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Abstract We use five test data series to search for, and quantify, putative disconti-
nuities around 1946 in five different annual-mean sunspot-number or sunspot-group-
number data sequences. The data series tested are the original and new versions of the
Wolf/Zürich/International sunspot number composite [RISNv1 and RISNv2] (respectively
Clette et al. in Adv. Space Res. 40, 919, 2007 and Clette et al. in The Solar Activity Cycle 35,
Springer, New York, 2015); the corrected version of RISNv1 proposed by Lockwood, Owens,
and Barnard (J. Geophys. Res. 119, 5193, 2014a) [RC]; the new “backbone” group-number
composite proposed by Svalgaard and Schatten (Solar Phys. 291, 2016) [RBB]; and the new
group-number composite derived by Usoskin et al. (Solar Phys. 291, 2016) [RUEA]. The
test data series used are the group-number [NG] and total sunspot area [AG] from the Royal
Observatory, Greenwich/Royal Greenwich Observatory (RGO) photoheliographic data; the
Ca K index from the recent re-analysis of Mount Wilson Observatory (MWO) spectrohe-
liograms in the Calcium II K ion line; the sunspot-group-number from the MWO sunspot
drawings [NMWO]; and the dayside ionospheric F2-region critical frequencies measured by
the Slough ionosonde [foF2]. These test data all vary in close association with sunspot num-
bers, in some cases non-linearly. The tests are carried out using both the before-and-after fit-
residual comparison method and the correlation method of Lockwood, Owens, and Barnard,
applied to annual mean data for intervals iterated to minimise errors and to eliminate un-
certainties associated with the precise date of the putative discontinuity. It is not assumed
that the correction required is by a constant factor, nor even linear in sunspot number. It is
shown that a non-linear correction is required by RC, RBB, and RISNv1, but not by RISNv2 or
RUEA. The five test datasets give very similar results in all cases. By multiplying the prob-
ability distribution functions together, we obtain the optimum correction for each sunspot
dataset that must be applied to pre-discontinuity data to make them consistent with the post-
discontinuity data. It is shown that, on average, values for 1932 – 1943 are too low (relative
to later values) by about 12.3 % for RISNv1 but are too high for RISNv2 and RBB by 3.8 %
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and 5.2 %, respectively. The correction that was applied to generate RC from RISNv1 reduces
this average factor to 0.5 % but does not remove the non-linear variation with the test data,
and other errors remain uncorrected. A valuable test of the procedures used is provided by
RUEA, which is identical to the RGO NG values over the interval employed.

Keywords Sunspot number · Historic reconstructions · Calibration · Long-term variation

1. Introduction

The sunspot-group number [RG] was introduced by Hoyt, Schatten, and Nesme-Ribes
(1994) and Hoyt and Schatten (1998). For after about 1900 it matches quite well the be-
haviour of sunspot numbers, such as Version 1 of the Wolf/Zürich/International sunspot
number composite [RISNv1: Clette et al., 2007], but is well known to be significantly lower
for earlier years (e.g. Lockwood, Owens, and Barnard, 2014a; 2014b). This topical issue
includes two articles detailing two new sunspot-group-number series that are intended to
be homogeneous and of stable calibration. Svalgaard and Schatten (2016) have proposed
the “backbone” sunspot-group series [RBB], and Usoskin et al. (2016) proposed a group-
number series that is here termed RUEA. Compared to the (suitably scaled) original RG,
both of these new group-number data series give higher values before 1900, but in the case
of RBB, they are radically higher. The main differences between RBB and RUEA arise from
the method used to calibrate the historic data. The backbone series passes the calibration
from one dataset to an adjacent one using a relationship between the two (usually a re-
gression fit for the period of overlap between the two). This is called “daisy-chaining”,
and the problem with this method is that both systematic and random errors, compared
to modern values, compound as one goes back in time. Furthermore, as discussed in Ar-
ticle 3 of this series (Lockwood et al., 2016c), there are problems and pitfalls with re-
gression techniques in general, and there are particular concerns about the way that they
were implemented by Svalgaard and Schatten (2016) in the generation of RBB (specifi-
cally, the assumption that data from different observers are proportional to each other is
not generally correct in either principle or practice). Usoskin et al. (2016) avoided all of
these pitfalls, and the potential for error propagation inherent in daisy-chaining, by devis-
ing a method that calibrates all data against one standard dataset. Note that, in general,
observed group-numbers from different observers vary non-linearly (Usoskin et al., 2016;
Lockwood et al., 2016c).

In addition to these new group-number series, a new version of the Wolf/Zürich/
International sunspot-number composite (ISN Version 2, RISNv2) has recently been issued
by the Solar Influences Data Analysis Center (SIDC, the Solar Physics research department
of the Royal Observatory of Belgium). Like RBB, this uses daisy-chaining of calibrations
and, also like RBB, gives higher values for the eighteenth and nineteenth centuries (Clette
et al., 2015). A less “root-and-branch” approach to correcting RISNv1 was taken by Lock-
wood, Owens, and Barnard (2014a), who made simple corrections for errors to generate a
“corrected” series [RC]. It should be noted that because RC makes corrections at only two
dates in the series, other errors in RISNv1, such as the recently revealed error in modern data
that is due to the drift in the Locarno standard (Clette et al., 2015), are carried forward and
not corrected.

This article concentrates on differences between these sunspot-number and sunspot-
group-number data series in the twentieth century, specifically around 1946. Larger dif-
ferences, inferred from geomagnetic-activity data, low-latitude auroral sightings, and cos-
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mogenic isotope abundances in ice sheets, tree trunks, and meteorites, are found for earlier
years, which are discussed in Article 2 (Lockwood et al., 2016b) and in the article by Asves-
tari et al. (2016). Changes around 1946 are of interest as there has been discussion about
a putative inhomogeneity in the calibration of the original Zürich sunspot-number data se-
ries [RISNv1] that has been termed the “Waldmeier discontinuity”, as discussed in Article 1
(Lockwood et al., 2016a). This is thought to have been caused by the introduction of a
weighting scheme for sunspot counts according to their size, a change in the procedure used
to define a group, and, in particular, the “evolutionary” aspect of the new sunspot-group clas-
sification scheme (called the Zürich scheme) introduced by Waldmeier (Waldmeier, 1947;
Kiepenheuer, 1953). This raises two important questions: i) What is this the correct quan-
tification of this effect? ii) Which datasets employed the Zürich classification scheme and so
would be subject to any such effect or may have been re-calibrated using the Zürich data? It
is now agreed that RISNv1 needs correcting for this effect, but it is unclear if, why, and how
it influences other data series. Tests comparing against ionospheric data (Lockwood et al.,
2016a), auroral sightings, and geomagnetic data (Lockwood et al., 2016b) all suggest that,
somehow, an excessive or inappropriate allowance for the Waldmeier discontinuity has been
introduced into RBB.

In the past, corrections to sunspot numbers have often been applied by taking ratios,
which implicitly assumes that proportionality between the different data applies. This is
often not the case (Lockwood et al., 2016c). A particular problem occurs when sunspot
numbers are small because the errors in such ratios become highly asymmetric, and both the
ratio and its error tend to infinity if the denominator approaches zero. Two ways of avoiding
this (in its most extreme form) have been employed. The first is to consider ratios only when
the denominator exceeds an arbitrarily chosen threshold (e.g. Svalgaard, 2011), but this pref-
erentially removes sunspot-minimum values, which do not always go to zero. The second
way is to employ averages over one or more solar cycles so that the denominator remains
large (outside grand minima): this matches long-term average values, but loses information
about cycle amplitudes (because values at sunspot minimum do not always fall to zero).
Consequently, Lockwood, Owens, and Barnard (2014a) devised two different procedures to
test for discontinuities. The first fits the same polynomial form of a proxy or test dataset to
two intervals, one before the putative error, one after it, and studies the probability of the
difference in the mean fit residual for the “before” and “after” intervals. The second method
looks at the effect of a full range of assumed discontinuities on the correlation between the
data and the test data. Generally the methods provide similar answers, but uncertainties are
lower for the fit-residual procedure, so that it is the more stringent test. We here make a num-
ber of improvements to the implementation of the Lockwood, Owens, and Barnard (2014a)
methods.

In the original analysis of the Waldmeier discontinuity by Svalgaard (2011), it was
assumed that the correction required was a single multiplicative (“inflation”) scaling fac-
tor [fR], such that before the discontinuity the data were adjusted by multiplying by fR (i.e.
the corrected sunspot number is R′ = fRR). This assumption was also used by Lockwood,
Owens, and Barnard (2014a) and Lockwood et al. (2016a). In general, it is not clear what
the functional form of the correction for the Waldmeier discontinuity should be and it will
be different for different sunspot-number and group-number series, depending on how they
were compiled. Svalgaard, Cagnotti, and Cortesi (2016) and Clette and Lefèvre (2016) have
analysed the effect on Zürich sunspot numbers by applying both the pre-1946 and post-1946
procedures to modern data. The effects depend on timescale and, in general, are non-linear
in R. The effect on annual averages is not as clear as for daily or monthly means.

We here generalise the correction by allowing for a zero-level offset [δ] and a nonlinear
dependence (with an exponent [n] of R) as well as the scaling factor [fR]. The exponent
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n would be unity for a linear correction (i.e. the correction required is the same at all R):
note that n could be either greater or smaller than unity. For a proportional correction n = 1
and δ = 0. We apply the correction to the data before the putative discontinuity. Hence, the
corrected R [R′] for a discontinuity at a date [t = td] is defined by

R′ = R for t ≥ td

R′ = fRRn + δ for t < td.
(1)

Lockwood, Owens, and Barnard (2014a) used all of the sunspot-group-number dataset from
the Royal Observatory Greenwich/Royal Greenwich Observatory (hereafter “RGO”), which
covers the years 1875 to 1976. The stability of the calibration of the earliest of these data
(before 1885) has been questioned (Cliver and Ling, 2016) and this may have influenced the
derived correction (Clette and Lefèvre, 2016). In the present article, as in Lockwood et al.
(2016a), we avoid using any RGO data from before 1900.

In addition, Clette and Lefèvre (2016) make the valuable point that there are other factors
that may have influenced the correction factor derived by Lockwood, Owens, and Barnard
(2014a). The first is that other errors in the data series may be influencing the optimum
correction for the Waldmeier discontinuity. The second is that the precise date of the dis-
continuity [td] has an effect and is not known because Waldmeier’s documentation is not
clear on when the changes were actually implemented. Clette and Lefèvre (2016) made use
of the ratio of R/RG to define td, something that had been avoided by Lockwood, Owens,
and Barnard (2014a) because the error in such ratios tends to infinity when RG tends to zero
and RG has a minimum in 1944, just before the putative discontinuity: hence changes would
naturally become more apparent as sunspots began to rise in the subsequent cycle. From
the R/RG ratio, Clette and Lefèvre (2016) placed the discontinuity in 1946 (whereas Lock-
wood, Owens, and Barnard, 2014a and Lockwood et al., 2016a used 1945), although they
noted that there is some documentary evidence that at least some of the new procedures that
are thought to be the cause of the discontinuity were in use earlier than this date. Clette and
Lefèvre (2016) analysed the effects of both the start date of the comparison and the assumed
discontinuity date [td] on the RISNv1 correction. They reproduced the Lockwood, Owens,
and Barnard (2014a) values when using the same dates; however, they found that the re-
quired correction could be larger if other dates were adopted. The analysis presented in this
article makes improvements to the procedure of Lockwood, Owens, and Barnard (2014a) to
remove these potential uncertainties.

2. Analysis

The analysis presented here employs five test data series and is applied to five tested sunspot
reconstructions.

2.1. Tested Sunspot Data Series

We here test how five different sunspot-number or sunspot-group-number data series behave
around 1946: these are summarised in Table 1 and compared in Figure 1.

2.1.1. The Original Composite of the Wolf/Zürich/International Sunspot
Number [RISNv1]

RISNv1 is still available in the archive section of the SIDC website, but has not been updated
since 01 July 2015. This is a composite of sunspot numbers, initially generated by Wolf and
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Table 1 Sunspot data series tested

Symbol Name Brief description Reference(s)

RISNv1 Wolf/Zürich/
International sunspot
number, Version 1

Sunspot-number composite compiled at
Zürich observatory and then the Royal
Observatory of Belgium. Used as the
standard series until July 2015

Clette et al. (2007)
Waldmeier (1947)
Wolf (1861)

RC Corrected sunspot
number

RISNv1 with simple corrections for
discontinuities at 1945 and 1849

Lockwood, Owens,
and Barnard (2014a)

RISNv2 Wolf/Zürich/
International sunspot
number, Version 2

Sunspot-number composite from the same
data as used to generate RISNv1 with a
number of corrections. Used as the standard
series after July 2015

Clette et al. (2015)

RBB Backbone
sunspot-group
number

Sunspot-group-number composite compiled
from various observers using the
“backbone” method

Svalgaard and
Schatten (2016)

RUEA Usoskin et al.
sunspot-group
number

Sunspot-group-number composite compiled
from various observers using the statistics
of active-day fractions. It equals the RGO
group-number [NG] for the interval tested
here.

Usoskin et al. (2016)

Figure 1 Comparison of the tested sunspot data series: (black) RISNv1, (red) RISNv2, (blue) RBB, (pink)
RUEA, and (olive) RC. To enable easy comparison, all have been scaled by linear regression to the RGO
sunspot-group number [NG] over the interval 1921 – 1945. The top panel shows the regressed time series, and
the bottom panel shows the differences between each regressed variation and the average of the five scaled
tested series. The vertical dot–dashed line is the most likely time of the Waldmeier discontinuity (1946), and
the vertical-dashed lines delineate the optimum “before” and “after” intervals found by the analysis.
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continued at the Zürich observatory until 1980 and then subsequently compiled by SIDC
(until July 2015, when it was replaced by Version 2). This is the dataset that moved to the
Zürich classification scheme and so will show all aspects of the Waldmeier discontinuity.
As for all the tested data series, with the exception of that by Usoskin et al. (2016), the
calibration is by daisy-chaining, i.e. the calibration is passed from one observer to the next
(or previous) one by comparison of simultaneous data from both observers.

2.1.2. The New SIDC Composite of the Wolf/Zürich/International Sunspot
Number [RISNv2]

RISNv2 became SIDC’s default series on 01 July 2015. It corrects for a number of causes of
long-term change in RISNv1, including the Waldmeier discontinuity and the correction of a
drift in the calibration of the main station (Locarno), which had varied by ±15 % between
1987 and 2009 (Clette et al., 2015). Note that this no longer uses the traditional scaling
factor of 0.6 employed in RISNv1.

2.1.3. The New “Backbone” Group-Sunspot Number [RBB]

RBB was proposed by Svalgaard and Schatten (2016). This group-number composite dif-
fers in its long-term variation from the Hoyt and Schatten (1998) group-number [RG] and
dispenses with the scaling factor of 12.08 introduced by Hoyt, Schatten, and Nesme-Ribes
(1994) and Hoyt and Schatten (1998) (to make means of RG and RISNv1 the same in modern
data). RBB is the mean of the results of two different methods: taking such a mean has the
problem that, although errors can be halved, any error in either method is propagated into
the final result, something that can be avoided if a probabilistic combination technique is
applied. The main method employed in the construction of RBB involves daisy-chaining of
compiled “backbone” data sequences using linear regression. The exception to this is the
earliest join for which a different method is used: this is not within the interval studied here,
however, and so this inhomogeneity in the series compilation is not a factor for this article.
The assembly of the backbones assumes proportionality, and although their use reduces the
number of linear regressions between backbones, it makes no difference to the number of
observers through which the calibration is passed in the daisy-chaining. The second method
involves taking the largest group number defined by any observer in each year and scaling
this to a backbone series. That four such intervals are required implies the relationship of the
highest value to the optimum values changes over time, and the calibration of this is again
passed from one sequence to the previous one and hence this is also daisy-chaining. The
daisy-chaining calibrations in RBB assume not only linearity of the data between different
observers, but also proportionality, which is not in principle correct and generated errors in
the tests carried out by Lockwood et al. (2016c).

2.1.4. The “Corrected” Sunspot Number [RC]

RC was proposed by Lockwood, Owens, and Barnard (2014a) to provide a sensitivity anal-
ysis of the effect of different inputs to the modelling of open solar flux and streamer-belt
width by Lockwood and Owens (2014). RC is based on RISNv1 with the best estimate by
Lockwood, Owens, and Barnard (2014a, 2014b) of the correction required for the Wald-
meier discontinuity plus, for earlier times, the correction derived by Leussu, Usoskin, and
Mursula (2013) using data by Schwabe, which applies to all data before 1848. The sequence
was extended back to before the Maunder minimum using linearly regressed RG values.
This series contains no correction for any other errors that have subsequently been revealed,
such as the Locarno calibration error.
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2.1.5. The Usoskin et al. Group-Number Composite [RUEA]

The composite group-number series assembled at the University of Oulu by Usoskin et al.
(2016) [RUEA] directly calibrates all data to the number of groups [NG] defined by observers
of the RGO for 1900 – 1976 from the photo-heliographic plates. Note that, like RBB, it does
not employ the 12.08 scaling factor that was used in the generation of RG. This series is
unique in that it avoids using either daisy-chaining or regression techniques, and it makes
no assumptions about linearity or proportionality between different datasets. For the test
interval presented here (1920 – 1976), RUEA and NG are identical. Note also that the original
group-number by Hoyt and Schatten (1998) [RG] is also of the same in form as NG over this
interval (being 12.08NG for the interval analysed here) and so tests of RG are not performed
here as they would give identical answers to RUEA.

2.1.6. Summary of the Tested Data Series

The tested data series are summarised in Table 1. Figure 1a shows the five tested data
series. Some are group numbers, while others are sunspot numbers, and they employ
different scaling factors, as discussed above: hence, so that they can be compared in
Figure 1, each has been regressed against the RGO sunspot-group number [NG] over
the interval 1921 – 1945. The start date of this interval is chosen to be after any in-
terval when there are some concerns over the calibration of the RGO data (Cliver and
Ling, 2016); the end date is just before the Waldmeier discontinuity (Svalgaard, 2011;
Clette and Lefèvre, 2016). Figure 1a shows that before 1946 (the vertical dot–dashed
line) all the series are either identical (other than the scaling factors) or very sim-
ilar indeed. In fact, RC is, by its definition, identical to RISNv1 between 1848 and
1945 the scaled RISNv2 is found to also be virtually identical to RISNv1 for the inter-
val 1921 – 1946. After 1946 it can be seen that these scaled variations diverge. Be-
cause some of the differences are rather small in Figure 1a, Figure 1b shows the de-
viations of each from the mean of the five scaled sequences [�[RG]fit]. The Wald-
meier discontinuity is clear in RISNv1 because after 1946 there are high positive val-
ues of this deviation around each sunspot maximum. Both RISNv2 and RBB show sim-
ilar variations, but of the opposite sense to those for RISNv1; the variations for RBB

being larger than those for RISNv2. These deviations for RC and RUEA oscillate around
zero.

Figure 2 analyses the regressions over 1921 – 1945 used to set all variations on the same
scale in Figure 1a. The best-fit regression lines in the scatter plots shown in the left-hand
panels of this plot do not pass through the origin, showing linear, but not proportional,
dependencies between the tested sunspot numbers and the RGO group-number [NG]. Note
that RISNv1 and RC are identical over this regression interval, and therefore both are analysed
in the top row of Figure 2. Note also that no plot is given for RUEA as it equals NG for this
regression interval.

Great care must be taken when using linear regressions. For example, errors caused by
inadequate and/or inappropriate regression techniques were discussed by Lockwood et al.
(2006) in relation to differences between reconstructions of the magnetic field in near-Earth
space from geomagnetic-activity data. Nau (2016) has neatly summarised the problems:
“If any of the assumptions is violated (i.e., if there are nonlinear relationships between de-
pendent and independent variables or the errors exhibit correlation, heteroscedasticity, or
non-normality), then the forecasts, confidence intervals, and scientific insights yielded by a
regression model may be (at best) inefficient or (at worst) seriously biased or misleading.”
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Figure 2 Analysis of the regressions between annual means [NG] of RGO group numbers and the indepen-
dent tested sunspot data series over the interval 1921 – 1945, as used in Figure 1. The left-hand panel (parts
a, c, and e) shows the scatter plots and the best-fit linear regression line, and the right-hand panel (parts b, d,
and f) shows the corresponding quantile–quantile (Q – Q) plots in which the ordered standardised fit residuals
[e(i|n)/σ ], where σ is their standard deviation, are plotted as a function of FN

−1(i −0.5/n), the quantiles of a
standard normal distribution. (a) and (b) are for both RISNv1 and RC (which are identical over the regression
interval), (c) and (d) are for RBB, and (e) and (f) are for RISNv2. No plots are given for RUEA because over
this interval it equals 12.08 NG.

In the context of sunspot numbers and sunspot-group numbers, Lockwood et al. (2016c)
found that the most complex problems were associated with non-normal distributions of
data errors (especially if linearity or proportionality was inappropriately assumed), which
violate the assumptions made by most regression techniques: such errors should always be
tested for before a correlation is used for any scientific inference or prediction (Lockwood
et al., 2006, 2016c). A normal distribution of fit residuals can be readily tested for using
a quantile–quantile (Q – Q) plot (e.g. Wilk and Gnanadesikan, 1968). This is a graphical
technique for determining whether two datasets come from populations with a common dis-
tribution; hence by making one of the datasets normally distributed, we can test the other
to see if it also has a normal distribution. The left-hand panel of Figure 2 gives the corre-
sponding Q – Q plots in which the ordered standardised fit residuals [e(i|n)/σ , where σ is
their standard deviation] are plotted as a function of quantiles of a standard normal distri-
bution [F−1

N (i − 0.5/n)]. To be a reliable and useable regression fit, the points in a Q – Q
plot should form a straight line along the diagonal as this shows the errors in the fitted data
form a Gaussian distribution, which is one of the assumptions of least-squares regression
fitting. It can be seen that this condition is reasonably well met for RISNv1 (and hence RC)
and RISNv2 (which are almost identical in form over the interval used) but not for RBB (Fig-
ure 2d). Hence the error distribution for RBB is not Gaussian. The form of Figure 2d suggests
that the RBB distribution has a different kurtosis (sharpness of peak) compared to NG and
is asymmetric. This applies for all of the RBB data series, but Figure 2 shows that it even
applies for the interval of the regression shown here (1921 – 1945), over which RBB and the
other data series appear, at least visually, to be very similar (see Figure 1a). Hence Figure 2
stresses that although some linear regressions give valid Q – Q plots, others do not. In gen-
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Table 2 Test data series used and the coefficients of the best-fit second-order polynomial fit of test series x

to NG, given by [NG]fit = ax2 + bx + c.

Symbol Brief description Reference(s) Units Second-order polynomial fit
coefficients

a b c

NG The number of
sunspot-groups
identified from
photographic plates
by RGO observers

Willis et al.
(2013a, 2013b)

Annual mean
of daily number

0 1 0

AG Corrected (for limb
foreshortening) total
sunspot area
identified from
photographic plates
by RGO observers

Willis et al.
(2013a, 2013b)

10−6 of a solar
hemisphere

−4.8253
× 10−7

5.6452
× 10−3

0.4232

NMWO The number of
sunspot-groups
identified from solar
drawings by MWO
observers

Lefèvre and
Clette (2014),
Hale et al. (1919)

Number of
distinct groups
in ten months

−5.1202
× 10−4

0.2070 −0.5617

CaKi The Ca K line index
from MWO
observations

Bertello, Ulrich,
and Boyden
(2010)

– 5.5864
× 10−7

2.5681
× 10−2

−7.0114

foF2 The mean dayside
ionospheric F2-layer
critical frequency
from the Slough
ionosonde

Lockwood et al.
(2016a), Smith
and King (1981)

MHz 6.5004
× 10−3

2.2589 −10.9406

eral, linear regression fits therefore cannot be relied upon and are used here in Figure 1 for
illustrative purposes only in displaying the tested data series.

2.2. Test Data Series

We used five independent data series to test the various sunspot-number sequences that are
summarised in Table 2 and compared in Figure 3.

2.2.1. Total Spot Area from the Greenwich Photoheliographic Results [AG]

The total sunspot area was computed (corrected for limb foreshortening) [AG] from the
RGO dataset (also called the Greenwich Photoheliographic Results: GPR) (Baumann and
Solanki, 2005; Willis et al., 2013a, 2013b). This dataset was compiled using white-light
photographs (photoheliograms) of the Sun from a small network of observatories to pro-
duce a dataset of daily observations between 17 April 1874 and the end of 1976, thereby
covering nine solar cycles. The observatories used were The Royal Observatory, Greenwich
(until 02 May 1949); the Royal Greenwich Observatory, Herstmonceux (03 May 1949 – 21
December 1976); the Royal Observatory at the Cape of Good Hope, South Africa; the Dehra
Dun Observatory, in the North–West Provinces (Uttar Pradesh) of India; the Kodaikanal Ob-
servatory, in southern India (Tamil Nadu); and the Royal Alfred Observatory in Mauritius.
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Figure 3 Comparison of the test data shown in the same format as Figure 1: (mauve) the RGO group-number
[NG]; (green) the fitted RGO whole spot total area (corrected for foreshortening) [AG], (red) the fitted MWO
group-number [NMWO], (blue) the fitted MWO Ca K index [CaKi], (orange) the fitted Slough F2 layer critical
frequency [foF2]. All series shown use a second-order polynomial fit to the RGO NG-data over 1921 – 1961.
The vertical dot–dashed line is the most likely time of the Waldmeier discontinuity (1946), and the vertical
dashed lines delineate the optimum “before” and “after” intervals found by the analysis.

Any remaining data gaps were filled using photographs from many other solar observato-
ries, including the Mount Wilson Observatory, the Harvard College Observatory, Melbourne
Observatory, and the US Naval Observatory. The sunspot areas were measured from the
photographs with the aid of a large position micrometer (see Willis et al., 2013a, 2013b and
references therein). The AG-values are the total sunspot area (umbrae plus penumbrae) and
have been corrected for the effect of foreshortening, which increases as sunspots are closer
to the limb of the solar disc.

2.2.2. The number of sunspot groups from the Greenwich photoheliographic
results [NG]

The number of groups [NG] was computed from the same RGO photographs as were used to
generate AG. The RGO data did not employ the Zürich group-classification scheme so that
NG is not influenced by the Waldmeier discontinuity. It is well known that the RGO group-
numbers show a drift relative to the Zürich sunspot numbers (e.g. Jakimcowa, 1966). This is
not necessarily a calibration error as there are a number of ways in which it could have arisen
from real changes in solar activity. The most obvious is that there has been a drift in the ratio
of the number of individual spots to the number of spot groups, which would influence NG

and sunspot numbers differently. However, in addition, over the same interval there has been
a drift in the lifetimes of spot groups, giving an increase in the number of recurrent groups
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(groups that are sufficiently long-lived to be seen for two or more traversals of the solar disc
as seen from Earth) (Henwood, Chapman, and Willis, 2010). This has the potential to have
influenced group numbers derived using different classification schemes in different ways.

2.2.3. The Mount Wilson Ca K Index [CaKi]

Spectroheliograms in the ionized calcium K line Ca II K (393.37 nm) were obtained be-
tween 1915 and 1985 using the 60-foot solar tower at Mount Wilson Observatory as part
of their solar-monitoring programme. Calibration of these images is, however, not straight-
forward. A new and homogeneous index quantifying the area of plages and active network
in the Ca II K line has been derived from the digitization of almost 40,000 photographic
solar images by Bertello, Ulrich, and Boyden (2010) (here referred to as the Ca K index:
CaKi). Although these data are available up to 1985, there were changes to the calibration
procedure employed with step-wedge exposures used from 09 October 1961. Because we
wish to exclude effects by inhomogenities in the data caused by such changes, and because
for the purposes of this article the later data are not required, we here only employ CaKi
data from before this date. Note that the Ca K index has a pronounced non-linear variation
with sunspot numbers (e.g. Foukal et al., 2009).

2.2.4. The Slough F2 Layer Critical Frequencies [foF2]

Ionospheric F2 region critical frequencies are observed at Slough [foF2]. As discussed in
Article 1 (Lockwood et al., 2016a), the location of Slough means that the variation over
each year is dominated by the plasma loss rate (and so by thermospheric composition), giv-
ing a dominant annual variation, as opposed to the semi-annual variation that dominates at
some other stations (Scott and Stamper, 2015), and a close variation with sunspot numbers.
Additional effects, quantified by the area of white-light faculae, are small for the Slough
data (Smith and King, 1981), and Article 1 shows that the main effect of including them
in quantifying the Waldmeier discontinuity is to increase noise levels. Hence in this article,
Slough foF2 values are used without allowance for facular areas. In Article 1 (Lockwood
et al., 2016a), nine dayside Universal Times (UTs) were identified for which the correlation
of foF2 with sunspot numbers (after the Waldmeier discontinuity) exceeds 0.99 for all of the
sunspot-data series tested. Rather than treat these as independent data series, we average the
nine together in the present article.

2.2.5. The Mount Wilson Observatory (MWO) Sunspot-Group Number [NMWO]

NMWO has been compiled routinely from January 1917 onwards using the 150-foot solar
tower telescope from sketches of the solar disc. These data did not use the Zürich group
classification scheme, employing instead the scheme originally developed by Hale and co-
workers (Hale et al., 1919). Thus NMWO will not be influenced by the Waldmeier discontinu-
ity. Because of different equipment and procedures, NMWO does not vary linearly with NG.

2.2.6. Summary of the Test Data Series

The test data series are shown in Figure 3 in the same format as Figure 1 and are sum-
marised in Table 2. In Figure 3a each variation has been scaled to the variation of NG using
regressions over the interval 1932 – 1961 (except foF2 for which data availability makes
this interval 1933 – 1961). Because some proxies for solar activity, such as the CaKi index,
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Figure 4 Analysis of the
regressions between annual
means NG and the other four test
series over the interval
1921 – 1961, as used in Figure 2.
The left-hand panel (a, c, e,
and g) shows the scatter plots and
the best-fit linear regression, and
the right-hand panel (b, d, f,
and h) the corresponding
quantile–quantile (Q – Q) plots in
which the ordered standardised
fit residuals, [e(i|n)/σ ], (where σ

is their standard deviation) are
plotted as a function of quantiles
of a standard normal distribution,
FN

−1(i − 0.5/n). (a) and (b) are
for the calcium K index [CaKi],
(c) an (d) are for the mean
dayside Slough F-layer critical
frequency [foF2], (e) and (f) are
for the MWO sunspot-group
count [NMWO], and (g) and (h)
are for the total RGO sunspot
area [AG].

do not vary linearly with sunspot numbers, the fits are made using a second-order polyno-
mial. The coefficients for the derived second-order polynomial fits are given in Table 2. The
analysis presented in this article was repeated for third-order polynomial fits and the results
were essentially identical. The deviations from the mean of the five are shown in Figure 3b.
Deviations are comparable to those in Figure 1 before 1945 (but are considerably smaller
for after 1945). They are also random in nature in that they are generally largest in single
years and of the same general character before 1945 as after. Differences are largest at the
start of the interval shown in Figure 3. Figure 4 shows the regression scatter plots of these
best polynomial fits and the corresponding Q − Q plots. It can be seen that the fit residuals
for CaKi and foF2 are slightly non-Gaussian in the tails, but the bulk of the population fol-
lows a normal distribution. There is a slight deviation from a normal distribution of errors
for AG, but NMWO gives an almost perfect normal distribution of errors. Hence all of the
test series show a near Gaussian distribution of errors when compared to NG. The scatter
plots show that the polynomial fits remove non-linearity, and further tests on the residuals
(see Lockwood et al., 2006) reveal that they show neither correlation nor heteroscedastic-
ity. Because they pass all of these tests, the regressions between the fitted test series can be
safely employed. In particular, the Q – Q plots shown in Figures 2 and 4 justify the use of
the parametric (i.e. assuming a Gaussian distribution) t -test on the fit residuals described in
the next section (and explains why non-parametric tests give very similar answers).

2.3. Analysis

Article 3 (Lockwood et al., 2016c) shows that it is important not to force linear regression fits
between different sunspot-number sequences through the origin of the scatter plot. Doing so
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means that proportionality between the sequences is assumed and results in the inflation of
solar-cycle amplitudes in data from a lower-acuity observer. Furthermore, Lockwood et al.
(2016c) and Usoskin et al. (2016) showed that results from different observers often have
a non-linear dependence. Most previous studies of the Waldmeier discontinuity (Svalgaard,
2011; Lockwood, Owens, and Barnard, 2014a; Lockwood et al., 2016a; Clette and Lefèvre,
2016) implicitly made the assumption of proportionality because they assumed that correc-
tion for the Waldmeier discontinuity could be achieved using a single multiplicative factor.
In this article, we do not make this assumption, instead we evaluate a correction for before
the Waldmeier discontinuity from R to R′ that is given by Equation (1). Adjusting the values
before the putative Waldmeier discontinuity with the optimum fR, n, and δ means that the
sequence of older data is made consistent with the post-discontinuity data.

Clette and Lefèvre (2016) made the valuable point that the precise date of the Waldmeier
discontinuity is not known, and this can influence the results if the “before” and “after”
intervals used in the method of Lockwood, Owens, and Barnard (2014a) end and start, re-
spectively, at an assumed date for the discontinuity. (This is because if that date were wrong,
some dataset that is from before the discontinuity can be placed in the after interval, or vice
versa). Here we remove this dependency by ending the “before” interval in 1943 and start-
ing the “after” interval in 1949. Thus, the precise date or the waveform of discontinuity does
not have an effect, provided the bulk of it is within the six-year interval around 1946, which
is the most likely date defined by Clette and Lefèvre (2016). The length of the “before” and
“after” intervals was varied until an optimum was achieved, as discussed below.

The procedure used was to first determine the exponent [n] and offset [δ] required by
Equation (1). Because these relate to the correction needed for a given tested sunspot-
number series, the same values of n and δ are used when testing against all five test series.
These values were obtained using the Nelder–Mead search procedure to find the optimum
combination of n, δ, and fR that made R′ correlate best with each of the test data series
for the period between the start of the “before” interval and the end of the “after” interval.
Because the test series are so similar (see Figure 3), they gave very similar optimum n, δ,
and fR values, and the values of n and δ adopted here were those for the test series that gave
the highest correlation (which was invariably for the RGO sunspot-group-number [NG]).
Having defined the optimum values of n and δ, the procedure used was to vary the factor fR

between 0.5 and 1.3 (in steps of 0.001) to evaluate the mean fit residuals in the “before” and
“after” intervals.

As in Lockwood, Owens, and Barnard (2014a), Welch’s t -test was used to evaluate the
probability p-values of the difference between the mean fit residuals (between the tested and
test series in question) for the “before” and “after” intervals being zero. This two-sample
t -test is a parametric test (i.e. it assumes a Gaussian distribution) that compares two inde-
pendent data samples (Welch, 1947). Because it is not assumed that the two data samples
are from populations with equal variances, the test statistic under the null hypothesis has an
approximate Student’s t -distribution with a number of degrees of freedom given by Satterth-
waite’s approximation (Satterthwaite, 1946). The distributions of residuals were found to be
close to Gaussian in most cases, and so application of non-parametric tests (specifically, the
Mann–Whitney U (Wilcoxon) test of the medians and the Kolmogorov–Smirnov test of the
overall distributions) gave very similar results. The overall pdf [p(fR)] for the five test data
series combined was obtained by taking the product of those for each individually:

p0(fR) = [
p(fR)

]
NG

[
p(R)

]
AG

[
p(fR)

]
CaK

[
p(fR)

]
NMWO

. (2)
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The peak value of p(fR) is then defined [pm]. Note that [p(fR)]foF2 was not used for reasons
discussed below. (However, including a term in [p(fR)]foF2 makes very little difference to
the results).

Another valuable point made by Clette and Lefèvre (2016) is that if the “before” and
“after” intervals are too long in duration, then other errors (such as the Locarno calibration
error in the case of RISNv1) can enter into both the tested and test series and so influence
the estimate of the discontinuity correction. On the other hand, if these intervals are too
short, then the inter-annual variability that is due to “geophysical noise” in both the test
and tested data will also degrade the final value. Hence an optimum compromise is needed.
To reduce the number of variables, the “before” and “after” intervals were assigned the
same duration [T ]. The value of T was then varied between 1 year and 23 years (the latter
using all the test data shown in Figure 3, except for the six-year interval around the putative
Waldmeier discontinuity). As expected from the above, both the lowest and the highest
values of T gave a low peak value of pm, and hence broad distributions [p0(fR)]. The
narrowest p0(fR)-distribution, giving the highest peak value [pm], was for T = 11 years
(approximately one full solar cycle). Hence we used a “before” interval of 1932 – 1943 and
an “after” interval of 1949 – 1960, as this minimised the width of the overall probability
distribution function obtained, and hence the uncertainties. This is the optimum compromise
between having sufficient data points and minimising the potential to introduce other errors
and discontinuities present in either data series.

The second, subsidiary, test used by Lockwood, Owens, and Barnard (2014a) and Lock-
wood et al. (2016a) employed the correlations [r] between R′ and each of the test series
over the whole interval (1932 – 1960). The peak in r will occur when the discontinuity in-
troduced into R′ most closely cancels that inherent in the data series R: values of r will be
lower for less-than-optimum combinations of fR, n, and δ. The peaks of the correlograms
(r against fR for the optimum δ and n) were defined and for each fR the significance [S]
of the difference between r and its peak value was quantified using the Fischer-Z transform
by comparison against the AR1 noise model. These significance values were then combined
into an overall variation for all five test series by multiplying the probabilities:

S0(fR) = 1−{(
1− [

S(fR)
]

NG

)(
1− [

S(fR)
]

AG

)(
1− [

S(fR)
]

CaK

)(
1− [

S(fR)
]

NMWO

)}
. (3)

Note that, as for p0(fR), the term [S(fR)]foF2 has been omitted in Equation (3) (but, again,
its inclusion makes very little difference). Ideally, the minimum in S0(fR) would be at the
same fR as the peak in p(fR). A minimum S0(fR) of zero would indicate perfect agreement
between the results of this second test for all five test data series.

3. Results

3.1. Results for RISNv1

Figure 5 summarises the results of these tests for Version 1 of the SIDC Wolf/Zürich/
International sunspot-number composite (i.e. R in Equation (1) is RISNv1). The figure is
for the optimum values of δ and n, which are found to be 2.731 and 1.088, respectively.
The various coloured lines in the top panel show the correlation coefficients between the
adjusted RISNv1 series [RISNv1

′] and the test series for annual means over the full internal
(1932 – 1960) [r] as a function of fR for this δ and n. The best correlation is for the number
of spot groups from the RGO data [NG]. Peak correlation occurs at the same fR for [CaKi]fit
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Figure 5 Evaluation of the discontinuity around 1946 for Version 1 of the Wolf/Zürich/International sunspot
number [RISNv1]. (a) The correlation r as a function of the factor fR of the adjusted sequence [RISNv1′ ]
(generated using Equation (1) before 1946 where the tested parameter R is RISNv1) with (mauve) the RGO
group-number [NG], (green) the corrected RGO total-spot area-number [AG], (blue) the Mount Wilson CaKi
index, and (orange) the F2 layer critical frequency at Slough [foF2]. (b) The significance [S] of the differences
between the peak r and the r at general fR (using the same colour scheme). The black line is the combination
of the four S(fR) variations using Equation (3). (c) The p-values of the difference in the mean residuals
between the “before” (1932 – 1943) and “after” (1949 – 1960) intervals [p(fR)], again using the same colour
scheme. The black line is the combination of the four pdfs [p(fR)] made using Equation (2). The vertical-
dashed line marks the peak, and the grey area the range between the 2σ points, of the combined p(fR). The
plot is for the optimum offset value [δ] of 2.7309 and exponent [n] of 1.0884 (see Table 3).

(the polynomial-fitted Ca K index) and [NMWO]fit (the fitted Mount Wilson sunspot-group
number). [AG]fit is the fitted total spot area from the RGO data and peaks at a slightly lower
fR and the peak for [foF2]fit (the fitted average Slough F2 layer critical frequency) is at a yet
lower fR.

The middle panel of Figure 5 shows the statistical significances of the difference between
the r at general fR and the peak value using the same colour scheme. The black line shows
the overall significance S0(fR), given by Equation (3).

The bottom panel of Figure 5 shows the p-values of the differences in fit residuals be-
tween for the “before” and “after” intervals for the fits of the adjusted tested series R′ and
each test series, again using the same colour scheme. The black line shows the overall pdf
[p0(fR)], as given by Equation (2). It can be seen that the minimum in the combined S0(fR)

and the peak in the combined p0(fR) are at very similar fR, which means that the two tests
are in excellent agreement. The uncertainty in the optimum value for S0(fR) is much greater
than that for p0(fR) (the distribution being much broader), and so p0(fR) provides the most
stringent test for the optimum fR-value. The grey band marks the 2σ points of the p0(fR)

distribution. Note that the agreement of the fR of minimum S0(fR) and peak p0(fR) is less
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Table 3 Optimum values of the fitted values of δ, n, and fR in Equation (1) for the five tested sunspot data
series.

Symbol δ n Optimum fR Percent change required
to “before” interval

RISNv1 2.7309 1.0884 0.7350 ± 0.0231 +12.2787 ± 3.3692

RC 3.4957 1.0950 0.6240 ± 0.0198 +0.4396 ± 3.0098

RBB 0.3108 1.0932 0.7410 ± 0.0191 −5.7380 ± 2.2532

RISNv2 1.4938 × 10−4 0.9967 0.9760 ± 0.0295 −3.7960 ± 2.9081

RUEA 0.0000 1.0000 1.0000 ± 4.7568 × 10−4 +0.0050 ± 0.0476

close for [foF2]fit. Thus the foF2 test series is the only one for which the two tests do not
completely agree. This was found to be true for all of the tested sunspot series. For this rea-
son, foF2 is left out of the computation of both p0(fR) and S0(fR) in Equations (2) and (3).
The orange lines in Figure 4 (and subsequent figures) do, however, serve to show that this
terrestrial proxy for solar activity gives results that are still (just) within the 2σ uncertainty
band derived from the four more direct solar indices. Indeed, all of the test data series give
results within the ±2σ uncertainty. The optimum combination of fR, n, and δ defined by
Figure 5 is given for this tested series [RISNv1] in the top row of Table 3.

The optimum correction for the Waldmeier discontinuity for RISNv1 is

RISNv1
′ = RISNv1 for t ≥ 1946.0

RISNv1
′ = 0.7350RISNv1

1.0883 + 2.7308 for t < 1946.0.
(4)

Applying Equation (4) gives a mean 〈RISNv1
′〉 of 61.23 over the “before” interval, whereas

〈RISNv1〉 is 54.53 over the same interval. Hence this test shows that RISNv1 is 12.28 % too low
in the “before” interval. This, like previous studies, confirms that the Waldmeier discontinu-
ity is a real factor in RISNv1

′. Using the 2σ points for fR, n, and δ yields an uncertainty in the
12.28 % error of ±3.37 % (the total uncertainty being dominated by that due to fR). The
percent change is only slightly greater than the 11.9 % correction found in the studies by
Lockwood, Owens, and Barnard (2014a) and Lockwood et al. (2016a), despite the several
improvements and refinements to the method that have been made in the present. The opti-
mum value is lower than the 15.8 % derived by Clette and Lefèvre (2016) for RISNv1, which
is close to, but just outside, the upper edge of the 2σ uncertainty band found here. As in
previous studies by Lockwood, Owens, and Barnard (2014a, 2014b, 2016a), the probability
that the required change is the 20 % originally invoked by Svalgaard (2011) is essentially
zero. However, notice that neither the zero-level offset nor the exponent is small: hence the
Waldmeier discontinuity in RISNv1 requires non-linear corrections and a proportional (i.e.
multiplicative) one is not adequate.

3.2. Results for RISNv2

Figure 6 is the equivalent to Figure 5 for the new version of the SIDC Wolf/Zürich/
International sunspot-number composite [RISNv2]. The behaviour is very similar to Fig-
ure 5, except that the peak of the pdf is at fR = 0.9967 for δ = 0.0001 and n = 0.9967
(see Table 3). Again, the level of agreement between the results for the different test series
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Figure 6 Same as Figure 5 for Version 2 of the of the Wolf/Zürich/International sunspot number [RISNv2].
(a) The correlation [r] as a function of the factor fR of the adjusted sequence [RISNv2

′] (generated using
Equation (1) before 1946 where the tested parameter R is RISNv2) with (mauve) the RGO group-number
[NG], (green) the corrected RGO total-spot-area number [AG], (blue) the Mount Wilson CaKi index, and
(orange) the F2 layer critical frequency at Slough [foF2]. (b) The significance [S] of the differences between
the peak r and the r at general fR (using the same colour scheme). The black line is the combination of the
four S(fR) variations using Equation (3). (c) The p-values of the difference in the mean residuals between
the “before” (1932 – 1943) and “after” (1949 – 1960) intervals [p(fR)], again using the same colour scheme.
The black line is the combination of the four pdfs [p(fR)] made using Equation (2). The vertical-dashed line
marks the peak, and the grey area the range between the 2σ points, of the combined p(fR). The plot is for
the optimum offset value [δ] of 1.4938 × 10−4 and exponent [n] of 0.9967 (see Table 3).

is exceptionally good. The optimum correction is

RISNv2
′ = RISNv2 for t ≥ 1946.0

RISNv2
′ = 0.9760RISNv2

0.9967 + 0.0001 for t < 1946.0.
(5)

This test finds that RISNv2 overestimates the mean for the “before” interval by 3.80 ±
2.91 %. Thus the Waldmeier discontinuity has been slightly overestimated in RISNv2. Note
that the ideal value of zero is (just) outside the 2σ uncertainty for RISNv2. The very small
δ and the closeness of n to unity mean that the correction needed is very close to being
proportional. Hence the correction in RISNv2, although slightly too large, has removed the
non-linearity introduced by the changes made by Waldmeier.

3.3. Results for RC

Figure 7 is the equivalent to Figure 5 for the corrected Wolf/Zürich/International sunspot
number composite proposed by Lockwood, Owens, and Barnard (2014a). The peak of the
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Figure 7 Same as Figure 5 for the corrected Wolf/Zürich/International sunspot-number composite proposed
by Lockwood, Owens, and Barnard (2015) [RC]. (a) The correlation [r] as a function of the factor fR of
the adjusted sequence [RC

′] (generated using Equation (1) before 1946 where the tested parameter R is RC)
with (mauve) the RGO group number [NG], (green) the corrected RGO total-spot-area number [AG], (blue)
the Mount Wilson CaKi index, and (orange) the F2 layer critical frequency at Slough [foF2]. (b) The signifi-
cance [S] of the differences between the peak r and the r at general fR (using the same colour scheme). The
black line is the combination of the four S(fR) variations using Equation (3). (c) The p-values of the differ-
ence in the mean residuals between the “before” (1932 – 1943) and “after” (1949 – 1960) intervals [p(fR)],
again using the same colour scheme. The black line is the combination of the four pdfs [p(fR)] made using
Equation (2). The vertical-dashed line marks the peak, and the grey area the range between the 2σ points,
of the combined p(fR). The plot is for the optimum offset value [δ] of 3.4957 and exponent [n] of 1.0950
(see Table 3).

pdf is at fR = 0.6240 for δ = 3.4957 and n = 1.0950 (see Table 3). Again, the level of
agreement between the results for the different test series is exceptionally good. The opti-
mum correction is

RC
′ = RC for t ≥ 1946.0

RC
′ = 0.6240RC

1.0950 + 3.4957 for t < 1946.0.
(6)

This test finds that RC underestimates the mean for the “before” interval by 0.44 ± 3.01 %.
Although this underestimate is zero to within the 2σ uncertainty, the correction for the Wald-
meier discontinuity in RC is nevertheless less satisfactory than that in RISNv2. This is because,
as for RISNv1, the value of n is not close to unity and therefore the non-linear behaviour in-
troduced by the Waldmeier discontinuity has not been removed.
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Figure 8 Same as Figure 5 for the new backbone sunspot-group-number composite proposed by Svalgaard
and Schatten (2016) [RBB]. (a) The correlation [r] as a function of the factor fR of the adjusted sequence
[RBB

′] (generated using Equation (1) before 1946 where the tested parameter R is RBB) with (mauve) the
RGO group-number [NG], (green) the corrected RGO total-spot-area number [AG], (blue) the Mount Wil-
son CaKi index, and (orange) the F2 layer critical frequency at Slough [foF2]. (b) The significance [S] of
the differences between the peak r and the r at general fR (using the same colour scheme). The black line
is the combination of the four S(fR) variations using Equation (3). (c) The p-values of the difference in
the mean residuals between the “before” (1932 – 1943) and “after” (1949 – 1960) intervals [p(fR)], again
using the same colour scheme. The black line is the combination of the four pdfs [p(fR)] made using Equa-
tion (2). The vertical-dashed line marks the peak, and the grey area the range between the 2σ points, of the
combined p(fR). The plot is for the optimum offset value [δ] of 0.3108 and exponent [n] of 1.0932 (see
Table 3).

3.4. Results for RBB

Figure 8 is the equivalent plot to Figure 5 for the new backbone sunspot-group-number
composite proposed by Svalgaard and Schatten (2016) [RBB]. The peak of the pdf is at
fR = 0.7410 for δ = 0.3108 and n = 1.0932 (see Table 3). Again, the level of agreement be-
tween the results for the different test series is exceptionally good. The optimum correction
is

RBB
′ = RBB for t ≥ 1946.0

RBB
′ = 0.7410RBB

1.0932 + 0.3108 for t < 1946.0.
(7)

This test finds that RBB overestimates the mean for the “before” interval by 5.74 ± 2.25 %.
In addition to this being significantly different from zero, the correction for the Waldmeier
discontinuity is, as for RC, less satisfactory than that in RISNv2 because the value of n is
not as close to unity and therefore any non-linear behaviour introduced by the Waldmeier
discontinuity has not been removed.
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Figure 9 Same as Figure 5 for the new Usoskin et al. (2015) group-number reconstruction [RUEA]. (a) The
correlation r as a function of the factor fR of the adjusted sequence [RUEA

′] (generated using Equation (1)
before 1946 where the tested parameter R is RUEA) with (mauve) the RGO group number [NG], (green)
the corrected RGO total spot area number [AG], (blue) the Mount Wilson CaKi index, and (orange) the F2
layer critical frequency at Slough [foF2]. (b) The significance [S] of the differences between the peak r and
the r at general fR (using the same colour scheme). The black line is the combination of the four S(fR)

variations using Equation (3). (c) The p-values of the difference in the mean residuals between the “before”
(1932 – 1943) and “after” (1949 – 1960) intervals [p(fR)], again using the same colour scheme. The black
line is the combination of the four pdfs [p(fR)] made using Equation (2). The vertical-dashed line marks the
peak, and the grey area the range between the 2σ points, of the combined p(fR). The plot is for the optimum
offset value [δ] of 0 and exponent [n] of 1 (see Table 3). Note that [p(fR)]NG and hence p(fR) are very close
to δ-functions in this case (they are not quite because the other test series are not quite identical in waveform
to NG) and although part c uses the same p(fR) scale as Figures 3 – 6, the peak p(fR) value [pm] is close
to unity.

3.5. Results for RUEA

Figure 9 is the equivalent to Figure 5 for the new Usoskin et al. (2016) group-number re-
construction [RUEA]. We would expect this to give fR very close to unity and δ very close to
zero because, for the interval studied in this article, RUEA = NG and hence it is the same as
one of the four test data sequences. However, the test is interesting as it shows the net effect
of the other solar test sequences (the CaKi index, the RGO spot areas AG, and the Mount
Wilson group-numbers NMWO) on the result is negligible and also shows the same behaviour
for foF2 as the other tested sunspot series. The top panel of Figure 9 shows the unity peak r

between RUEA and NG, but except for this, the behaviour for the other test series is very sim-
ilar to that for the other tested series. In this case, the p0(fR) curve is essentially a δ-function
(the plot scale in Figure 9c is the same as for panels c of Figures 5 – 8, but the peak value
of p0(fR)[pm] is off-scale in this case as it is close to unity). To within four decimal places,
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values of n and fR are unity and δ is zero. The change required in the “before” interval is
0.005 ± 0.048 %.

This test of RUEA shows that the procedure works well, and that when presented with one
dominant correlation the other test series, which give slightly different optimum fR, do not
degrade the result.

4. Conclusions

We have tested five sunspot data series around the putative Waldmeier discontinuity in
sunspot numbers around 1945 using five diverse test datasets that are all completely in-
dependent of the Zürich sunspot number, which is the source of this discontinuity. The test
data are the sunspot-group number from the RGO dataset [NG], the total sunspot area from
the RGO dataset (corrected for foreshortening) [AG], the Mount Wilson Ca K index [CaKi],
the Mount Wilson sunspot-group number [NMWO], and the ionospheric F2 region critical
frequency observed at Slough [foF2]. We have tested various sunspot data series in two
ways, using the fit residuals and using the correlation coefficient. In all cases, the results
of these two methods are remarkably consistent, but the uncertainties are lower for the fit
residual method. The most persistent difference between the two methods occurs for the
ionospheric foF2 data, which are here not included in overall tests but are nevertheless plot-
ted to show that these terrestrial data still give results that are consistent with those for the
solar test data to within the 2σ uncertainties. The diversity of the derivations and sources of
these test series means that the chances that all suffer from the same error around 1946 are
negligible and comparison shows random data noise differences between them (Figure 3)
and not systematic errors.

To summarise our results graphically, Figure 10 plots the variations of all of the tested
series over the test period (which covers Solar Cycles 17, 18, and 19). The grey area is the
mean of the five regressed test series, and in parts b – f, the blue line is the original tested
series and the red line is the tested series after the relevant adjustment to the data before
1946, as derived in this article, has been made. Part a of Figure 10 compares the five test
series.

Figure 10b is for RISNv1 and the Waldmeier discontinuity is clearly visible in the blue line
as low values during Solar Cycle 17. The red line demonstrates how effective the correction
is – and this is true for all of the tested series. Figure 10c is for RBB and the blue line shows
that values in Cycle 17 are persistently too high. It is not at all clear how this has occurred
because RBB was compiled from various observers, most of whom did not change practices
in defining groups when such changes were made at Zürich. However, it appears that RBB

has somehow been adjusted to allow for the Waldmeier discontinuity, and this adjustment is
either not warranted or excessive. Figure 10d shows RISNv2, and the Waldmeier discontinuity
is much reduced compared to RISNv1. However, there appears to be a slight over-correction
for the discontinuity, as values for Cycle 17 are slightly too high. This is consistent with
the estimated inflation factors used to correct RISNv1, which was 18 % (Clette and Lefèvre,
2016), which is higher than the value for the mean of RISNv1 over Cycle 17 of 12.28±3.37 %
that was derived here. Figure 10d confirms the effects of the mean for RISNv2 for Cycle 17
being too large by the 3.80 ± 2.91 % that was derived in this article. Figure 10e shows the
results for RC and, although a good match to the mean for Cycle 17 is obtained, the effects
of the residual non-linearity can be seen with values at both sunspot minimum and sunspot
maximum being slightly low in RC. Figure 10f shows the effects of the mean for RUEA;
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Figure 10 Summary of annual mean variations over the optimum test interval 1932 – 1961. (a) The fitted
test series, using the same colour coding as previous figures. The grey-shaded area is the mean of the five test
series and is repeated in all other parts of the figure. In panels b – f the blue lines show the original sunspot
data series and the red lines the version corrected for before 1946 using the best fits derived in this article.
Because the red lines are plotted second, they cover the blue lines where the two agree. The plots are for
(b) RISNv1, (c) RBB, (d) RISNv2, (e) RC, and (f) RUEA. Because this is a mixture of sunspot numbers and
sunspot-group numbers, all series have been scaled to RISNv2 for the interval 1946 – 1961.
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because the tested series and one of the test series are the same here, the blue and red lines
are essentially identical and both match the main test series very well.

Table 3 gives the optimum corrections needed for the five tested sunspot data series.
Direct and careful allowance for this discontinuity has been made in Version 2 of the
Wolf/Zürich/International sunspot number [RISNv2] but we here show that the correction
applied is slightly too large but does remove the non-linearity inherent in RISNv1. Note that
because RISNv2 is compiled by daisy-chaining of calibrations, this systematic error will be
passed to all prior data. The correction used in the “backbone” sunspot-group series [RBB]
of Svalgaard and Schatten (2016) is also too large. A large part of this is likely to be the 7 %
correction introduced by Svalgaard and Schatten to allow for the “evolutionary” aspect of
Waldmeier’s classification scheme, but it is not at all obvious that this is required for the
data used to compile RBB. The backbone series is the only one not to give usable Q – Q
plots when regressed against other sunspot series. From the analysis presented in Article 3
(Lockwood et al., 2016c), some of the error probably has arisen from the use of linear inter-
correlation of segments of annual mean data (when in general the relationship is non-linear)
and because fits were unnecessarily forced through the origin, which tends to amplify solar-
cycle amplitudes in fitted data. As for RISNv2, RBB uses daisy-chaining of calibrations, and
this error will be passed to prior data and such errors will accumulate as one goes back in
time.

The correction applied by Lockwood, Owens, and Barnard (2014a) to RISNv1 to generate
RC is designed to remove the Waldmeier discontinuity on average data series. These tests
show that this is achieved, but that the non-linear variation with the test data, as also found
for RISNv1 has not been removed. In addition, RC only considered two known errors and
others certainly exist; for example the modern values were not corrected for the drift in the
Locarno calibration values (Clette et al., 2015).
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