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Introduction  

Part 1 

This supporting information reprises the derivation of the formula for power input into the 
magnetosphere Pα used in the main paper, based on the work of Vasyliunas et al. [1982]. This 
derivation was laid out in paper 1 [Lockwood et al., 2018] but it is useful to repeat it here in the 
context of some checks carried out in parts 2 and 3 of these supporting materials. 
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References:  Vasyliunas, V. M., J. R. Kan, G. L. Siscoe, and S.-I. Akasofu (1982) Scaling relations 
governing magnetospheric energy transfer, Planet. Space Sci., 30, 359–365, doi: 
10.1016/00320633(82)90041-1              
                         Lockwood, M., S. Bentley, M.J. Owens, L.A. Barnard, C.J. Scott, C.E. Watt and O. 
Allanson (2018b) The development of a space climatology: 1. Solar-wind magnetosphere 
coupling as a function of timescale and the effect of data gaps, Space Weather, doi: 
10.1029/2018SW001856 

Part 2  

This part re-affirms the justification for using of the IMF magnitude B in the Vasyliunas et al. 
[1982] formula, rather than using the component of B transverse to the Sun-Earth line, BT. 

 This analysis uses 1-minute values of interplanetary data for 1995-2017, downloaded 
from the Omni2 dataset compiled and maintained by the Space Physics Data Facility, 
NASA/ Goddard Space Flight Center.   Data available from: 
https://omniweb.gsfc.nasa.gov/ow_min.html 

 It also employs the 3-hourly am geomagnetic index data  compiled  and maintained by 
L'École et Observatoire des Sciences de la Terre (EOST), a joint collaboration of the 
University of Strasbourg and the French National Center for Scientific Research (CNRS) 
and the International Service of Geomagnetic Indices (ISGI). These data are available 
from http://isgi.unistra.fr/data_download.php.    

 Part 3  

This part reviews the IMF orientation factor that performs best in the P formulation by 
comparing the 1-minute interplanetary data for 1995-2017 against the 3-hourly the am 
geomagnetic index data and the 1-minute SML index data from the SuperMAG network.   

 The SML data  are generated by the SuperMAG network and thanks go to the 
contributions from Intermagnet; USGS, Jeffrey J. Love; CARISMA, PI Ian Mann; 
CANMOS; The S-RAMP Database, PI K. Yumoto and Dr. K. Shiokawa; The SPIDR 
database; AARI, PI Oleg Troshichev; The MACCS program, PI M. Engebretson, 
Geomagnetism Unit of the Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP 
and Florida Institute of Technology; SAMBA, PI Eftyhia Zesta; 210 Chain, PI K. Yumoto; 
SAMNET, PI Farideh Honary; The institutes who maintain the IMAGE magnetometer 
array, PI Eija Tanskanen; PENGUIN; AUTUMN, PI Martin Connors; DTU Space, PI Dr. 
Rico Behlke; South Pole and McMurdo Magnetometer, PI's Louis J. Lanzarotti and Alan 
T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIn; British Antarctic Survey; McMac, PI 
Dr. Peter Chi; BGS, PI Dr. Susan Macmillan; Pushkov Institute of Terrestrial Magnetism, 
Ionosphere and Radio Wave Propagation (IZMIRAN); GFZ, PI Dr. Juergen Matzka; 
MFGI, PI B. Heilig; IGFPAS, PI J. Reda; University of L’Aquila, PI M. Vellante; BCMT, V. 
Lesur and A. Chambodut; Data obtained in cooperation with Geoscience Australia, PI 
Marina Costelloe; SuperMAG, PI Jesper W. Gjerloev. The data are available from: 
http://supermag.jhuapl.edu/indices/?layers=SME.UL&start=2001-01-
30T00%3A00%3A00.000Z&step=14400&tab=download 
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Part 4  

This part presents  two panels of Figure 8 of the main text on an enlarged scale to allows us to 
see, and track the evolution of, a small feature in the F distribution without loss of resolution 

Part 5  

Gives details of the quantification of the scatter of points in each panel of Figure 1 of the main 
text 

 

 

 

 

 

 

 

Part 1.   Reprise of the derivation of the Vasyliunas et al. [1982] formula for energy 
transfer into the magnetosphere  

The basis of the formula is: 

Pα =  (Lo
2) (msw Nsw Vsw

3/2)  ( tr )                        (S1) 

where Lo is the mean cross-sectional radius of the magnetosphere, such that the geomagnetic 
field presents an area Lo

2 to the solar wind flow and (msw Nsw Vsw
3/2) is the kinetic energy flux of 

the solar wind particles (by far the dominant form of energy flux in the solar wind) , where msw   
is the solar wind mean ion mass, Nsw its number density and Vsw its speed.  The term tr is a 
dimensionless transfer function, being the fraction of the energy flux incident upon the 
magnetosphere that is transferred to inside the magnetosphere.                     

Pressure balance at the nose of the magnetosphere gives the stand-off distance to the nose of 
the magnetosphere, LS [Farrugia et al., 1989] 

Reference:  Farrugia, C.J., M.P. Freeman, S.W.H. Cowley, D.J. Southwood, M. Lockwood and A. 
Etemadi (1989)  Pressure-driven magnetopause motions and attendant response on the 
ground, Planet. Space Sci., 37, 589-608, doi: 10.1016/0032-0633(89)90099-8 

LS = k1 (ME
2/Psw o)1/6         (S2) 
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Where k1 is a geometric factor for a blunt-nosed object, ME is Earth’s magnetic dipole moment, 
o is the magnetic constant, and Psw is the solar wind dynamic pressure, given by 

Psw =  msw Nsw Vsw
2         (S3) 

Vasyliunas et al. [1982] assumed the nose of the magnetosphere was hemispheric in shape, but 
there is no need to do this and we can define a more general shape such that 

cS = Lo/Ls            (S4) 

Vasyliunas et al. [1982] adopted the transfer function which dimensional analysis of equation 
(S1) shows must be dimensionless  

tr   =  k2 MA
-2αF()         (S5) 

where  is the “coupling exponent” (the one free fit parameter used), F() is a dimensionless 
function of the clock angle  that the IMF makes with the north in the GSM frame of reference, 
k2 is a constant  and MA is the Alfvén Mach  number of the solar wind flow given by  

MA = VSW (o  msw  Nsw )1/2 / B        (S6) 

Substituting equations (2) - (6) into (1) yields 

 Pα =  [k1k2cS
2/(2o

(1/3-α))] ME
2/3 msw

(2/3-α)  B2α  Nsw
(2/3- α) Vsw

(7/3- α) F()    (S7) 

If we assume the shape of the dayside magnetopause remains constant, then the shape factor 
cS is constant. A survey of magnetopause crossings by Roelof and Sibeck [1993] demonstrated 
that the magnetopause response to dynamic pressure increases is largely a shape-preserving 
contraction and so cS is approximately constant in these cases. On the other hand, these 
authors demonstrated that the response to strong southward IMF is enhanced magnetopause 
reconnection and erosion of the dayside (reduced Ls) and a flaring of the tail as the newly 
opened flux is appended to the tail (increased Lo). Hence from equation (S4) we would expect cS 

to increase in substorm growth phases but then decay again in the expansion and recovery 
phases. At 3-hourly timescales we have some averaging over the substorm cycle, but this 
variable cS could possibly become a factor on shorter timescales.  If we neglect variations in cS 
the term in (S7) in square brackets is constant and so is cancelled if we study Pα/Po, where Po is 
the average of Pα, taken over a long time interval. The Earth’s dipole moment ME varies on long 
timescales, but this can be allowed for using a model of the geomagnetic field.   

Reference: Roelof, E.C. and D.G. Sibeck (1993) Magnetopause shape as a bivariate function of 
interplanetary magnetic field Bz and solar wind dynamic pressure. Journal of Geophysical 
Research: Space Physics, 98 (A12), pp.21421-21450, doi: 10.1029/93ja02362 
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Part 2.   The IMF term in the Vasyliunas et al [1982] formula for energy transfer into 
the magnetosphere  

In their paper, Vasyliunas et al. [1982] appear to be a little uncertain as to whether they should 
employ the transverse component of the IMF, BT (the magnitude in the zy plane) or the full 
vector magnitude B = (BT

2 + Bx
2)1/2.  They point out it makes only a small difference but did opt 

to use BT in their text and equations.  Their argument was that Bx is not relevant because the 
field was draped over the nose in the magnetosheath.  However, this choice is somewhat 
inconsistent because, as shown in Part 1 of this supplementary materials file, the magnetic field 
enters into the coupling equation only through the Alfvén Mach number MA in the 
interplanetary (unshocked) field and that depends on B and not on BT.   Previous work showed 
that correlations with all geomagnetic indices were consistently higher using B than for BT and 
so B was employed as a result [Lockwood et al., 1999] (incidentally, always at a slightly greater α 
value).   However, this work was done with interplanetary data that contained considerable 
data gaps and one of the important conclusions of Paper 1 is that such gaps introduce noise. 
Hence it is useful to now check this conclusion still holds given we now have 20 years of data 
with few and only short data gaps. advantage of B over BT could just have been due to the noise 
introduced by data gaps. We here use equation (S7) in Part 1 of these supplementary materials, 
along with the near continuous 1-minute data for 1995-2017 (inclusive). We also deploy the 
method laid out in paper 1 for identifying and dealing with data gaps.  Specifically:  there must 
be sufficient 1-min samples in an hour to give an hourly mean with uncertainty below 5% for 
each parameter; these hourly means are then combined to make hourly Pα values that are 
averaged into the 3-hourly intervals only when all 3 hours have a valid Pα).  
  
Reference: Lockwood, M., R. Stamper and M.N. Wild (1999) A doubling of the sun's coronal 
magnetic field during the last 100 years, Nature, 399, 437-439, doi: 10.1038/20867 

This was done using equation (S7) as given above (and as used in the main part of the paper) 
with the IMF term being, in the first instance, the total field strength B. Then all calculations 
were repeated replacing B with BT. 

The correlations of the Pα values with the am index were then compared. Figure S1 shows the 
correlograms, giving these correlations as a function of the assumed coupling exponent, α. The 
solid lines employ B and dashed lines use BT.  The black lines are for simultaneous 3-hourly 
values. The blue lines are for annual values of Pα, <Pα>=1yr , computed by averaging 3-hourly Pα 
values together (the combine-then-average approach). The red lines are for [Pα]ann, that are 
generated from annual means of the constituent terms (the average then combine approach).    
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Figure S1. Analysis of the effects of using the IMF magnitude B and its transverse component 
BT = (BYM

2 + BZM
2)1/2 in computing the power input to the magnetosphere Pα.  The plots are 

correlograms showing the correlation coefficient between simultaneous values of Pα as a 
function of the coupling exponent, α, and solid lines use B and dashed lines use BT.  The black 
lines are for simultaneous 3-hourly values. The blue lines are for annual values, where annual 
values of Pα are <Pα>=1yr, computed by averaging 3-hourly Pα values together (the combine-
then-average approach). The red lines are for [Pα]ann, that are generated from annual means of 
the constituent terms (the average then combine approach).  
 
It can be seen that in all three cases, B gives slightly higher peak correlations than BT (but 
always at a slightly higher value of α). This confirms the use of B in the main paper is slightly 
better than using BT.      
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Part 3.    The IMF orientation term F() of the Vasyliunas et al. [1982] formula for energy 
transfer into the magnetosphere  

In their paper, Vasyliunas et al. [1982] do not specify a form for F(), other than noting it must 
be dimensionless.  These authors do,  however, specify the best way to identify the optimum 
F(), which we do deploy here, although we note that there are pitfalls that have to be avoided. 
As in the main text we express equation (S7) as 
 
Pα =   (k3ME

2/3) FB FV FN F                 (S8) 
 
where FB = B2α ,  FV = Vsw

(7/3- α) and FN = (msw Nsw)(2/3- α)  .  We also further combine the product of 
three terms into a Gα = FB.FV.FN so that 
 
Pα =  (k3ME

2/3) Gα F          and hence                                          (S9) 
  
 
Pα/Po  =  (k3ME

2/3) Gα F /<(k3ME
2/3) Gα F> =  Gα F /< Gα F>  =   G F / Go      (S10) 

 
Where the average is taken over all data and Go = < GαF>.  As the ideal coupling function Pα/Po 
would be proportional to the geomagnetic index (we here use the am index in the first 
instance), in which case from (S10) am/(G/Go) would be proportional to F. This is the method 
Vasyliunas et al. [1982] proposed to evaluate a potential IMF orientation functions F.  
 
As discussed in the main text, a number forms for F have been proposed. We here test F = 
sinn(/2) for n of 2, 3, 4, and 5 and also the so-called “half-wave rectifier” function F = 
U()cos(), where U() = 1 for   90º and U() = 0 for  < 90º.  The observed (3 hourly) F 
values for each tested functional form are binned into 20 bins of  F that are 0.05 wide and the 
mean values of the ratio am/(G/Go) evaluated for each bin. Figure S2 shows these means for n = 
2 as black points. The error bars are plus and minus one standard deviation and show that there 
is great scatter.  The means are fitted with a least squares linear regression (in figure S2 the 
orange line) and the goodness-of-fit quantified using the root-mean-square (r.m.s.) fit residual 
rms.  For  n = 2, rms = 0.081nT which is relatively large, consistent with the fact that the 
variation of the means of the ratio is not close to a linear variation with F.  
 

Figure S3 shows the corresponding results for n = 3 which yields an r.m.s. fit residual rms = 
0.030nT. Hence the linear fit for sin3(/2) (the cyan line) is better than for  sin2(/2).  Figure S4 
shows the corresponding results for n = 4 which yields a yet lower r.m.s. fit residual rms = 
0.021nT. Hence the linear fit for sin4(/2) (the cyan line) is better again.  Figure S5 shows the 
corresponding results for n = 5 which yields a slightly larger (than for n = 4) r.m.s. fit residual rms 
= 0.039nT: hence the linear fit (mauve line) is a less good fit than for sin4(/2).  Lastly Figure S6 
is for F = U()cos() and gives rms = 0.037nT, hence the linear fit (the black line) is quite good 
for U()cos(), but figure S6 shows the point for lowest bin (0  F > 0.05) is notably further from 
the fitted line than for other bins. This is significant because this bin contains all zero values of 
F which, it must be remembered, is half the data set for this form of  F (all data at times when 
BZM > 0). 
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Figure S2.  Analysis of IMF orientation factor F  = sin2(/2) , i.e. n = 2.  The 3-hourly IMF data for 
1995-2017 are binned into 20 bins of observed F() that are 0.05 wide. The points are the mean 
of the ratio am/(G/Go) for each bin where G = FB.FV.FN  and Go is the average of GF  for all data. 
The error bars are plus and minus one standard deviation. These points would lie along a 
straight line for an ideal coupling function and the orange line is the best linear regression fit to 
the means. The closeness of fit is quantified by the r.m.s. fit residual rms =  0.081nT.   
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Figure S3.  Same as Figure S2 for  IMF orientation factor F  = sin3(/2) , i.e. n = 3.  The r.m.s. fit 
residual rms = 0.030nT.  
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Figure S4.  Same as Figure S2 for  IMF orientation factor F  = sin4(/2) , i.e. n = 4.  The r.m.s. fit 
residual rms = 0.021nT. 

 
Figure S5.  Same as Figure S2 for  IMF orientation factor F  = sin5(/2) , i.e. n = 5.  The r.m.s. fit 
residual rms = 0.039nT. 
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Figure S6.  Same as Figure S2 for  IMF orientation factor F  = U()cos(), where U() = 1 for   
90º and U() = 0 for  < 90º.  The r.m.s. fit residual rms = 0.037nT. 
 
 
 
 
 
This procedure was repeated for one-minute resolution data. The geomagnetic index used 
SML, the equivalent of the AL index that monitors the auroral electrojet, but derived from the 
much more extensive SuperMAG network of magnetometers.  The interplanetary data are 
lagged by 36 min., the lag of peak correlation of the response in SML, corresponding to the 
average length of the substorm growth phase, as found in Paper 1 [Lockwood et al., 2018]. 
Figures S7-S11 are the corresponding plots to S2-S6 for these 1-minute interplanetary data and 
one-minute SML data.  Because SML is increasingly negative as disturbance levels increase the 
ratio SML/(G/Go) is negative and become increasingly negative as F increases. The minimum fit 
residual rms is again for F  = sin4(/2) . F  = U()cos() again performed quite well, but the 
lowest bin is again not well fitted, which is significant because it contains over half the total 
number of samples for this form of F .  
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Figure S7.  Analysis of IMF orientation factor F  = sin2(/2) , i.e. n = 2.  The 1-minute IMF data 
for 1995-2017 are binned into 20 bins of observed F() that are 0.05 wide. The points are the 
mean of the ratio SML/(G/Go) for each bin where G = FB.FV.FN  and Go is the overall average of 
GF  for all data. The error bars are plus and minus one standard deviation. These points should 
lie along a straight line for the ideal coupling function and the mauve line is the best linear 
regression fit to the means. The closeness of fit is quantified by the r.m.s. fit residual rms, which 
is this case is 15.57nT.   

Figure S8.  Same as Figure S7 for  IMF orientation factor F  = sin3(/2) , i.e. n = 3.  The r.m.s. fit 
residual rms = 6.96nT. 
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Figure S9.  Same as Figure S7 for  IMF orientation factor F  = sin4(/2) , i.e. n = 4.  The r.m.s. fit 
residual rms = 1.06 nT. 

 
Figure S10.  Same as Figure S7 for  IMF orientation factor F  = sin5(/2) , i.e. n = 5.  The r.m.s. fit 
residual rms =  3.76nT. 
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Figure S11.  Same as Figure S7 for  IMF orientation factor F  = U()cos(), where U() = 1 for  
 90º and U() = 0 for  < 90º.  The r.m.s. fit residual rms = 5.72nT. 
 
 
 
 
 
 
 
Figures S12 and S13 take 2 different looks at the fits for 1-minute SML data. In these  plots the 
data have been binned into 20 bins of the clock angle , rather than in F .  Figure 12 is of a 
format used by Wygant et al., (1983), Bargatze et al.  (1986) and Newell et al. (2017). The plot 
shows the 5 forms of F  tested here namely:, (orange) sin2(/2); (cyan) sin3(/2);  (blue) sin4(/2); 
(mauve) sin5(/2);  and (black) U()cos(), each as a function of .  The black points are the 
observed values of SML/(G/Go), scaled to vary between zero and unity (to match the values of 
F),   s[SML/(G/Go),]+c , as employed by Bargatze et al (1986), and Newell et al. (2007). Note 
than because SML is negative, s is also negative.  A  big difference between Figure S12 (and 
Figure S13) and Figures S7-S11 is in the distribution of numbers of samples in each bin because 
the bins in S12 and S13 are of fixed width in  whereas in S7-S11 they were of fixed width in F.  
It can be seen that the best fit, as expected from Figures 7-11,  is sin4(/2), but the “half-wave 
rectified” form U()cos() does not appear to perform too badly. However, Figure 13 shows how 
the plot format has helped disguise a serious problem with this form for  F. 
 
In Figure S13 the data (the black points) are plotted unscaled, i.e. SML/(G/Go) (where the 
minus sign is included because SML is negative). In this case the various forms of F are 
individually fitted to the data using the coefficients of the respective linear fit, as show in 
Figures S7-S11.  Again F  = sin4(/2) is an excellent fit to the data and better than all the others.  
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In this plot F  = U()cos() does not look a good fit, the point being that all points at  < 90º in 
Figure S13 appear only in the lowest bin in Figure S11, because for all such points F  is zero for 
U()cos(). 
 
We conclude that by far the best form of the dimensionless IMF orientation factor F  is in the 
expressions for power input to the magnetosphere Pα is sin4(/2).  This has been shown to be 
true for 1-minute values and for 3-hourly means. 
 
References:  Wygant, J. R., R. B. Torbert, and F. S. Mozer (1983) Comparison of S3-3 polar cap 
potential drops with the interplanetary magnetic field and models of magnetopause 
reconnection, J. Geophys. Res., 88 (A7), 5727–5735, doi: 10.1029/JA088iA07p05727. 
                          Bargatze, L.F.B., R. L. McPherron, D. N. Baker (1986) Solar Wind-Magnetosphere 
Energy Input Functions, in Solar Wind-Magnetosphere Coupling. Eds, Y. Kamide, J.A. Slavin, 
Terra Scientific Publishing Company, Tokyo, Japan, and D. Reidel Publishing Company, 
Dordrecht, Holland, ISBN: 90-277-2303-6, pp. 101-109, doi: 10.1007/978-94-009-4722-1_7. 
                          Newell, P.T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007) A nearly universal 
solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, 
J. Geophys. Res., 112, A01206, doi:10.1029/2006JA012015 
 

 
Figure S12.  Same fits shown in figures S7 –S11 bit shown on a F - axes. The data (black 
points) are means of the ratio SML/(G/Go), linearly scaled to vary between 0 and 1, 
s[SML/(G/Go)]+c.  (Note that s is negative because SML values are negative). The means are 
taken in 20 bins of , each 9º wide. The F  functions shown are: (orange) sin2(/2); (cyan) 
sin3(/2);  (blue) sin4(/2); (mauve) sin5(/2);  and (black) U()cos(), where U() = 1 for   90º 
and U() = 0 for  < 90º.  
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Figure S13.  Same fits shown in Figures S7 –S11 bit shown on a SML/(G/Go) versus  axes. The 
data (black points) are the mean of the observed ratio SML/(G/Go) in 9º wide bins of , and the 
IMF orientation factors are scaled to these data using the fits in Figures S7-S11 are, respectively: 
(orange) sin2(/2); (cyan) sin3(/2);  (blue) sin4(/2); (mauve) sin5(/2);  and (black) U()cos(), 
where U() = 1 for   90º and U() = 0 for  < 90º.   
  



 
 

17 
 

Part 4.     Parts of Figure 8 of main text on an expanded scale 

Figure 2g of the main paper reveals a peak in the occurrence of  values of R = 
log10(<F>1min/<F>1yr)    0.45 associated with IMF orientations close to southward (explained by 
the discussion of Figure 9 in the main text). This feature is off-scale in Figure 8(c) of main text 
which plots <F>/<F>1yr as a function of .  Rather than expand the scale in Figure 8 of the main 
text and lose important detail in all panels,  we here repeat Figures 8a and Figure 8c of main 
text on a y-axis doubled scale which enables us to see this feature and track its evolution with . 
Figure S14 is a re-plotting of parts (a) and (c) of Figure 8 of main text, with the expanded y axis 
and a slightly altered color scale to highlight the feature in F at <F> / <F>1yr 2.8 and low . 

 Figure S14.  Parts (a) and (c) of Figure 8 of main text, here repeated on an expanded vertical 
scale (the panel height has been doubled to allow a y axis scale of double the length). Note the 
lower limit of the color axis has also been raised very slightly from 0 (used in main text) to 0.015 
to help reveal the evolution of the feature in in F at large <F> / <F>1yr and low .  
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Part 5 .    Quantification of scatter in Figure 1 of main text 

Figure 1 of the main paper gives scatter plots of the annual fractions of days when and index X 
exceeds Xo , its overall 95-percentile (for all available data), f[X>Xo] , as a function of its annual 
mean <X>=1yr.  The mauve lines in each panel are third-order polynomial fits to these data 
points , constrained to pass through the origin so that ffit[X>Xo] =o when <X>=1yr = o (i.e. the 
coefficient d is zero) 

ffit[X>Xo] = a<X>=1yr
3  +  b<X>=1yr

2  + c<X>=1yr  +  d        (S11) 

The fraction deviation of each point from the fitted line value is the evaluated  

 = (ffit[X>Xo]  f[X>Xo]) / f[X>Xo]      (S12) 

For all non-zero values of f[X>Xo] and the r.m.s. fractional fit residual computed,  rms  = <2>1/2. 

The table below gives the coefficients, a, b, c, and d and the r.m.s. fractional fit residual 
computed,  rms  , for each of the geomagnetic indices shown in Figure 1 of the main text, plus 
for the normalized power into the magnetosphere, Pα/Po  and the normalized power without 
the IMF orientation factor, Gα/Go  (see equation S10).  The rows are in rank order by the lowest 
scatter (i.e. in smaller rms  ).  

rank index a B c d rms 
1 AL 5.34210-9 4.52110-6 1.18410-4 0.000 0.1178 
2 AE 6.03910-10 1.67010-6 8.10710-5 0.000 0.1384 
3 AU 6.77610-10 1.03610-6 2.21110-4 0.000 0.3412 
4 Gα/Go 2.32410-3 9.05610-2 4.73410-2 0.000 0.3780 
5 Ap 1.24510-5 7.58310-4 4.20010-3 0.000 0.4337 
6 Pα/Po 3.46010-3 1.447 6.65010-2 0.000 0.7699 
7 Dst 3.13410-6 8.49310-5 5.35910-3 0.000 1.1333 

 
 
 
 


