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Abstract Different terrestrial space weather indicators (such as geomagnetic indices, transpolar voltage,
and ring current particle content) depend on different coupling functions (combinations of near-Earth solar
wind parameters), and previous studies also reported a dependence on the averaging timescale, τ. We study
the relationships of the am and SME geomagnetic indices to the power input into the magnetosphere Pα,
estimated using the optimum coupling exponent α, for a range of τ between 1 min and 1 year. The effect of
missing data is investigated by introducing synthetic gaps into near-continuous data, and the best
method for dealing with them when deriving the coupling function is formally defined. Using Pα, we show
that gaps in data recorded before 1995 have introduced considerable errors into coupling functions. From
the near-continuous solar wind data for 1996–2016, we find that α = 0.44 ± 0.02 and no significant evidence
that α depends on τ, yielding Pα∝B

0.88Vsw
1.90(mswNsw)

0.23sin4(θ/2), where B is the interplanetary magnetic
field, Nsw the solar wind number density, msw its mean ion mass, Vsw its velocity, and θ the interplanetary
magnetic field clock angle in the geocentric solar magnetospheric reference frame. Values of Pα that are
accurate to within ±5% for 1996–2016 have an availability of 83.8%, and the correlation between Pα and am
for these data is shown to be 0.990 (between 0.972 and 0.997 at the 2σ uncertainty level), 0.897 ± 0.004,
and 0.790 ± 0.03, for τ of 1 year, 1 day, and 3 hr, respectively, and that between Pα and SME at τ of 1 min
is 0.7046 ± 0.0004.

Plain Language Summary This is the first step of three toward constructing a climatology
describing the statistics of how space weather has varied over the past 400 years. This climatology will be
valuable in the design of systems vulnerable to space weather. To do this, we here investigate how best to
quantify the power extracted from the solar wind by the magnetosphere. We need to do this over a range of
timescales from the annual averages used to describe long-term changes (space climate) down to
fluctuations over minutes and hours, which drive space weather events.

1. Introduction
1.1. Coupling Functions

On short timescales, the coupled magnetosphere-ionosphere-thermosphere system responds to the magni-
tude of the southward component of the interplanetary magnetic field (IMF, in a suitable frame oriented with
respect to the geomagnetic field axis, such as Geocentric Solar Magnetospheric, GSM). There are two time
constants of response, the directly driven system responds on a timescale of order a few minutes (Etemadi
et al., 1988; Lockwood et al., 1986; Nishida, 1968; Todd et al., 1988). The directly driven flows store magnetic
energy in the magnetospheric tail and subsequently that energy is released and deposited in the inner mag-
netosphere and nightside auroral ionosphere and thermosphere via the substorm current wedge. This is the
storage-unloading system, which generates a response after a delay of typically between about 30 and 60min
(Arnoldy, 1971; Baker et al., 1981, 1983; Lockwood et al., 1990; Schatten & Wilcox, 1967). Finch et al. (2008)
used data from the global network of geomagnetic observatories to show how stations responded differently
to the directly driven and storage/unloading systems depending on their position (in geomagnetic latitude
and magnetic local time coordinates). Similar conclusions were reached by Dods et al. (2015, 2017), using
network analysis.

A great many combinations of near-Earth interplanetary parameters (so-called coupling functions) have been
proposed over many years to describe the transfer of energy, and/or mass, and/or momentum, and/or
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electric field from the solar wind into the Earth’s magnetosphere-ionosphere-thermosphere system (e.g.,
Balikhin et al., 2010; Bargatze et al., 1985, 1986; Borovsky, 2008; Burton et al., 1975; Crooker et al., 1977;
Feynman & Crooker, 1978; Kan & Lee, 1979; McPherron et al., 2004, 2015; Murayama, 1982; Newell et al.,
2007; Papitashvili et al., 2000; Perreault & Akasofu, 1978; Reiff et al., 1981; Scurry & Russell, 1991; Spencer
et al., 2011; Temerin & Li, 2002, 2006; Tenfjord & Ostgaard, 2013; Vassiliadis et al., 1995; Vasyliunas et al.,
1982; Wing & Sibeck, 1997; Wu & Lundstedt, 1997; Wygant et al., 1983). These are derived and tested by com-
parison with terrestrial space weather disturbance indices (sometimes in combination), which respond to the
energy, mass, electric field, and/or momentum input to the magnetosphere from the solar wind (in a combi-
nation thereof that depends on which terrestrial index is used). Gonzalez (1990) examined the empirical cou-
pling functions in use at the time and concluded that almost all could be derived from either electric field or
power transfer associated with the reconnection process. Although they are related in a general sense (e.g.,
Saba et al., 1997), different terrestrial indices respond differently to different combinations of energy, mass,
momentum, and/or electric field transfer into the magnetosphere (and on different timescales (Finch &
Lockwood, 2007; Lockwood et al., 2016): hence it is not surprising that there are a wide variety of derived
coupling functions. For example, Svalgaard and Cliver (2005) noted that different geomagnetic indices
responded differently to different coupling functions. This is also unsurprising as each is influenced by differ-
ent combinations of the currents in the terrestrial system: the ionospheric DP1 (auroral electrojet and sub-
storm current wedge); the ionospheric DP2 (growth phase convection) currents; the magnetospheric ring
current; the magnetopause (Chapman-Ferraro) currents; the cross-tail current sheet; and (unless ionospheric
conductivities are spatially uniform) the field-aligned (Birkeland) currents. Svalgaard and Cliver (2005) also
noted that this is a very useful feature because it allows reconstruction of multiple solar wind parameters
from combinations of indices for times before interplanetary spacecraft were available, as exploited by
Lockwood et al. (1999), Lockwood (2003), Rouillard et al. (2007), and Lockwood et al. (2014). A comparison
of the optimum exponents of interplanetary parameters for various commonly used geomagnetic indices
has been presented for annual timescales by Lockwood (2013).

On long timescales (e.g., τ = 1 year) the substorm cycles and geomagnetic storm responses are averaged out
and also the IMF orientation factor converges to almost a constant factor. On such timescales, the coupling
functions that depend only on the IMFmagnitude, B, work well (Lockwood, 2003, 2013; Lockwood et al., 2017;
Stamper et al., 1999). A coupling function derived for small averaging timescale τ should, if all the physical
mechanisms have been properly accounted for, integrate over time and so also work at large τ. On the other
hand, a coupling function that works well at high τ may not apply on shorter timescales (the IMF B, as dis-
cussed above, being a good example of this). Naturally, cancelation of noise and other factors (i.e., the central
limit theorem) means that correlations are higher for larger τ.

Many studies of coupling functions have concentrated on the exponents needed for each of the solar wind
parameters that have been shown statistically to play a role in controlling the variation of the terrestrial
response and have used multivariate analysis to adjust the exact functional form of the combination of para-
meters used in the coupling function. This raises a problem. Including all of the factors with their own weight-
ing factors and/or exponents could result in extremely good fits that are, nevertheless, statistically
meaningless as each additional fit parameter reduces the statistical significance of the correlation. Such fits
can have limited and, in extreme cases, no predictive capability. This pitfall is called overfitting and it is a ser-
ious, but often underappreciated, problem in multiple regression analysis of geophysical time series that
have internal geophysical noise. Overfitting refers to the situation when a fit has toomany degrees of freedom
and starts to approximate the noise in the training subset, which is not robust throughout the whole data set.
This is a recognized pitfall in areas where quasi-chaotic behaviors give large internal noise such as climate
science and population growth (see, e.g., Knape & de Valpine, 2011; Knutti et al., 2006) but is not recognized
as widely in space physics, possibly because systems may have been viewed as being somewhat more deter-
ministic and with lower internal variability. To help guard against overfitting, we favor the physics-based
approach to coupling function derivation by Vasyliunas et al. (1982), which is described in the next section.
This approach yields a single fit parameter, the coupling exponent α, which arises from an unknown depen-
dence on the solar wind Alfvén Mach number but which influences the dependence of the coupling function
on solar wind speed, VSW, number density NSW, mean ion mass, mSW and the interplanetary field B—all in a
consistent way. Despite having just the one free fit parameter, extremely high correlations with geomagnetic
indices (often exceeding 0.99 for annual timescales) can be derived for some geomagnetic indices.
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We here concentrate on the optimum coupling function to predict the am geomagnetic index (Mayaud,
1980). This is a range index, being based on the range of variation of the more variable horizontal component
of the field in 3-hr windows. This range is used to give a K value, as introduced by Bartels et al. (1939). The
stations used to compile the am index are situated at subauroral latitudes close to corrected geomagnetic
latitude ΛCG = 50°. They are grouped into longitude sectors, with five such groups in the Northern
Hemisphere and four in the Southern Hemisphere. The K indices for stations in a longitude sector are aver-
aged together, and the result is converted into a sector aK value using the standard K2aK scale. Weighted
averages of these sector aK values are then generated in each hemisphere giving an and as, the weighting
factors accounting for the differences in the longitude extents of the sectors. The index am is the average
of the hemispheric indices an and as.

The study presented here as also been repeated using the ap index, generated from K values from a network
of 11–13 stations at|ΛCG| between 44° and 60°. To generate this index, the station K indices are first converted
into standardized KS values, using conversion tables for each observatory that were defined by Bartels (1949,
1957). The Kp index is the arithmetic mean of the 3-hourly KS values for the observatories employed. The Kp
values are converted into ap values using the standard K2aK scale that is constructed such that ap may be
regarded as the range of the most disturbed of the two horizontal field components, expressed in the unit
of 2 nT, at a station at dipole latitude of 50°. More details of the compilation of the ap and am indices are pro-
vided by Mayaud (1980), Menvielle and Berthelier (1991), and Dieminger et al. (1996).

We here use the am index in preference to ap because am is constructed using only measured K values from a
relatively uniform global network of stations, whereas ap employs a less uniform distribution of stations and
relies on an empirical model (via Bartels’ K to Ks conversion tables) to become global in nature. Our research
(reported elsewhere) has shown that although this gives more accurate annual means for ap, it also gener-
ates some spurious time-of-year and time-of-day variations in the response of ap (of amplitude about
20%), whereas the time-of-year/time-of-day response of am is constant to within 2.5%. All the results pre-
sented here are also found for ap, but uncertainties are slightly lower for am except on annual timescales.
Any differences between results for ap and am will be noted and the results for ap are given in the
supporting information.

The am index and its daily means, Am, respond strongly to substorm currents (Saba et al., 1997), such that the
linear correlation coefficient between all available coincident 56 annual means of the auroral electrojet AE(12)
index (from 1959 to 2017, inclusive) and Am is 0.92 ± 0.04 (significant at >99.99% level), and the correlation
between the 20301 coincident daily means of AE(12) and Am is 0.855 ± 0.004 (significant to at least the same
level). One reason for the lower correlation for daily means is evident from the scatter plot, which is linear at
low disturbance levels but shows a marked nonlinearity in large disturbances, with large Am values consis-
tently exceeding the corresponding linearly regressed values from AE(12) (see, e.g., Figure 4 of Adebesin,
2016, and the scatter plots presented in the supporting information for the present paper). This is consistent
with the effect on AE(12) of an extremely expanded auroral oval migrating increasingly equatorward of the
fixed latitude of the ring of 12 stations that it is compiled from.

The midlatitude planetary range indices such as am are particularly sensitive to the ionospheric currents that
flow in the substorm current wedge. These currents are strong during substorm expansion phases, in which
the energy that was extracted from the solar wind and stored as magnetic energy in the geomagnetic tail is
released and deposited in the upper atmosphere. (See description of energy flow as a function of substorm
cycle phase using Poynting’s theorem by Lockwood (2004) based on the principles laid out by Cowley (1991).)
Hence, am is an index that we expect to depend on the energy input to the magnetosphere and so correlate
well with Pα.

The substorm current wedge (that am responds to) forms when the near-Earth edge of the cross-tail current
is disrupted at, or soon after, substorm expansion phase onset and, due to the shape of the magnetosphere,
the solar wind dynamic pressure constrains the cross-sectional area of the geomagnetic tail lobe at such loca-
tions. This means that solar wind dynamic pressure plays a role in the growth phase rise in magnetic field
intensity at and around the distances down the tail (the X coordinate in the GSM frame) of the inner edge
of the cross-tail current. Hence, the dynamic pressure (as well as the open magnetospheric flux in tail) con-
trols the magnetic sheer and hence the cross-tail current at these locations (Lockwood, 2013). (Note that this
is not the case in the far tail (greater�X) where the tail lobe area expands as the open flux increases and the
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cross-tail current is constant, being set by the static pressure of the solar wind.) This role of solar wind
dynamic pressure in setting the cross-tail current (the current that becomes deflected into the substorm cur-
rent wedge at substorm onset) means that the am index should show a strong variation on VSW

n, where the
exponent n is close to 2 (Lockwood, 2013). The Kp (and hence ap) and am indices are also known to be good
indicators of the strength of convection in the magnetosphere-ionosphere system (Thomsen, 2004). That am
is good indicator of both substorm currents and convection is also expected from the expanding-contracting
polar cap model in which convection is understood as the net effect of the opening of field lines by magne-
topause reconnection (associated with the directly driven current system and the storage [growth] phase of
the substorm cycle) and their reclosing by reconnection in the cross-tail current sheet in expansion and
recovery phases (associated with the unloading phase of the substorm cycle; Cowley & Lockwood, 1992;
Lockwood & Cowley, 1992; Lockwood et al., 1990; Milan et al., 2003, 2008).

1.2. Power Input Into the Magnetosphere

Vasyliunas et al. (1982) estimated the power input from the solar wind into the magnetosphere, Pα. As dis-
cussed below, a key point about the coupling function that this theory yields is that it has just one free fit
parameter, the various solar wind parameters being linked by the theory used. To demonstrate this, the for-
mula used by Vasyliunas et al. (1982) is as follows:

Pα ¼ πLo2
� �� mswNswVsw

3=2
� �� trð Þ (1)

where Lo is the mean cross-sectional radius of the magnetosphere, such that the geomagnetic field presents
an area πLo

2 to the solar wind flow and (msw Nsw Vsw
3/2) is the kinetic energy flux of the particles, which is the

dominant energy flux in the solar wind (wheremsw is themean ionmass, Nsw the number density and Vsw the
speed). The term tr is a dimensionless transfer function, the fraction of the incident energy flux that is trans-
ferred to inside the magnetosphere.

Assuming a hemispheric shape to the dayside magnetosphere, pressure balance at the nose of the magneto-
sphere gives (e.g., Farrugia et al., 1989)

Lo ¼ k1 ME
2=Pswμo

� �1=6
(2)

where k1 is a geometric factor for a blunt-nosed object,ME is Earth’s magnetic dipole moment, μo is the mag-
netic constant, and Psw is the solar wind dynamic pressure, given by

Psw ¼ mswNswV sw
2 (3)

Vasyliunas et al. (1982) adopted the dimensionless transfer function:

tr ¼ k2MA
�2a sin4 θ=2ð Þ (4)

where α is the coupling exponent (the one free fit parameter used), θ is the clock angle that the IMF makes
with the north in the GSM frame of reference (so θ = tan�1(ByM/BzM), where ByM and BzM are the Y and Z com-
ponents of the IMF in the GSM frame) k2 is a constant (which below is combined with other constant factors),
and MA is the Alfvén Mach number of the solar wind flow given by

MA ¼ VSW μomswNswð Þ1=2=B (5)

Substituting equations (2)–(5) into (1) yields

Pα ¼ k1k2:p=2μo
1=3�αð Þ

� �
ME

2=3msw
2=3�αð Þ�B2αNsw

2=3�αð ÞV sw
7=3�αð Þ sin4 θ=2ð Þ (6)

The predictions from equation compare well with the global magnetohydrodynamic simulations of the
energy transfer into the magnetosphere by C. Wang et al. (2014): Their results agreed best with Pα for a value
of α of 0.34.

The interplanetary parameters B, Nsw and Vsw have been routinely measured by near-Earth, interplanetary
craft. We here use 1-min samples of these parameters from the Omni-2 data set (Couzens & King, 1986;
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Hapgood et al., 1991; King & Papitashvili, 1994, 2005). The error introduced into Pα/Po (where Po is themean of
Pα over a long reference period) by using a constant value of the mean ion mass, msw, is less than 5%
(Lockwood et al., 2017). However, we here reduce that uncertainty by employing all the available information
and compute the mean ion mass. The full mass spectrum of the solar wind is not routinely available, and we
here use the ratio of the number densities, of the two dominant components, protons and Helium ions (He+

and He++), and neglect the trace higher-mass ions (Kasper et al., 2007). Using the typical heavier ion abun-
dances given by Bochsler (1987), the effect of neglecting ions heavier than Helium on msw introduces an
uncertainty into the correction of 1.8%. However, we here reduce this uncertainty further by using Pα as a
ratio of the mean for the whole period (1996–2016, inclusive), Po.

The helium abundance ratio, NHe/Np, is relatively constant near 0.04 in high-speed streams but varies in phase
with the sunspot number in slow wind, between about 0.01 and 0.04 (Y.-M. Wang, 2016). Hourly means of
NHe/Np are available in the Omni2 data set from 1972 and are here interpolated to the center times of the
1-min samples of B, Nsw and Vsw using Piecewise Cubic Hermite Interpolating Polynomial interpolation
(Fritsch & Carlson, 1980). As a check, linear interpolation was also used and the deviation of the results from
the two methods quantified to check that it remained small (<10%) and hence that the interpolations were
reasonable. The mean ion mass is then given by

msw ¼ mp 1þ 4NHe=Np
� �� �

= 1þ NHe=Np
� �� �

(7)

where mp is the mass of the proton.

There is a clear but weak solar cycle variation in this msw estimate, with the largest annual mean being
1.139 a.m.u. (a deviation from the mean of +3.4%) in the year 2000 (sunspot maximum) and the lowest value
being 1.050 a.m.u. (a deviation of�4.7%) in the low sunspot minimum year of 2009. This is allowed for by our
procedure but the effects of any corresponding variation in the heavier ion fraction (a.m.u. > 4) is not: From
the range in the relative abundances given by Bochsler (1987) we estimate this introduces an uncertainty into
Pα/Po of ≤0.4%.

By taking the results for Pα as a ratio of the mean for the whole period, Po, we also remove the dependence on
the constant k3 with the assumption that it remains constant. Earth’s magnetic dipole moment ME varies on
long timescales and we use the dipole moment variation provided by the International Geomagnetic
Reference Field-11 model (Thébault et al., 2015) to account for any drift.

The coupling exponent α influences almost all the factors in equation (6) but is unknown and has to be
derived empirically. C. Wang et al. (2014) present a review of previously derived values, which, as noted by
Finch and Lockwood (2007), appear to also depend on averaging timescale τ (they found an optimum α of
0.4 at τ = 3 hr, falling to α = 0.3 at τ = 1 year). The results also appear to depend on which indictor of solar
wind energy deposition is used: Finch and Lockwood were using the am geomagnetic index. Murayama
(1982) also found that α = 0.4 for the am and the AL indices and τ near 1 day, whereas Stamper et al.
(1999) found that α = 0.38 using the aa index and τ = 1 year. On the other hand, Bargatze et al. (1986) found
that α = 0.5 for the AL index and τ < 1 hr. Tenfjord and Ostgaard (2013) employed combinations of SuperMAG
magnetometer data designed to quantify energy sinks in the terrestrial system: using 5-min data their results
were close to α = 0.5.

1.3. The Effect of Data Gaps on Studies of Coupling Functions

Since 1995, we have available a much more continuous data series on the near-Earth interplanetary medium
from the Wind, ACE and DSCOVR satellites. However, before this date the data series contained many data
gaps with a broad (and bimodal) spectrum of durations (Finch & Lockwood, 2007). An analysis of interplane-
tary data availability is presented in section 2 of this paper.

Data gaps can influence correlation studies (George et al., 2015). For many applications such as spectral ana-
lysis, it is desirable or necessary to fill the data gaps and a number of methods for doing this are available, but
one has to remain aware of the implications of the method used for the application in question (Henn et al.,
2013; Munteanu et al., 2016; Sturges, 1983; Wynn & Wickwar, 2007). Such gap filling techniques have been
applied to solar wind data by, for example, Kondrashov et al. (2010, 2014), but many require a proxy data
set for either interpolation or testing purposes. This usually involves using a terrestrial space weather
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disturbance index as the proxy, which means that the coupling function is assumed and used to help fill the
data gap and so such techniques must not be used in the context of deriving a coupling function. Correlation
studies, such as between a solar wind coupling function and a terrestrial space weather response, are not
influenced by data gaps at basic time resolution, other than through the loss of correlation significance
through the reduced number data point pairs available. The question then arises as to how best to deal with
data gaps when the basic time resolution data are averaged into longer intervals τ. Some of the more recent
studies of solar wind-magnetosphere coupling have been able to reduce the problem of data gaps by
employing only data from after 1995 when data became much more continuous (e.g., Luo et al., 2013;
Temerin & Li, 2006), despite the drawback that this reduces the number of years covered by the study.
Some studies have placed tight restrictions on data gap occurrence (e.g., Teodorescu et al., 2015), but these
tend to be severe and also greatly reduce the available data such that only some spectral studies are possible
and coupling functions are studied through of a series of events (e.g., Bargatze et al., 1985, 1986). This limits
the potential for noise reduction by averaging (which makes correlation coefficients increase with averaging
timescale τ) and reduction of the influence of others factors such as ionospheric conductivity (e.g., Luo et al.,
2013; Nagatsuma, 2006). Many studies continue to use the pre-1995 data, despite its severe problem of many
and long data gaps (as shown in Figures 2 and 3 and discussed in section 2). In a great many of these studies,
the averages of all available data have been taken on the (usually tacit) assumption that the effect of data
gaps will average out. This philosophy is often introduced by the use of the Omni or Omni2 interplanetary
data sets, which supply averages for a requested τ without a limit on the data availability (so in extreme cases
a mean is given even if only one data sample is available in the interval). Finch and Lockwood (2007) made
allowance for data gaps by introducing the solar wind data gaps into the geomagnetic data sequence that
they correlated with and showed that the assumption that data gaps can be neglected is often invalid:
Hence, they argued for piecewise removal of the geomagnetic data at times corresponding to the interpla-
netary data gaps (i.e., allowing for an appropriate lag) before the averaging of both into the intervals of dura-
tion τ. For Pα values this means that if any of NSW, VSW, mSW, B, or θ were missing, the corresponding
geomagnetic data were piecewise masked out. This ensures that the averages contain only the correspond-
ing data in the two data sets. Although they argued that this was the best approach, Finch and Lockwood
(2007) also cautioned that data gaps could still have an influence on the optimum correlations.

On the other hand, Svalgaard and Cliver (2005) deployed a linear interpolation scheme on solar rotation time-
scales to fill the data gaps in the interplanetary data. Because it can give a small number of data points a
greatly inflated weighting, Lockwood et al. (2006) argued that this procedure was unsound.

Other interpolation procedures have been employed to fill data gaps, such as in Temerin and Li (2002) in their
analysis of a coupling function to predict theDst index. However, the same authors soon after moved to using
only data from after 1995 and assuming that the effects of gaps averaged out, with considerable improvement
of the correlation between their coupling function and theDst geomagnetic index (Temerin & Li, 2006). Others
have used interpolation with restrictions; for example, Wu and Lundstedt (1997) deployed autocorrelation-
based interpolation for data gaps of up to 5 hr and intervals with longer data gaps excluded from the study.

Note that there is also a related issue in that there are two separate ways in which mean coupling function
values over an interval τ can be generated. Because, in general, there are nonlinear dependencies on inter-
planetary parameters, the most representative of the two is to evaluate values at high time resolution and
then average them (the combine-then-average approach). This is the most desirable approach, but this is
not possible in some circumstances and the coupling function instead is computed from averages of the
required parameters (the average-then-combine approach). For example, Lockwood et al. (2017) have shown
that, although compiling annual Pα values from annual means of NSW,VSW, B, and sin4(θ/2) is a less satisfactory
approach and does slightly alter the optimum coupling exponent, α, it does not lower the correlation with ap
or am on annual timescales. An example of when the average-then-combine method is necessary is when
working with the reconstructed parameters, which can only be generated as annual means (Lockwood,
2013; Lockwood et al., 2017): reconstructed annual means of NSW,VSW, and B generated by Owens et al.
(2017; with constant mean sin4(θ/2) and mSW, which only introduce small uncertainties) were employed by
Lockwood et al. (2017) to reconstruct the variation of Pα over the last 400 years.

From the above discussions, the variation of α with τ found by Finch and Lockwood (2007) is a concern
because, if the physics of the relevant solar wind-magnetosphere coupling is properly described by Pα, it
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should simply integrate over longer τ and α should not vary. Finch and Lockwood did consider it a somewhat
unsatisfactory result and cautioned that it may have arisen from the presence of large data gaps in the inter-
planetary data. In the current paper we investigate the origins of the drift in α with τ. In particular, we study
the effects of data gaps by restricting our attention to the interval 1996–2016 during which the interplanetary
data come from the Wind, ACE, and DSCOVR satellites: Data gaps are present but relatively few and short in
duration compared to in the interval 1974–2003 that was used by Finch and Lockwood (2007). We introduce
synthetic data gaps to enable us to study the effects on the derived coupling functions (and on the optimum
coupling exponent αp) of methods for dealing with gaps in the interplanetary data.

2. Data Sets

Finch and Lockwood (2007) used Omni2 hourly interplanetary data for 1974–2005 (inclusive), for which the
average availability of Pα was just 30%. Since data became available from ACE, Wind, and DSCOVR (from
1995 onward), this data availability has risen to 92% for 1995–2016. We here use a basis data set of 1-min
resolution from 1996 to 2016 taken from the Omni2 data set maintained by the Space Physics Data
Facility, National Aeronautics and Space Administration/Goddard Space Flight Centre (Couzens & King,
1986; King & Papitashvili, 1994, 2005). (We keep 1995 aside to generate independent data gap masks, as
described in section 4.2.)

A great many coupling function studies have employed the Omni2 hourly means, which are generated for
the Omni database even if only one sample is available within the hour (but note the number of samples used
can always also be downloaded). In evaluating the full effect of data gaps, the question arises as to howmuch
data within each hour is required to generate a valid hourly mean (i.e., one which is close to the value that
would be obtained with continuous sampling). The answer to this depends strongly on the autocorrelation
function of the parameter in question. Figure 1a shows the autocorrelation functions (a.c.f.s) of B, Nsw, Vsw,
sin4(θ/2), and Pα (computed here for the optimum α found in section 3, αp = 0.44) for lags up to 3 hr. The ver-
tical gray line is at 1 hr. It can be seen that over 1 hr, the a.c.f. of sin4(θ/2) has fallen considerably, whereas that
of Vsw has hardly fallen at all. It follows that the number of samples required to make a valid mean to a given
uncertainty is much greater for sin4(θ/2) than it is for Vsw.

To study the effect of data gaps on 1-hr averages, we here took 1-min Omni2 data for 1996–2016 (11046240
samples, falling in 184104 hourly intervals). We note that for some of the solar wind measurements, the basic
time resolution is greater than 1-min: For example, the ACE satellite spins with 64-s period setting the time
resolution of the solar wind data. In such cases, the long autocorrelation time constant of the solar wind para-
meters allows interpolation into 1-min values. However, the same is not true for the IMF data. For each para-
meter we searched for hourly intervals in which all 60 min in the hour gave a 1-min sample made up from at
least one observation such that it was not classed as missing data in the Omni data set. For B and sin4(θ/2)
such hours numbered 112855; for Nsw and Vsw the number was 121685 and for Pα it was 1083797. For
these hours we removed Ng 1-min subsamples at random (this was done 10 times for each of the hours)
where Ng was increased from 1 up to 59 and the percentage error in the mean of the reduced data for that
parameter and hour was evaluated by comparing it to the mean for the full data (i.e., the effect of the synthe-
sized data gaps was determined). The distributions of these fractional errors were Gaussian, and in Figure 1b
the standard deviations (i.e., the one sigma error in the hourly means), εhr, are shown for each parameter as a
function of data availability within the hour, fhr = 1�(Ng/60). As expected, the high a.c.f. of Vsw results in the
average error introduced into hourly means, εhr, being very small and it is only 0.2% even if just one sample is
available in the hour. For Nsw and B, this figure is larger but is still, respectively, only just above and just below
2%. Much larger errors arise from the IMF orientation factor sin4(θ/2), as expected for its greater variability at
subhour timescales, shown by rapid decline in its a.c.f. with time in Figure 1a. Figure 1b shows that it is the
variability in sin4(θ/2) that generates matching behavior for Pα and hence sets a requirement for a subhour
sin4(θ/2) availability threshold for coupling studies. From this plot we can find the fraction of samples fhr that
is needed in the hour to give a specified 1σ uncertainty in the hourly means for that parameter, εhr. We here
study the 2% and 5% uncertainty levels. Figure 1b shows that εhr < 2% is achieved for Pα if fhr ≥ 0.96 for
sin4(θ/2) observations and fhr ≥ 0.15 for Nsw data. On the other hand, εhr < 5% is achieved for Pα if fhr ≥ 0.82
for sin4(θ/2) observations and for all other parameters just one sample is adequate.
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Figures 2 and 3 present an analysis of the data gaps in the interplanetary data. To avoid being classed as a
data gap requires that all the parameters required to compute Pα are available, meaning we require a valid
mean of B, ByM, BzM, nHe/np, and Nsw. The definitions used of valid are discussed below. For Figure 2 we make
an exception to this because data on the helium ion fraction nHe/np are not routinely available before 1972
and many coupling functions do not make use of this parameter, and even in many implementations of Pα it
is assumed to be constant because such an assumption introduces only a small uncertainty (one that is com-
parable with other observational uncertainties; Lockwood et al., 2017). Hence, for the purpose of Figures 2
and 3, missing data on nHe/np do not generate a data gap before 1972.

In both Figures 2 and 3, and all subsequent places in the text, we employ hourly means that we have made
from the downloaded 1-min Omni data. In Figure 3 we require enough 1-min samples in the hour to reduce
the statistical uncertainty (as shown by Figure 1) to a given level whereas in Figure 2 we use the criterion of
requiring just a single 1-min sample in the hour to generate an hourly mean in order to investigate the effects
of that criterion. To distinguish the two later in this paper, the latter cases are always identified using the
phrase using the Omni criterion (because the Omni data give an hourly mean value even if only one sample
in the hour is available). All other hourly means refer to the former definition. From the analysis presented in
Figure 1, the Omni criterion is certainly adequate for Vsw and generates acceptable average uncertainties of
εth ≈ ±2% for B and Nsw. However, for the IMF orientation, and hence coupling function, the errors in using a
single sample are εth ≈ ±15%. Comparison of Figures 2 and 3 investigates the effect of criteria on the occur-
rence of data gaps because, whereas Figure 2 is for the Omni criterion; Figure 3 uses the criterion that εth ≤ 5%
(requiring fhr ≥ 0.82 for the IMF orientation data) and εth ≤ 2% (requiring fhr ≥ 0.96 for the IMF orientation data
and fhr ≥ 0.15 for the solar wind data).

Figure 1. (a) Autocorrelation functions, a(t) as a function of lag time, t, for 1-min samples of: (blue) solar wind speed, Vsw;
(orange) solar wind number density, Nsw; (green) interplanetary magnetic field (IMF), B; (mauve) power input to the
magnetosphere (for α = 0.44), Pα; and (black) IMF orientation factor, sin4(θ/2). The vertical gray line marks t = 1 hr. (b) The 1σ
percentage errors in hourly means, εhr, as a function of data availability within the hour, fhr, for the same parameters
(modulated by introducing synthetic data gaps, see text), shown using the same color scheme. The horizontal gray lines in
(b) are uncertainties εhr of 5% and 2%, which set threshold requirements for IMF orientation data availability of fhr ≥ 0.82
and fhr ≥ 0.96, respectively. The εhr ≤ 2% condition sets an additional availability requirement on Nsw data of fhr ≥ 0.15.
These fhr thresholds are shown by the vertical gray lines. Plots are constructed using 1-min Omni samples for 1996–2016.
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The availability of hourly samples in calendar years, f, is shown for the Omni criterion in Figure 2a. The large
rise in f caused by the advent of data from ACE andWind in 1995 is marked by the vertical green line. Figure 2b
shows the spectrum of data gap durations by giving the probability p(L) of being in a data gap of duration L,
as a function of log10(L), evaluated in bins 1 hr wide. Note that at large L before 1995 (in blue) the spectrum
become discrete as there were often just single occurrences of a data gap at that L, but p(L) increases linearly
with L for such cases. Figure 2b shows that data gaps at almost all L (but particularly at large L) were
considerably rarer after 1995 than before. Figure 2c shows the information as the cumulative probability
distribution, which shows clearly the durations of gaps that contribute most to the loss of data. Using the
Omni criterion, the total probability for being in a data gap for 1966–1994 is 68% (so the average availability
is<f> = 32%) and for 1995–2016 it is 8% (<f> = 92%). Remember from Figure 1b, this gives average errors in
the hourly energy input estimates, Pα, of εth ≈ ±15%.

Figure 3 is the same as Figure 2 but for two tighter criteria on what constitutes a valid mean, namely, εhr< 5%
and εhr < 2%. The red and blue lines require IMF data to have an availability of 82% within in each hour (giv-
ing εth ≤ 5%), and this raises the total probability for being in a data gap for 1966–1994 to 76.1% (so the aver-
age availability is<f> = 23.9%) and for 1995–2016 it is 16.2% (<f> = 83.8%). Comparison of the red and blue
lines in Figures 2a and 3a shows that the additional requirement reduces the availability in most years before
1995 and makes some years around 1980 unusable. After 1995, it amplifies somewhat the trend for loss of
data toward the end of the period when the main source of data was the ACE satellite. Comparing parts
(b) and (c) of the two figures show that data gaps of all durations are increased by the extra criterion before
1995 but that after then the main effect is the loss of individual hours with data gaps of duration L < 1 day.
The pink and cyan lines in Figure 3 are for εth ≤ 2%. The cyan line in Figure 3a shows that this relatively small
(3%) gain in the accuracy has a relatively small effect on the availability of valid data before 1995
(<f> = 18.5%) but after then it has a somewhat greater effect, lowering the average availability to

Figure 2. Analysis of data gap occurrence in the Pα interplanetary data. Data in blue are for 1966–1994 (inclusive) and in red
are for 1995–2016 (inclusive). Data gaps are here defined by the absence of any sample in 1-hr intervals, as used in
compiling Omni2 data hourly samples. (a) The availability f of 1-hr means in calendar years. (b) The probability of being in a
data gap of duration L, p(L), shown as a function log10(L) for L between 1 hr and 1 year, for before and after 1 January 1995
(blue and red lines, respectively). (c) The cumulative probability distribution as a function of log10(L). The total
probability for being within a data gap for 1966–1994 is 67% (so the average data availability is <f> = 33%) and for
1995–2016 it is 8% (<f> = 92%). Gray vertical lines in (b) and (c) are at 1 day, 7 days, 27 days, and 1 year.
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<f> = 70.0%. Figures 3b and 3c show that the dominant effect of the lower error threshold is to introduce
many short-duration data gaps.

Hence, a compromise needs to be struck between the error in hourly Pαmeans, εth, and the average availabil-
ity of those hourly means<f>. We here adopt and uncertainty limit of εth ≤ 5%, which gives the annual avail-
ability and data gap spectra after 1 January 1995 shown by the red lines in Figure 3.

In this paper we also use the am geomagnetic index. The am data are continuous and are generated by
L’École et Observatoire des Sciences de la Terre, a joint unit of the University of Strasbourg and the French
National Center for Scientific Research (CNRS) institute, on behalf of the International Service of
Geomagnetic Indices. Note that daily means of am are by convention denoted by Am, hence Am =
<am>1day. The data are available from http://isgi.unistra.fr/data_download.php.

3. Optimum Coupling Function as a Function of Timescale
The hourly interplanetary data formed from hours with more than 82% of 1-min IMF orientation samples (giv-
ing εth ≤ 5%) were averaged into independent intervals of duration τ. The process was repeated 2,922 times
as τ was varied between 3 hr and 1 average year (365.25 days = 8766 hr) in steps of 3 hr (in other words, the
values of τ used were 3, 6, 9… up to 8766 hr). Before the am data were similarly averaged, values coincident
in time to data gaps in the interplanetary data were masked out using the procedure of Finch and Lockwood
(2007) and not included in the means. Note that the data in the Omni2 data set are lagged by the predicted
propagation time between the observing satellite and the nose of the magnetosphere (see description of the
procedure by King and Papitashvili available at https://omniweb.gsfc.nasa.gov/html/omni_min_data.html).

The averages of the input power for a given τ,<Pα>τ were computed using equation (6) for values of the cou-
pling exponent α between 0 and 1.5 in steps of 0.01. The linear correlation coefficient between <Pα>τ

and < am>τ (with data gaps introduced into am to that match those in the Pα data) at each α, r(α), was then
determined. Figure 4 presents an example of the results for annual means (i.e., for τ = 1 year). Figure 4a shows
the correlogram of r(α) as a function of α. The peak r(α), rp = 0.990, is at α = αp = 0.44 (marked by the vertical

Figure 3. Same as Figure 2 but for more stringent criteria as to what constitutes a valid hourly sample. Specifically, for the
red and blue lines we require that solar wind data availability gives an average uncertainty in the hourly coupling
function Pα values of εhr ≤ 5% and for the pink and cyan lines we require εhr ≤ 2%. Blue and cyan lines are for before 1995:
εhr ≤5% gives the blue lines and 23.9% availability of hourly sample; lowering the uncertainty limit to εhr ≤ 2% lowers
this availability to 18.9% (cyan lines). Red and pink lines are for 1995 and after: εhr ≤ 5% gives the red lines with 83.8%
availability of hourly samples; lowering the uncertainty limit to εhr ≤ 2% lowers this availability to 70.0% (pink lines).
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green line). Figure 4b shows the significance S(α) of the difference between r(α) and its peak value, rp,
evaluated using the Meng-Z test of the significance of the difference between two correlations (Meng
et al., 1992). Sometimes also called Steiger’s Z test, this is a variant of the Fisher-Z test (e.g., Asuero et al.,
2006) that makes allowance for intercorrelation between the comparison time series. We use a one-sided
version of the test against the null hypothesis that r(α) is not lower than r(αp). By definition, S(α) = 0 at

Figure 4. Analysis of correlation between power input to the magnetosphere, Pα, and the am geomagnetic index for aver-
aging timescale τ = 1 year over the interval 1996–2016 (inclusive). Panels (a)–(d) show, as a function of the coupling
exponent α, (a) the correlation coefficient r between<Am> 1year and< Pα>1year; (b) the significance, S, of the difference
between the peak value of r, rp (marked by the vertical green line at α = αp = 0.44) and the r at any other α, r(α), computed
using the Meng-Z text (see text for details): The vertical red and blue lines are where S = 0.68 and so mark where r is
significantly lower than rp at the 1σ level; (c) the root-mean-square (r.m.s.) difference, ΔAmrms between <Am > 1year and
the best fit (for α = αp) of <Pα/Po > 1year, Am fit = s. < Pα/Po > 1year + c, where Po is the average of Pα for all the data and
the linear best fit regression coefficients s = 19.37 ± 0.42 and c = �1.64 ± 0.31. (d) The significance S of the difference
betweenΔAmrms for α = αp and that at other α, computed using a two-sample variance F test (see text for details): Pink and
cyan vertical lines are at S = 0.68. (e) The time series of <Am > 1year (in black) and the best fit Amfit (in mauve). (f) Scatter
plot of <Am > 1year against <Pα/Po > 1year for α = αp with the best fit linear regression line shown in mauve. (g) A
quantile-quantile (q-q) plot of the best-fit fit residuals of Amfit and< Am> used to test for the normality of their distribution:
e(i|n)/σ are the ordered standardized residuals and FN

�1[(i-0.5)/n] are the quantiles of the standard normal distribution.
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α = αp and increases at α away from the peak as r(α) falls. The vertical red and blue lines are where S(α) rises to
0.68 and so mark the 1σ uncertainties in the αp value (giving the optimum α to be αp = 0.44, with 1σ
uncertainties of +0.11 and �0.08 in this case for τ = 1 year). Figure 4e shows the time series of <am>τ=1year

(in black) and the best fit linear regression of <Pα>τ=1year to <am>τ=1year (in mauve) for α = αp, the best fit
being s < Pα/Po>τ=1year + c, for linear coefficients of s = 13.07 ± 0.32 and c = �2.59 ± 0.33, where Po is the
mean of Pα over the whole 1996–2016 data set and is a convenient normalizing factor. The corresponding
scatter plot is shown by the points in Figure 4f and the best fit linear regression in mauve.

Figures 4c and 4d show an alternative procedure for determining αp and its uncertainty. The root-mean-
square (r.m.s.) deviation of am from the best fit linear regression of <Pα/Po>τ=1year (illustrated in
Figures 4e and 4f for α = αp), ΔAmrms, is plotted as a function of α in part (c). This r.m.s. fit residual is a different
metric of the same thing as the correlation coefficient (i.e., the level of agreement between Am
and < Pα/Po>τ=1year) but can be used with different statistical tests. As expected, the two procedures give
the same αp to within ±0.05 (the resolution of the tests deployed as α was incremented in steps of 0.01).
Figure 4d looks at the significance S of the difference between ΔAmrms at α = αp and the values at all other
α. This is evaluated using a two-sample F test of the variances of the distributions of the fit residuals (Snedecor
& Cochran, 1989): This allows us to estimate the α values at which ΔAmrms is larger than the minimum by an
amount that is significant at a specified level. We use the one-tailed version of the test against the null
hypothesis that ΔAmrms at general α is not greater than that α = αp. The F test is a parametric test (i.e., it
assumes Gaussian distributions) and is particularly sensitive to the effect of distortions from that form.
Furthermore, a nonnormal distribution of fit residuals indicates that the linear regression may also be invalid
as it is a violation of one of the assumptions of the regression. Hence, although this is a more direct test of the
fit, it is particularly sensitive to the normality of the distributions and it is important to test if the fit residuals
are normally distributed. This is done in the quantile-quantile (q-q) plot against a normal distribution in
Figure 4g. For a normal distribution, the points would lie along the diagonal line and Figure 4g shows the resi-
duals’ distribution is quite close to Gaussian in this case. (However, there is a slight S-shape, which is discussed
below in relation to Figure 5 in which it is more pronounced.) The pink and cyan vertical lines in Figures 4c
and 4d are at S = 0.68 (the 1 sigma level) for this test and comparison with Figures 4a and 4b shows that
the F test gives slightly larger uncertainties in the best value of α than does the Meng-Z test. Note that the
Meng-Z test is also parametric but is not as sensitive to the assumption of Gaussian distributions and gives
valid results even if the distributions tested are only approximately normal.

It is important to stress that we are testing the significance of the difference between the agreement between
the optimum fit of<Pα/Po>τ=1year to Am and the fits for other, less optimum,<Pα/Po>τ=1year data series. This
is different to testing the significance of the less good fits. Because the optimum fits are so good (correlation
coefficient very close to unity and r.m.s. fit residual close to 0), the agreements for less good fits are still highly
significant in themselves—even when the difference to the optimum fit is found to be significant. Notice also
that we here use the 1 sigma level to quantify the uncertainty in α and the estimate would naturally be larger
for the 2 sigma or 3 sigma level. This is because 1 sigma is a conservative (pessimistic) estimate for our appli-
cation of the uncertainties because they are here used to gauge if α is constant with τ and using the smaller
uncertainties is a stricter test of the constancy of α.

Figure 5 shows the corresponding plots for τ = 1 day. As expected, the peak correlation is lower and the scat-
ter is greater. The optimum α is αp = 0.42, and the best fit linear regression coefficients are s = 12.46 ±0.69 and
c = �2.06 ± 0.40. Thus, not only is the optimum α almost the same for the two timescales illustrated by
Figures 4 and 5, but the regression coefficients s and c agree closely and are the same to within the statistical
fit uncertainties. In this case, the uncertainties in α are much smaller. However, the q-q plot in Figure 5g
reveals a significant and systematic departure from a normal distribution of residuals, the S-shape pattern
shape revealing a tail-heavy distribution with lower kurtosis than a Gaussian. Hence, the F test uncertainties
are probably less reliable in this case. Note, however, that the minimum r.m.s. fit deviation again gives the
same best fit α and similar uncertainties as the peak correlation method and, as the sensitivity to nonnormal
distributions is different for the two tests, we can infer the effect of this uncertainty on the uncertainties
is small.

Figure 6a studies the full evolution of the r(α) correlograms with averaging timescale τ between 3 hr and
1 year, (i.e., averaging intervals of duration τ = 3, 6, 9, …. 8,766 hr, a total of 2,922 different durations). The
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correlation coefficient is color coded as a function of τ along the horizontal axis and α along the vertical axis.
Themiddle white line gives the αp value, which yields the peak correlation rp (given by the vertical green lines
in the examples presented in Figures 4 and 5) and the two black lines give the ±1σ uncertainty points from
the Meng-Z test (given by the vertical red and blue lines in Figures 4 and 5). Figure 6b compares the
uncertainty bands from the two methods or computing the uncertainty, as a function of averaging
timescale, τ, and using the same line colors as Figures 4 and 5. It can be seen that they give very similar
results, except at lower τ when there are concerns about the normality of the distributions, particularly for
the F test. We here use the results from the Meng-Z test, and the general similarity of the F test results
gives us confidence in these uncertainty estimates. Figure 6c plots the corresponding variation with τ of
the peak correlation rp. The black horizontal line in Figure 6b is the average αp over all τ of 0.44. Figure 7
(discussed later) presents further analysis of the distribution of αp values.

Range indices, such as am, cannot easily be generated for τ < 3 hr. In addition, at such timescales the correla-
tions become complicated by lag times with the directly driven system responding within about 5 min of
changes in Pα arriving at the dayside magnetopause and the storage-release system responding, typically,

Figure 5. Same as Figure 4 for an averaging timescale τ = 1 day. In this case, αp = 0.42 and the best fit linear regression
coefficients are s = 17.58 ± 0.89 and c = 0.02 ± 0.40.
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after between 30 min and an hour (see section 1). Hence, the analysis
becomes more complex and depends critically on the combination
of current systems to which a given index responds. Nevertheless,
the near-constant α found for τ between 3 hr and 1 year in
Figure 6 is found to apply at τ < 3 hr for indices that respond pri-
marily to the auroral electrojet and the substorm current wedge.
Figure 8 shows an example of the analysis used to test this at
τ = 1 min. We use the 1-min resolution SME index generated by
the SuperMAG project (Newell & Gjerloev, 2011). This index is
equivalent to the AE index and responds strongly to the nightside
auroral electrojet but is compiled from the large SuperMAG magnet-
ometer network and so does not suffer the nonlinear effect due to
the limited latitudinal coverage of the AE(12) stations (see support-
ing information). Figure 8 shows the correlation between Pα and
SME for τ = 1 min as a function of coupling exponent, α (horizontal
axis) and time lag, Δt (vertical axis). Positive Δt is when Pα is lagged,
that is, the SME variation follows Pα. The peak correlation is rp = 0.705
at α = 0.46 and Δt = 37 min. The plot suggests that α for this τ is
slightly higher than 0.44 (marked by the vertical white dashed line)
but inside the white contour the difference between r and rp is
not significant at even the 1σ level. Hence, we cannot regard the dif-
ference between rp for τ = 1 min and 0.44 as significant. However, it
is quite possible that α is indeed slightly greater than 0.44 in this
case because SME is influenced by both the directly driven and
the storage/release systems and analysis of indices such as AU that
respond primarily to the directly driven system find a dependence
on Vsw

n with a smaller exponent n than for the storage-release sys-
tem. We do know that the dominant response of SME is due to the
storage-release system because the optimum lag is Δt = 37±3 min,
which we equate to the average duration of substorm growth
phases for strong solar wind forcing (Li et al., 2013). Note that the
correlation is large (>0.65) for a wide range of lags Δt (between
about 15 min and 1 hr) and this great variability in the length of
the substorm growth phase will have reduced the peak correlation
at Δt = 37 min whereas it would have had little effect on 3-hourly
means. This, and equivalent tests at other τ, show that α = 0.44 is
consistent with the best correlation at all τ between
1 min and 1 year.

Figure 6 shows that, at all τ, the optimum α is consistent with a constant
value of 0.44. This contrasts somewhat with the results of Finch and
Lockwood (2007), who found an optimum α of αp = 0.4 at τ = 3 for

the am index hours, which fell to αp = 0.3 at τ = 1 year. The major differ-
ence between the present study and that by Finch and Lockwood is

that, as shown by Figure 2, much of the interplanetary data used by Finch and Lockwood contained many
data gaps of a wide range of durations, whereas we here employ data from 20 years that has a relatively small
number of relatively short data gaps. Pα is designed to be an estimate of the power input that drives the sub-
storm cycle and the geomagnetic am index has been shown to be an excellent indicator of the geomagnetic
response to that energy input on timescales longer than the substorm cycle of energy storage and release
(typically 1–2 hr; Finch, 2008; Finch et al., 2008). Hence, there is no physical reason that the optimum α should
vary with averaging timescale and so Finch and Lockwood considered the variation of α with τ a somewhat
unsatisfactory result that may have arisen from the presence of large data gaps in interplanetary data. In the
next section we introduce synthetic data gaps into the near-continuous data since the start of 1996 to inves-
tigate their effects and see if this was indeed the case.

Figure 6. (a) Correlation coefficients between <am>τ and < Pα>τ for the inter-
val 1996–2016 (inclusive), r, color coded as a function the logarithm of averaging
timescale, log10(τ), and the coupling exponent, α. The middle white line gives
the peak of each vertical slice, that is, the optimum α, αp (for which r has a
maximum value rp; as shown by the vertical green lines in Figures 4a and 5a for
τ = 1 year and τ = 1 day, respectively). The upper and lower black lines give the
±1σ uncertainty of αp from the Meng-Z test (as shown by the vertical red and
blue lines in Figure 4a for τ of 1 year and in Figure 5a for τ of 1 day, respectively).
The left-hand edge of the plot is at τ = 3 hr, the right-hand edge at τ = 1 year, and
the vertical lines show τ of 6 hr, 1 day, 7 days, 27 days, and 0.5 year. (b) Variation
of best α estimates (αp) and uncertainties. Line colors are as are used in Figures 4
and 5. The green line give the results for αp from both the peak correlation
(r = rp) and the minimum r.m.s. fit deviation (ΔAmrms), which are always exactly
the same. The blue and red lines are the ±1σ uncertainties in αp computed from
the r(α) variation at each τ using the Meng-Z test. The cyan and pink are the 1
sigma uncertainties in αp computed from the fit residuals ΔAmrms(α) variation
using a two-sample variance F test. (c) The peak correlation rp as a function of
log10(τ).
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4. The Effect of Data Gaps on the Peak Correlation
and the Derived Optimum Coupling Exponent
4.1. Simulation of the Effects of the Interplanetary Data Gaps
Before 1995

To test for the effect of data gaps, we here use the interplanetary data
for 1996–2016, inclusive (for which over 80% of the data meets our
availability criterion of εhr ≤ 5%) but introduce synthetic data gaps
using 500 masks. To keep the same distributions of gap durations
and frequency as were observed in the earlier (pre-1995) interplane-
tary data series (see Figure 2), we here take the sequence data gaps
in the Omni hourly data set (30-D) years earlier where D is varied
between 0 and 10 years in steps of 0.02 years (175 hr). Because of
the large number of data masks considered and because of the need
to repeat for the full range of α values, the tests are here restricted to
annual means (i.e., τ = 1 year). For each of the 500 cases, the synthetic
data gaps were then dealt with in four different ways:

A. The interplanetary data were averaged into a mean over interval
of length τ =3 hr only if there are three valid hourly means avail-
able (by our criterion of sufficient 1-min samples in the hour to
give an error below 5%). The simultaneous am data during gaps
in these 3-hourly Pα data series were piecewise removed using
the procedure of Finch and Lockwood (2007) before both am
and Pα were averaged into annual means. Similar piecewise

Figure 7. Analysis of the effects of the uncertainty in the best fit α. (a) The distribution of best fit α values from the analysis
of 2,922 τ values surveyed in Figure 6. The vertical mauve dashed lines are the 2σ points of the distribution, and the
dash-dotted lines mark the extreme values. (b) The variation of the mean value of power input into the magnetosphere
over the interval 1996–2017, Po, as a function of α: the average α is 0.44, which gives Po = 0.38 × 1019 W and the uncertainty
range of α of 0.42–0.45 at the 2σ level (between the dashed lines) gives Po between 0.32 × 1019 W and 0.44 × 1019 W.
The extreme limits of α of 0.405 and 0.475 yield Po of 0.29 × 1019 W and 0.53 × 1019 W, respectively. (c) Analysis of the effect
of α on 3-hourly Pα/Po values: the probability density is color coded of values of β = [Pα/Po]α/[Pα/Po]α=0.44 for the full
range of α of 0.405–0.475 (computed in steps of 0.005). (d) The distributions of Pα/Po values for this full range of α.

Figure 8. The correlation r of 1-min Pα values with 1-min values of the SuperMAG
auroral electrojet index, SME, color coded as a function of coupling exponent, α
(horizontal axis) and time lag, Δt (vertical axis). Positive Δt is when Pα is lagged,
that is, the SME variation follows Pα. Inside the white contour the correlation is not
significantly different from the peak value at the 1σ level. The vertical white
dashed line is at α = 0.44.
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removal of Dst data during solar wind data gaps was used by Temerin and Li (2006).
B. The full am data series (with no piecewise data removal) and all the available hourly Pα data were used

(i.e., the presence of data gaps in Pα was ignored).
C. The full am data series were used and the available 1-hr Pα data were linearly interpolated to fill the data

gaps before both am and Pα were averaged. This method was used (at 10-min resolution) in the coupling
function study by Temerin and Li (2002).

D. The full am data series were used and the Pα data interpolated to fill data gaps using the scheme adopted
by Svalgaard and Cliver (2005). Specifically, the hourly means were calculated and combined into daily
means (in universal time), even if only 1-hourly mean was available; the 27-day Bartels rotation mean
was calculated from available daily means (again even if only one was available); if there were no data
for a rotation, its mean was linearly interpolated from surrounding rotations. The average for a year
was then calculated from the Bartels rotations with center dates in the year in question.

In all cases both the combine-then-average and the average-then-combine procedures were studied. This an
additional complication that applies to all four methods. We here term annual values of Pα generated by the
former <Pα>1year and by the latter as <Pα>ann. Figure 9a shows the time series of <Pα>1year (in red)
and < Pα>ann (in blue; both given as a ratio of Po, their average value over the whole period) and Figure 9b
the scatter plot of <Pα>ann/Po as a function of <Pα>1year/Po. The agreement is very close indeed for after
1995 (the linear correlation coefficient is 0.99, with a 2σ uncertainty range of 0.97–0.995), but the increased
scatter of the green points shows that it is not so close for the data before 1996 (linear correlation coefficient
0.93, with a 2σ uncertainty range of 0.86–0.97). Hence, it appears that data gaps also play a role in creating a
difference between these two ways of generating annual estimates of this coupling function.

Figure 10 shows the results of usingMethod B to deal with data gaps. In this method the (synthetic) data gaps
are effectively ignored and the annual mean Pα data series constructed from the available data (after removal
of the synthetic data gaps), whereas <am > 1year is constructed using all of the (continuous) am data. This
method assumes that the effects of data gaps average out, and this is the most common way of dealing with
the missing data. In Figure 10a, the red and blue lines are the correlograms (correlation coefficient r as a func-
tion of assumed coupling exponent, α) for all the 1996–2016 data (i.e., no synthetic data gaps are introduced)
showing, in red, r(α) for am and< Pα>1year (the combine-then-average annual estimates) and, in blue, r(α) for
am and < Pα>ann (the average-then-combine annual estimates). As found by Lockwood et al. (2017) the
peak, rp, is at slightly higher α for<Pα>ann than for<Pα>1year (αp = 0.44 and αp = 0.48, marked by the vertical
green and orange lines, respectively). Note that this is despite the fact that, as shown by Figure 9, <Pα>ann

and < Pα>1year are very highly correlated (r = 0.99) for this interval. The solid points are the means of the

Figure 9. Comparison of combine-then-average and average-then-combine annual values of Pα (respectively, <Pα>1year
and < Pα>ann). Note that the optimum coupling exponent is used which is αp = 0.44 for <Pα>1year and αp = 0.48 for
<Pα>ann. (a) The time series of values (normalized to Po, their mean value over the whole 1966–2016 data set:
Po = 5.679 × 1018 W for <Po > 1year and Po

0 = 5.719 × 1018 W for <Po > ann). The vertical green line is the start of almost
continuous interplanetary data from ACE, Wind, and DSCOVR. (b) Scatter plot of<Pα>1year/Po against<Pα>ann/Po0. Points
for 1995 and after are shown as black squares, and points for before then are as green circles. The correlation coefficient for
the 1995–2016 data is 0.994 and for the 1966–1994 data is 0.929. The mauve line is the line of perfect agreement.
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values of r(α) for am and< Pα>1year from the runs for the NS = 500 different data masks, and the error bars are
±1 standard deviation. It can be seen that correlations at a given α are generally reduced compared to that for
the full available data series. The mean correlation at the peak (at α = αp = 0.44, marked by the vertical green
line) is reduced from 0.99 to ravp = 0.94 with a standard deviation for the NS simulations of σavp = 0.04 and the
optimum α is increased to 0.48, compared to the 0.44 obtained without data gaps. The gray histogram in
Figure 10b shows the distribution of the derived αp values (giving the peak r = rp between <Pα>1year

and < am > 1year) for the NS = 500 different data gap masks. It can be seen that the mode value of this
distribution is αm = 0.48 and the median α0.5 = 0.43. It must be remembered that we have introduced 500
sets of data gaps but only one would have existed in the actual pre-1996 data and so it is really the range
of possible individual values in Figure 10b that we need to consider, rather than the mean, median, or
mode of the distribution. The standard deviation of the distribution of the 500 αp values is σ = 0.116, the
minimum to maximum range is 0.14–1.00 and the lower and upper 2σ points are α0.05 = 0.24 and
α0.95 = 0.67. It must be remembered that the only difference between the 500 simulations is when the
data gaps happen, by chance, to fall and neglecting the effect of data gaps (the most commonly used
procedure) could generate any one of the α values in this distribution.

Figure 10c shows the corresponding distribution of αp values giving the peak r between <Pα>ann

and < am > 1year for the 500 different data gap masks. The effects of data gaps are very similar to those
for<Pα>1year, namely, a very wide range of αp values are possible, depending on when the data gaps happen
to fall, and the most likely value is larger than the true value (by true in this context we mean the value

Figure 10. Analysis of the effect of adding the series of data gaps that exist in the Pα data series during 1966–1996 on the
Pα-am correlogram (as a function of the coupling exponent, α, used) derived for annual means (i.e., τ = 1 year) from 1996–
2016. In this case the effects of these gaps have been neglected (i.e., Method B, the most commonly employed). (a) The red
and blue lines are the correlograms for all the 1996–2016 data for, respectively, <Pα>1year (the combine-then-average
estimate) and< Pα>ann (the average-then-combine estimate). The black points with error bars are the mean and standard
deviations of the distribution of correlation coefficients, r, for <Pα>1year at a given α, obtained from Ns = 500 different
masks applied to the 1996–2016 data to introduce extra, synthetic data gaps. These masks produce the time series of gaps
as was observed (30�D) years earlier where D varied between 0 and 10 years in steps of 175 hr. (So, e.g., for D = 0, the
mask produces data gaps in the same positions of the data series as for the 1966–1986 data and for D = 10 years they are in
the same positions as for 1976–1996). For the period from which the data gap masks are drawn (1966–1996) data
availability is 23.9%. (b) The distribution of the optimum α values (which give the peak r between <Pα>1year and
< am> 1year for theNS = 500 different data gapmasks applied to both series. (c) The corresponding distribution of α values
giving the peak r between <Pα>ann and < am > 1year for the 500 different data gap masks applied to both series.
The green line in all three panels is the optimum α of 0.44 derived for <Pα>1year and the orange line is the optimum α of
0.48 derived for <Pα>1ann.
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obtained without the introduction of synthetic data gaps). We stress here that we have used the sequence of
data gaps that actually existed in the pre-1995 interplanetary data series and so these large uncertainties
apply to all studies that used such data but made no allowance or data gaps.

Table 1 summarizes the results shown by Figure 10 for Method B and compares them to the results or the
other methods. The plots corresponding to Figure 10 for the other methods are included in the supporting
information to this paper. In this section we highlight the major differences between the results.

The results or the piecewise removal of am data using the procedure of Finch and Lockwood (2007; Method
A) are surprisingly similar to those shown in Figure 10 for Method B. On average, the correlations are very
slightly increased (ravp is 0.95 instead of 0.94) but the distributions αp are actually slightly broader for
Method A for both <Pα>1year and < Pα>ann. However, the distribution medians are closer to the true values
(data gap free, i.e., 0.44 and 0.48) in both cases. Hence, we can say that the procedure of Finch and Lockwood
(2007) is an improvement over neglecting data gaps and averaging over all available data; however, it is only
a very small improvement in the context of improving the peak correlation and is slightly more likely to give
the correct estimate of the optimum α.

The most unsatisfactory method for dealing with the (synthetic) gaps in 1-hr Pα data is to fill them using inter-
polation (method C). This is here implemented using linear interpolation, but results are even worse if cubic
splines or PCHIP (Piecewise Cubic Hermite Interpolating Polynomial) are used. The peak correlations are
lower, the distributions of αp are very wide, and the median and mode values of those distributions shifted
away from the true (i.e., data gap free) value. We note that this method was used (on pre-1995 data) by
Temerin and Li (2002); however, we also note that the same authors soon after moved to using a variant
of Method A and only data from after 1995 with considerable improvement of the correlation between

Table 1
Comparison of the Performance of Methods to Handle Data Gaps or Annual Data

Averaging used # Description No added data gaps Method A Method A Method B Method D Method C

1 Rank — — 1 2 3 4
2 Dates giving gap

masks
— 1995–2015 1966–1994 1966–1994 1966–1994 1966–1994

3 Number of gap
simulations, Ns

1 500 500 500 500 500

Combine then
average, <Pα>1year

4 peak average
correlation ravp ± σavp

0.990 0.989±0.002 0.96±0.04 0.94±0.04 0.92±0.06 0.86±0.09

5 α giving peak rav, αavp 0.44 0.44 0.47 0.48 0.5 0.52
6 Mode of α distribution, αm 0.44 0.44 0.40 0.48 0.52 0.56
7 Standard deviation, σ 0 0.014 0.132 0.116 0.150 0.239
8 Median, α0.5 0.44 0.435 0.44 0.43 0.46 0.49
9 5th percentile range

(α0.05–α0.95)
0.44–0.44 0.404–0.445 0.24–0.67 0.27–0.65 0.20–0.71 0.16–0.96

Average then combine,
<Pα>ann

10 α giving peak rav, αavp 0.48 0.51 0.50 0.54 0.54 0.46
11 Mode of α distribution, αm 0.48 0.48 0.50 0.49 0.56 0.56
12 Standard deviation, σ 0 0.014 0.152 0.105 0.130 0.217
13 Median, α0.5 0.48 0.476 0.49 0.50 0.51 0.58
14 5th percentile range

(α0.05–α0.95)
0.48–0.48 0.451–0.498 0.31–0.76 0.35–0.68 0.32–0.74 0.29–1.05

15 Figure(s) 3 11 and S9 S5 10 and S6 S7 S8

Note. The rows, from top to bottom, give the following: (1) the ranking order of the accuracy the method; (2) the interval used to give data gap masks; (3) the
number of masked data simulations, Ns; (4) the peak value of the average correlation coefficient, ravp, from the Ns simulations, plus and minus (when Ns > 1)
the standard deviation at that peak, σavp (shown in Figure 10a for the case of Method B by the black dot and error bar aligned with the vertical green line); (5)
and (10) the value of α giving that peak, αavp (marked by the vertical green and orange lines); (6) and (11) the mode value αm of the distribution (given in
Figure 10b or Figure 10c for Method B) of the Ns individual α values giving peak correlation; (7) and (12) the standard deviation of that distribution, σ; (8) and
(13) the median value of that distribution, α0.5; (9) and (14) the range between the upper and lower 2σ points of that distribution, (α0.05–α0.95). Rows (4) to (9)
apply to the combine-then-average annual means, <Pα>1year (the distribution shown in Figure 10b for Method B), and rows (10) to (14) apply to the com-
bine-then-average annual means,<Pα>ann (the distribution shown in Figure 10c for Method B). Row (15) gives the relevant figure. The columns are for the single
analysis with no simulated data gaps (the ideal case that themethods are trying to reproduce) andMethods A–D. Method A is applied with data masks drawn from
both 1995–2015 and from 1966–1994. The other methods are only used with masks from 1966 to 1994.
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their coupling function and the Dst geomagnetic index (Temerin & Li, 2006). There are many variants of
interpolation procedures. Others have used interpolation with restrictions; for example, Wu and Lundstedt
(1997) deployed autocorrelation-based interpolation for data gaps of up to 5 hr and intervals with longer
data gaps excluded from the study (a variant of Method A).

Method D was used by Svalgaard and Cliver (2005). This method performs better than Method C but signifi-
cantly less well than Methods A and B. Hence, it is better to simply ignore the effect of data gaps than use
Method D. The reason is that Method D enables some datapoints to take on far too great statistical weight.
For example, if there were a single 1-min sample in a whole Bartels rotation, it would be used in Method D to
give the Bartels rotation mean value, thereby giving that data point a huge weighting. This extreme possibi-
lity illustrates why the Method D introduces extra noise by giving some datapoints too much weight.

4.2. For the Availability of Interplanetary Data After 1995

The previous section shows that Method A is the best method for dealing with data gaps; however, it is only a
very marginal improvement on making no allowance for data gaps (Method B). These two methods perform
significantly better than the others tested, but Table 1 shows both give a considerable spread of αp values
(standard deviations σ > 0.1 and deviations of 2σ points > 0.2). Hence, data gaps in the pre-1995 will have
been a large factor in producing the range of optimum α values in the literature.

In this section, we assess the effects of data gaps when the data availability rises to over 80%, as has been the
case since 1995 (with εth ≤ 5%). To do this, we use the same procedure as was used in the last section, but we
have fewer data available (for 1995 and after) from which to make the masks to introduce synthetic data
gaps. Hence, we test the 1996–2016 data set using 500 masks that are the occurrence of data gaps 1-D years
earlier where D varied between 0 and 1 year in steps of 17.5 hr.

Figure 11 shows the results in the same format as Figure 10. It can be seen that the correlations for any of the
500 masks are only slightly reduced compared to the values for no additional data gaps. The optimum α is

Figure 11. The same as Figure 10 but allowance for data gaps is made using the piecewise removal procedure of Finch and
Lockwood (2007; Method A) applied to the am data at times of the synthesized data gaps in Pα. In addition, in this case,
the 500 synthetic data gap masks that have been applied to the Pα data are drawn from sequences of actual data gaps
during 1995–2016, when data availability is 83.8%. Specifically, the 500 masks constructed for the data gap series
observed (1-D) years earlier (when the data are almost continuous) for D varied between 0 and 1 year in steps of 17.5 hr.
(So, e.g., for D = 0, the mask produces extra, synthetic data gaps in the same positions of the data series as for the
1995–2015 data and for D = 1 year the mask reproduces the actual data gaps 1996–2016).
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unchanged and the 500 masks give a standard deviation σ of only 0.014. It is instructive to compare this to
the uncertainty in the α of peak correlation (αp) between am and < Pα>1year for this τ (1 year) with the
+0.11 to �0.08 1σ error from the Meng-Z test, as shown in Figure 4. Hence, data gaps are contributing to
the uncertainty in αp when data availability is 83% (post-1995) but are far from the dominant factor and so
uncertainties introduced by the data gaps are smaller than that inherent in the correlations due to
instrumental and geophysical noise in both Pα and am. In contrast, the test of Method A with data gap
masks drawn from before 1995 (when average data availability is 30%) shows that these uncertainties rise
to ±0.13 and so errors due to data gaps would be dominant.

5. Discussion and Conclusions

Figure 1 and comparison of the columns in Table 1 give a number of important insights into the effect of data
gaps on the tuning of coupling functions to reproduce and predict terrestrial space weather responses.

The first is that the low autocorrelation time constant of the IMF orientation factor means that hourly samples
that do not have 82% data availability within the hour cause errors greater than 5% (at the 1σ level) in hourly
values of coupling functions, such as Pα, and should be treated as bad data and removed. Note that this error
could be reduced by requiring a higher availability, but this would generate a great many and longer
data gaps.

The second insight is that piecewise removal of the terrestrial response index during interplanetary data
gaps is the best option for dealing with data gaps although, on annual scales at least, the improvement
over simply neglecting them is very small. We recommend Method A on principle, and tests at lower τ
(not presented here) show that it sometimes performs significantly better than Method B. All the inter-
polation methods to fill in data gaps that we tested introduced errors and performed less well than
ignoring data gaps and we recommend that interpolation should always be avoided in this context. If
interpolation is to be used, we recommend a reanalysis approach, using a physical model such as
ENLIL (and not a statistical empirical model) and even then it should only be applied over
appropriate timescales.

Using the data set with the requirement that IMF availability in each hour is 82% (which limits the uncertainty
in hourly Pα values to ±5% at the 1σ level), we find that the optimum coupling exponent of α= αp = 0.44 ± 0.02
at all averaging timescales τ between 1 min and 1 year. We find no significant variation of this value with τ.
From equation (6), this yields dependencies on B0.88, Vsw

1.90, and (mswNsw)
0.23. A dependence on B has been

found in a great many proposed coupling functions (e.g., Kan & Lee, 1979; Scurry & Russell, 1991; Temerin & Li,
2006; Wygant et al., 1983). The 1σ uncertainty on the optimum α found here is ±0.02, which allows a variation
of anywhere between B0.84 and B0.92; however, this is not enough to explain the discrepancy with a depen-
dence on B, nor with the result of Newell et al. (2007) who find a B0.67 dependence (probably because these
authors were attempting to match a wide range of terrestrial response measures). The dependence found
here is close to BVsw

2 and similar to that found in a great many other studies. Lockwood (2013) studied
the optimum values of n for functions of the form BVsw

n and found that n = 2 for AL, n = 1.9 for aa, n = 1.8
for am, and n = 1.6 for ap. The optimum value deduced here for am is n = 1.90, and allowing for the uncer-
tainty in the peak α(±0.02), the n derived here is between 1.75 and 1.91. However, bearing in mind that

Table 2
Correlations Between Pα and the ap and am Indices

Averaging
timescale,
τ

Correlation coefficient, r 2σ range in r Optimum coupling exponent, αp

Index
ap am ap am Ap am

1 year 0.997 0.990 0.993–0.999 0.971–0.995 0.48 0.44
27 days 0.959 0.968 0.949–0.968 0.960–0.975 0.50 0.44
1 day 0.897 0.927 0.893–0.901 0.923–0.930 0.48 0.42
3 hr 0.790 0.855 0.787–0.793 0.853–0.858 0.48 0.45
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Lockwood (2013) used annual means of data from 1966 onward with the Finch and Lockwood (2007) Method
A to deal with data gaps, Table 1 shows a 1σ uncertainty in α of ±0.12 would apply to the Lockwood (2013)
values, which means that n could be between about 1.86 and 2.24 for AL and between 1.55 and 2.04 for am.
Hence, results of Lockwood (2013) for the midlatitude station range indices am, ap, and aa and the auroral
electrojet index AL are not inconsistent with the result found here for am when we allow for the potential
effect of data gaps.

The IMF orientation factor sin4(θ/2) is here assumed rather than fitted, but we note overall correlations are
extremely high at all τ, rising to 0.990 for τ = 1 year for am (and 0.997 or ap). However, at τ = 1 year this factor
averages out to an almost constant number (Lockwood, 2013; Lockwood et al., 2017) and so the exponent
used has no effect. Although sin4(θ/2) is the most used formulation, Kan and Lee (1979) used sin2(θ/2),
Temerin and Li (2006) used sin6(θ/2), and Newell et al. (2007) derived sin8/3(θ/2). We have repeated our cor-
relation study for sini/3(θ/2) with i of [6:1:18]. Although there were very slight differences (<1%) in peak cor-
relation, rp, and optimum α, αp at low τ, they were not statistically significant for any of the i tested. Hence, the
correlogram with i is exceptionally flat and we find no evidence that the widely used sin4(θ/2) dependence is
not optimum.

The derived dependence on (mswNsw)
0.23 is interesting. The exponent of this term would be 0 if α = 2/3,

removing any dependence on the solar wind mass or number flux. This is because for α = 2/3 the effect of
an increase in mass flux (mswNsw) on the particle kinetic energy flux in the solar wind (mswNswVsw

3) would
be canceled by the compressional effect of the solar wind dynamic pressure (mswNswVsw

2) and the reduction
of the target area presented to the solar wind flow by the geomagnetic field. The lower α of 0.44 means that
the first effect is the slightly larger of the two and there is a (weak) dependence on solar wind mass flux
(mswNsw), variations in which are dominated by the number flux (Nsw). Several studies have found that
increased Nsw increases terrestrial space weather response to IMF changes (e.g., Lopez et al., 2004; Weigel,
2010; Xie et al., 2008; Xu et al., 2009) but many coupling functions do not include a term in either (mswNsw)
or Nsw. Newell et al. (2007) also found a (mswNsw)

1/6 dependence but chose to omit it from their coupling
function in the interests of making it match a wide range of terrestrial responses.

Plots corresponding to those presented in this paper, but using the geomagnetic ap index rather than
am, are given in the supporting information. These plots are very similar indeed to those for am in all
cases. Table 2 shows how ap correlates slightly better with Pα on annual averaging timescales, but am
performs slightly better at 27 days, 1 day, and 3 hr. This is consistent with an analysis of the two indices
that have carried out showing that the empirical, tabular K-to-KS conversions used to make Kp (and
hence ap) introduce spurious diurnal and annual variations, but these are averaged out on annual time-
scales, on which ap gains an advantage in noise suppression by averaging data from a more concen-
trated cluster of stations in Europe. The best fit α values are higher for ap than for am by between
0.02 and 0.06. Figure 7 investigates the implications of the precise value of α. Figures 7c and 7d demon-
strate that the difference in αp for the two indices makes almost no difference to the distribution of the
normalized power input to the magnetosphere, Pα/Po, but Figure 7b shows that it does influence the
average value over the whole interval 1996–2016, Po, and hence the absolute magnitude of the power
input, which is estimated. Because am has a more uniform time-of-day-time-of-year response pattern,
we prefer the value obtained for am, which is Po = (0.38±0.06) × 1019 W (at the 2σ uncertainty level).
However, the sensitivity of this value to the index used illustrates how difficult it is to get an absolute
power input value accurately even though the variation in Pα/Po is well defined.

Lockwood et al. (2017) have estimated the annual mean power input into the magnetosphere for all
years back to 1612 from the reconstructed solar wind and interplanetary field parameters derived by
Owens et al. (2017), and from this Lockwood et al. (2018a) have derived the annual means of Ap and
AE back to this date. In the two subsequent papers in the present series (Lockwood, et al., 2018a,
2018b) we begin to construct a space weather climatology by studying the distributions of space
weather parameters about these averages and, in particular, how these distributions evolve with time-
scale. The present paper is an important first step in this because it shows that the formula for the opti-
mum coupling function does not significantly evolve with timescale. Previous studies that suggested that
there was such a variation had been influenced by data gaps, which have different effects on different
timescales. Removing this potential complication (by showing that the optimum coupling exponent α
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is, in fact, independent of timescale) is a valuable first step in the construction of a useful space
weather climatology.
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