (exponents also 
given in Table 2 and distribution given by the blue line in Figure 15). (c) The Boyle et al. (1997) formula, CBEA (distribution 
given by the green line in Figure 15). The q-q plots use 1,000 quantiles and so the largest point is for the top 0.1% of the two 
distributions compared. The correlation coefficient is given in each panel and is slightly higher for Cf than for CBEA, even 
though Figure 15 shows that it does not give as good a match to the observed distribution—a fact confirmed by the less 
linear form of the q-q plot shown here. (b) Shows that the optimum coupling function for SML does not work at all well for 
predicting ΦPC.
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but the gains in r2 are marginal. It appears that coupling functions are achieving correlations almost as high as 
is possible for interplanetary observations made at L1 and the terrestrial disturbance data that we have available.

Table 2 also gives the performance of some theoretical coupling functions. For ΦPC these are simple prediction 
based on interplanetary electric field given by Equation 8 and the Borovsky and Birn (2014) formulae for inter-
planetary Mach number MA < 6 and MA> 6. For am we use the best-fit version of the Vasyluinas et al. (1982) 
energy input formulation, Pα (with d = 2 and coupling exponent α = 0.34) and for SML we shown the Pα formu-
lation with best fit values of d = 4 and α = 0.26.

Our empirical fits exceed all these theoretical values, as indeed they should as they have three free fit variables. 
The results are quite similar in r2 achieved to other empirical studies: for example, McPherron et al. (2015) ex-
plained 43.7%, 61.2%, 65.6%, and 68.3% of the variance in the hourly AL index using, respectively, epsilon ε 
(Perreault & Akasofu, 1978), VSWBs, the universal coupling function (Newell et al., 2007) and the optimum cou-
pling function that they had derived which was B⊥

0.79 NSW
0.10 VSW

1.92 sin3.67(θ/2) (i.e., a = 0.79, b = 0.10, c = 1.92, 
and d = 3.67). Unfortunately, Newell et al. (2007) did not test the 20 coupling functions they considered against 
the am index. The closest they used to am was the kp index for which the main coupling functions correlation 
gave 100r2 that ranged from 30% for ε to 58% for their universal coupling function. However, we note that there 
is a ±20% peak-to-peak “McIntosh” pattern in am caused by dipole tilt effects (Lockwood, Owens, Barnard, 
Haines, et al., 2020) which our optimum coupling function does not attempt to allow for with a dipole tilt term. 
This makes predicting 66.3% of the variation in am without it very encouraging.

The correlation for our transpolar voltage coupling function is r  =  0.865 which means we are predicting 
100r2 = 75% of the variation in ΦPC. This is as high as has any that has been reported previously and is for a much 
larger dataset. An early study by Wygant et al. (1983) from a limited number of satellite passes explained 55% 
of the variation in ΦPC with the coupling function BVSW sin4(θ/2) (i.e., a = 1, b = 0, c = 1, and d = 4). Applying 
this to our 25-yr SuperDARN dataset of 65,133 samples with ne> 255, and using all best practice (i.e., comput-
ing the coupling function at 1-min resolution, averaging and the determining optimum lag) we find the Wygant 
et al. (1983) formulation explains 66% on the variance. Mori and Koustov (2013) surveyed the effectiveness of 
different coupling functions in predicting a ΦPC values from 1 yr of SuperDARN radar data. They found percent-
ages of the variance explained ranging from 13% for ε in equinox up to 61% (for B⊥

1/2VSW
1/2 sin2(θ/2); that is, 

a = 0.5, b = 0, c = 0.5, and d = 2), the latter is close to the optimum found here and testing against our data set 
we find it explains 73.5% of the variance in ΦPC, only very slightly lower than the value for our fit.

However, the benchmark test in transpolar voltage prediction is set by the coupling function of Boyle et al. (1997) 
who reported correlations of up to 0.87, explaining 75% of the variance of ΦPC, from observations from a num-
ber of LEO satellites over a 3-yr interval. The coupling function they derived was the addition of two terms: 
10−4VSW

2 + 11.7Bsin3(θ/2) (where VSW is in kms−1 and B is in nT). A concern of any additive fit of this kind is that 
it may be open to overfitting and may not apply on all timescales. However, we can now check for overfitting by 
testing it against the fully independent SuperDARN ΦPC data used here. The correlation we obtain is r = 0.830, 
and so 68.8% of the variance in our ΦPC data is explained. This is not quite as high as Boyle et al. (1997) reported 
for their fit dataset, nor quite as high as the correlation we have found here; however, neither is it much lower. 
However, if we take the two terms in the Boyle function separately, we find the correlation with VSW

2 is very low 
with r = 0.2 (100r2 = 4%) but that with Bsin3(θ/2) is 0.831 (100r2 = 69.0%), and actually very slightly better 
than for the combination of terms. Hence, the key part of the Boyle et al. (1997) function with regard correlation 
coefficient has exponent a = 1, b = 0, c = 0, and d = 3 and its quite similar to the empirical fit derived in this 
article. However, we have shown that the Boyle function matches the distributions of transpolar voltages much 
more closely, even though its correlation coefficient is lower. This highlights correlation coefficient is not always 
the best performance metric to use when deriving and/or testing a coupling function.

We have studied the effect of different procedures in deriving the hourly means. In addition to the best prac-
tice combine-the average, <Cf> 1hr, we computed all proposed coupling function [Cf]1hr using the procedure of 
MEA15 (with averaging of 1-min values of θ and B⊥) and also [Cf*]1hr for which θ and B⊥ are both computed 
using hourly means of the BY and BZ IMF components. Using [Cf]1hr instead of <Cf> 1hr typically lowers the 
variance explained by between 5% and 3%, whereas using [Cf*]1hr instead of <Cf> 1hr typically lowers it by about 
20%–40%. For the Boyle et al. (1997) parameter the behavior is strange in that for [Cf]1hr the value is reduced 
from 68.8% to 68.0% but using [Cf*]1hr it plummets to 4%. The reason is the first term has become the larger 
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of the two because the coefficients of the two additive terms are no longer appropriate. Hence the first term of 
the Boyle equation has actually lowered the variance explained slightly but also made it unstable to the precise 
implementation. This is a general risk with additive terms.

8.1.  The IMF Orientation Factor

As shown in Table 1, exponents d of an IMF orientation factor sind(θ/2) of between 2 and 6 have been suggested 
from empirical studies and simulations with numerical global MHD models have suggested d as low as 1.5 (Hu 
et al., 2009) or even 1 (Borovsky, 2008; Fedder et al., 1991). For both the transpolar voltage ΦPC and the am 
geomagnetic index, we find that the IMF orientation factors in the coupling function for all suggested d between 
1 and 6 all perform reasonably well in terms of the correlation coefficient. We find that marginally higher cor-
relations for hourly averages for the low d exponents, the best correlations being for ΦPC at d = 2.1, for am at 
d = 1.3. However, we have shown that the distributions mean that these low d values are favored mainly because 
they weight the statistics toward near θ = 90° and against data for strongly northward IMF (θ approaching 0) and 
strongly southward (θ approaching 180°). The latter bias is, of course, particularly undesirable because periods of 
large θ drive the strong space weather which is often what we want the coupling function to predict and quantify.

As shown by Table 1 a great many studies have used sind(θ/2) with d = 4 and this exponent has also been found 
for energy transfer across the magnetopause in MHD simulations of global energy transfer across the magneto-
pause (e.g., Laitinen et al., 2007). From the requirement of linearity across all clock angles we find the optimum 
exponents d are 2.50 ± 0.07 for ΦPC, 3.00 ± 0.22 for am, and 5.23 ± 0.48 for SML.

8.2.  Other Coupling Function Exponents

The values of the other exponents a, b, and c (of B, ρSW, and VSW, respectively), do, in general, depend on the 
exponent d used in sind(θ/2). Some empirical fit studies have derived values for d that are not within the optimum 
range derived here, and the concern is that the associated a, b, or c have also been shifted from optimum values 
to compensate.

Table 2 shows our best fit exponents for ΦPC are somewhat different to the values of a = 1, b = −0.167, and 
c = 0.667 expected for the theoretical coupling function ΦSW based on the interplanetary electric field (Equa-
tion 8) and the differences imply that the reconnection efficiency η has quite considerable dependencies on all 
three parameters. Specifically, from our results and Equation 8 η appears to vary as B−0.358, ρSW

0.185, and VSW
−0.117. 

Work is needed to see if these inferred external influences are consistent with the analysis of Borovsky and 
Birn (2014) who concluded that the reconnection voltage is not a function of the interplanetary electric field at 
all.

One surprising value is the relatively large c (the exponent of VSW) for the am geomagnetic index. Table 2 shows 
that the estimated power input into the magnetosphere Pα fitted to the am index (for the 3-hr timescale) gives 
d = 2 and a coupling exponent α = 0.34 ± 0.04. From Equation 4 this predicts a = 0.68 ± 0.08, b = 0.32 ± 0.04, 
and c = 1.65 ± 0.08. Table 2 shows that although the values of a and b close to those expected for Pα, c is much 
larger than predicted by Pα.

From energy coupling into the magnetosphere from numerical MHD simulations Wang et  al.  (2014) derive 
a = 0.86, b = 0.24, and c = 1.47 (with a d of 2.7, similar to the 3.0 found here) which is extremely close to the 
above exponents for Pα with α = 0.44 found by Lockwood, Bentley, Owens, Barnard, Scott, Watt, and Allan-
son (2019). From Table 2, the difference between the exponents b for am and SML for the solar wind mass density 
is Δb = 0.360–0.061 = 0.299 (±0.074) and the difference between the exponents c for am and SML for the solar 
wind speed is Δc = 2.562–1.746 = 0.816 (±0.114). Hence 2Δb = 0.598 (±0.148) which almost overlaps with Δc 
to within the 2σ uncertainties (and does overlap to within 3σ uncertainties). This suggests that there is a depend-
ence of am on solar wind dynamic pressure of order Psw

0.36 = ρsw
0.36 Vsw

0.72 that is absent from SML.

Lockwood, McWilliams, et al. (2020) find that 75% of the variation in am is explained by the estimated power 
input to the magnetosphere and that some of the remaining variance is associated with the solar wind dynamic 
pressure Psw, combined with the dipole tilt. They argue this is the effect of squeezing the near-Earth tail, an effect 
Lockwood, McWilliams, et al. (2020) show is found in both global MHD simulations and in the inference of an 
empirical model of the magnetopause location as a function of dynamic pressure.
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On the other hand, our results for ΦPC and SML show almost no dependence on ρSW. The SML result is particularly 
surprising as SML depends on the substorm current wedge which we imagine should also be influenced by the 
squeezing of the tail. Figure 11 of Lockwood and McWilliams (2021) shows influence of Psw (and hence ρSW) on 
ΦPC, am, and AL; it is complex and behavior depends on the IMF BZ component, but it is stronger at all BZ for am.

Figure 17 is aimed at understanding the difference between the dependences of am and SML on the solar wind 
dynamic pressure Psw. It shows the (normalized) ratios of the geomagnetic indices per normalized transpolar 
voltage for (top panels) am and (bottom panels) SML, as a function of the normalized dynamic pressure Psw. Fig-
ure 17 divides the data up into subsets for ΦPC ≤ 20 kV and ΦPC> 20 kV which roughly corresponds to northward 
and southward IMF, but more importantly is above and below the change of gradient in Figure 2b. For am there 
is an addition dependence of am, compared to ΦPC that varies as (Psw/<Psw>)e where e = 1 for ΦPC ≤ 20 kV and 
e = 0.61 for ΦPC> 20 kV (as shown by the dashed mauve lines). This is consistent with Figure 11 of Lockwood 
and McWilliams  (2021). On the other hand, for SML there is no additional dependence beyond that of ΦPC 
(e ≈ 0—in fact the best fit is e = −0.1) for ΦPC ≤ 20 kV and e = 0.25 for ΦPC> 20 kV case. The difference for the 
ΦPC> 20 kV data is Δe = 0.61–0.25 = 0.36 which is the additional Psw dependence for am (compared to that for 
SML) derived above from the exponents in Table 2.

Hence, it is clear that am has a dependence on Psw that is not present in ΦPC and this is reflected in the coupling 
function we have derived for am. The reasons why the SML coupling function does not show the same Psw ef-
fect are not yet clear. Comparing Figures 17b and 17d we can see that the effect of Psw on am during southward 
IMF, and consequently enhanced ΦPC, is greater than for SML. This implies range geomagnetic indices from 
mid-latitude stations, such as am, are responding to a factor that does not greatly influence SML in addition to 
the substorm current wedge (which dominates SML). Matzka et al. (2021) note that the k-index (range) variation 
at mid-latitude stations (and hence increases in am and kp) arises from large-scale ionosphere-magnetosphere 
current systems and they are sensitive to a much broader longitudinal sector of the auroral oval than is detected 
by auroral stations. Hence mid-latitude positive bays reflect larger scale currents as well as the more localized 
substorm current wedge (McPherron & Chu, 2017). We note that Thomsen (2004) attributes the proportionality 

Figure 17.  Data density plots for (top) the normalized am index per unit transpolar voltage (am/<am>)/(ΦPC/<ΦPC>) and 
(bottom) the normalized SML index per unit normalized transpolar voltage, (SML/<SML>)/(ΦPC/<ΦPC>) both as a function 
of normalized solar wind dynamic pressure (PSW/<PSW>) and in the same format as Figure 2. The data are divided into two 
subsets by transpolar voltage with ΦPC ≤ 20 kV in the left-hand panels and ΦPC> 20 kV in the right-hand panels. The mauve 
lines are the variations of PSWe/<PSWe>) for best-fit exponents e of 1, 0.61, 0.01, and 0.25 in (a–d).
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of mid-latitude range indices and transpolar voltage to the effect of polar cap expansion and that is indeed a factor; 
however, our results indicate that a parallel factor is that they are responding to the ionosphere-magnetosphere 
current circuits facilitated by the region 1 and region 2 field aligned currents and not just the substorm current 
wedge. It seems likely that this is the cause of the greater dependence of am of Psw than SML and AL.

8.3.  Universality of Coupling Functions

We have found that that although the coupling functions for ΦPC and am could appear to have the same exponents 
if we use small datasets, when we use a very large one, as in this paper, the differences are shown to be highly 
significant and real. This implies that there is no such thing as a universal coupling function that can optimally 
predict both voltage disturbances in the magnetosphere and all geomagnetic disturbances and the coupling func-
tion needs to be tailored to the terrestrial disturbance indicator of interest in each case. This opens up new areas 
of systems analysis of the magnetosphere, namely combining the different responses of the various magneto-
spheric state indicators to different solar wind driving coupling functions (Borovsky & Osmane, 2019). It also 
has implications for how we might allow for “preconditioning” of the magnetosphere which is discussed in the 
next section.

8.4.  Preconditioning

One major limitation of all the coupling functions discussed in this paper is that they assume that the terrestrial 
space weather index predicted is determined by the prevailing near-Earth interplanetary conditions only (allow-
ing for the required propagation lag). This means that any preconditioning of the magnetosphere-ionosphere 
system is neglected and will contribute to the noise in the fits. To start to make allowance for preconditioning 
we have to make a distinction between two types: (a) preconditioning caused by the Earth's dipole tilt and (b) 
preconditioning that depends on the prior history of the solar wind.

8.4.1.  Preconditioning by Dipole Tilt

Preconditioning by the dipole tilt can change the response of the magnetosphere, giving a larger or smaller re-
sponse to a given solar wind forcing. This is an external factor depending on Earth's orbital characteristics which 
means it should be highly predictable. Studies show that genuinely global geomagnetic activity indices show a 
pronounced “equinoctial” (a.k.a. “Mcintosh”) pattern with time-of-year and Universal Time, associated with the 
tilt of Earth's magnetic dipole axis (see reviews by Lockwood et al., 2021; Lockwood, Owens, Barnard, Haines, 
et al., 2020). Attempts to expand the coupling function with a factor to allow for the effect of the dipole tilt were 
made by Svalgaard (1977), Murayama et al. (1980), Li et al. (2007), and Luo et al. (2013) and dipole tilt effects 
have been included in the filters used in the linear prediction filter technique (McPherron et al., 2013).

However, the detail of how this should best be done does depend on the mechanism that is responsible and 
there are a large number of postulated mechanisms aimed at explaining the Mcintosh (a.k.a. equinoctial) pattern. 
One invokes the dipole tilt influence on ionospheric conductivities within the nightside auroral oval and postu-
lates that the electrojet currents are weaker when conductivities caused by solar EUV radiation are low in mid-
night-sector auroral ovals of both hemispheres (Lyatsky et al., 2001; Newell et al., 2002). Other proposals invoke 
tilt influences on the dayside magnetopause reconnection voltage (Crooker & Siscoe, 1986; Russell et al., 2003) 
or the effect of tilt on the proximity of the ring current and auroral electrojet (Alexeev et al., 1996) or tilt effects on 
the stability of the cross-tail current sheet through its curvature (Danilov et al., 2013; Kivelson & Hughes, 1990; 
Kubyshkina et al., 2015). All of these effects have the potential to reproduce the McIntosh dipole tilt pattern, but 
which if any, are effective remains a matter of debate. Recently, strong observational (Lockwood, McWilliams, 
et al., 2020) and modeling (Lockwood, Owens, Barnard, Watt, et al., 2020) evidence argues that the amplitude 
of the McIntosh pattern increases with solar wind dynamic pressure, suggesting that the dipole tilt influences the 
degree of squeezing of the near-Earth tail by solar wind dynamic pressure. Given that dynamic pressure effects 
are included in most coupling functions via the ρSW, and VSW terms, and that the effect is reasonably simultaneous 
with other solar wind effects, we might expect this effect to influence best-fit coupling exponents by raising b 
and c for geomagnetic activity but not for transpolar voltage. Thus, this mechanism has some relevance to un-
derstanding why the coupling function for transpolar voltage may be so different from that for the am index, as 
discussed in the previous section.
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8.4.2.  Preconditioning Related to Prior Solar Wind History

The storage-release system manifest in substorms shows that the response of the magnetosphere is inherently 
non-linear: the effect of a given burst of southward-pointing IMF, for example, is different at the start of the 
growth phase (when the open magnetospheric flux is flow) compared to at the end of the growth phase when it 
is high (Milan et al., 2021). Hence, the response that depends on the state of the magnetosphere is in at the time, 
and that is set by the prior history of solar wind magnetosphere voltage coupling. One technique to allow for 
the non-linearity of response caused by this type of preconditioning is local linear prediction (Vassiliadis, 2006; 
Vassiliadis et al., 1995). In this technique, moving average filters are continually calculated as the system evolves 
and these are used to compute the output of the system for this filter. The filter used is derived or selected ac-
cording to the state of the system. Another way of dealing with this non-linearity is by using neural networks 
(e.g., Gleisner & Lundstedt, 1999). Our finding that the coupling function is significantly different for transpolar 
voltage and geomagnetic activity is significant in this respect. It means that if, for example, we wanted to allow 
for preconditioning due to the open flux in the magnetosphere, we would want to look at the prior history of an 
optimum coupling function for dayside reconnection voltage but would need to use a different coupling function 
to best predict, for example, the geomagnetic disturbance.

A number of other physical mechanisms have been proposed as ways of further preconditioning the magneto-
sphere. They include: mass loading of the near-Earth tail with ionospheric O+ ions from the cleft ion fountain 
(Yu & Ridley, 2013); the formation of thin tail current sheets (Pulkkinen & Wiltberger, 2000); the development 
of a cold dense plasma sheet (Lavraud et al., 2006). Another proposed preconditioning effect is the effect on 
the reconnection rate in the cross-tail current sheet of enhanced ring current, as has been proposed by Milan 
et al. (2008, 2009) and Milan (2009). The magnetosphere sometimes responds to continued solar wind forcing 
(over a period of tens of minutes) by generating a substorm, or a string of substorms and sometimes with a steady 
convection event (e.g., Kissinger et al., 2012). Studies (e.g., Gleisner & Lundstedt, 1999) have demonstrated that 
the response of the auroral electrojet indices depends on the current Dst value. O’Brien et al. (2002) studied two 
intervals in which the solar wind coupling function was similar, one of which resulted in an isolated substorm 
and the other in a steady convection event. They noted the main difference was the pre-existing state of the mag-
netosphere in that prior to the substorm, the magnetosphere was quiet but whereas before the steady convection 
event the magnetosphere was already undergoing enhanced activity. McPherron et al. (2005) estimate that about 
80% of steady convection events are associated with a substorm onset but thereafter the magnetospheric behavior 
diverges. The work of Juusola et al. (2013) strongly suggests that enhanced ring current is the reason that a steady 
convection event forms as opposed to a substorm, quite possibly through the mechanism proposed by Milan and 
co-workers.

Hence, preconditioning of the magnetosphere undoubtedly occurs through at least one mechanism, and this will 
be an inherent noise factor in the derivation of a simple correlative coupling function and hence a major limi-
tation on the performance of that coupling function. The problem is that not only are the effects of the various 
mechanisms on the response different, the time constants of the prior activity that is influencing the response 
will be different in each case. This means that the time profiling of any preconditioning quantification factor in a 
coupling function using the prior history of the interplanetary parameters will depend on the mechanism.

To underline this point about the importance of the mechanism that is causing pre-conditioning, note that some 
mechanisms, such as the cold dense plasma sheet, would emphasize prior periods of quiet, northward IMF condi-
tions as giving higher activity for a given input (Borovsky & Denton, 2006, 2010; Lavraud et al., 2006), whereas 
others, such as the ring current enhancement mechanism would emphasize prior periods of enhanced solar wind 
magnetosphere coupling. The time constants for forcing in the build-up to ring current enhancements (Lockwood 
et al., 2016) are different to those for the development of a cold, dense plasma sheet (Fuselier et al., 2015). Yet 
another proposed preconditioning mechanism involves the effect of solar wind dynamic pressure and thus would 
introduce yet another different precursor time profile (Xie et al., 2008). Some of these preconditioning effects 
have been predicted by numerical modeling (e.g., Lyon et al., 1998; Wiltberger et al., 2000) and it is quite possible 
that we may need numerical simulations to isolate the preconditioning effects and determine how best to allow 
for them.
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However, if we are to make these improvements to coupling functions to allow for preconditioning, we will need 
to remember that they will, inevitably, introduce more free fit parameters, making tests to guard against overfit-
ting ever more important.

Data Availability Statement
The datasets used in this study are publicly available. The Omni interplanetary are available from NASA’s Space 
Physics Data Facility http://omniweb.gsfc.nasa.gov/ow.html the Themis-B data from NASA’s Coordinated Data 
Analysis Web (CDAWeb) https://cdaweb.gsfc.nasa.gov/index.html/; satellite locations from NASAs satellite Sit-
uation Center https://sscweb.gsfc.nasa.gov; the AL index data from World Data Center for Geomagnetism, Kyoto 
http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html and the am index form the International Service of Geomagnetic 
Indices (ISGI) http://isgi.unistra.fr/data_download.php; the SML and SMR geomagnetic indices from the Super-
MAG project at The Johns Hopkins University: https://supermag.jhuapl.edu/. The SuperDARN radar data and 
associated processing software is available from Virginia Polytechnic Institute and State University http://vt.su-
perdarn.org/tiki-index.php?page=Data+Access or from PI groups participating in the project.
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