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Abstract A comparison tool has been developed by mapping the global GPS total electron content (TEC)
and large coverage of ionospheric scintillations together on the geomagnetic latitude/magnetic local
time coordinates. Using this tool, a comparison between large-scale ionospheric irregularities and
scintillations is pursued during a geomagnetic storm. Irregularities, such as storm enhanced density,
middle-latitude trough, and polar cap patches, are clearly identified from the TECmaps. At the edges of these
irregularities, clear scintillations appeared but their behaviors were different. Phase scintillations (σφ)
were almost always larger than amplitude scintillations (S4) at the edges of these irregularities, associated
with bursty flows or flow reversals with large density gradients. An unexpected scintillation feature appeared
inside the modeled auroral oval where S4 were much larger than σφ, most likely caused by particle
precipitations around the exiting polar cap patches.

1. Introduction

The fluctuations in the spatial propagating radio wave signals (like their amplitude and phase) are one of the
first known effects of space weather, which is called scintillation [e.g., Hey et al., 1946]. This is due to the radio
signals be disturbed or interrupted when they are passing through the ionospheric irregularities, which are
often associated with large density gradients resulting in clear scintillations to the satellite navigation, posi-
tioning, and communication [e.g.,Weber et al., 1986; Mitchell et al., 2005; Moen et al., 2013]. In the polar iono-
sphere, there are many large-scale irregularities, such as storm enhanced density (SED)/tongue of ionization
(TOI) [Foster et al., 2005, 2007], middle-latitude trough, and polar cap patches [e.g., Zhang et al., 2011, 2013a,
2015]. The SED, as a plume of very high concentration plasma around the noon sector, drifts from the low-
latitude sunlit region in the afternoon sector toward higher latitudes by the poleward directed subauroral
polarization stream (SAPS) electric fields, entering the polar cap region and forming a TOI [Foster, 2008].
The SAPS is characterized by the bursty sunward return flow, which is produced by the modulation of night-
side reconnection and overlaps with the middle-latitude trough [Foster and Burke, 2002]. Zhang et al. [2013a,
2015] found that these bursty sunward return flows or SAPS could carry low-density plasma (trough) toward
the cusp region along the dawnside and/or duskside return convection cell, thereby injecting low-density
plasma into the convection throat and cutting the SED plume into polar cap patches. We will refer to the
interaction area between the bursty sunward return flows or SAPS and the SED as the “SED segmented area.”
The polar cap patches are islands of high number density F region ionospheric plasma, which are surrounded
by plasma of half the concentration or less [e.g., Crowley, 1996; Carlson, 2012; Zhang et al., 2011, 2013b]. After
formation, the polar cap patches move along the flow streamlines of the Dungey convection cycle [Dungey,
1961; Oksavik et al., 2010; Hosokawa et al., 2009; Zhang et al., 2013a, 2015] and transpolar evolution from the
dayside to the nightside. They have been found exiting the polar cap and entering the nightside auroral oval,
in a manner modulated by the nightside reconnection rate, and evolving to dayside in the sunward return
flow region [Zhang et al., 2013a, 2015].

At the edges of these large-scale irregularities, there are often very high density gradients with different small-
scale size irregularities, generated by various instabilities, such as flow shear instability (or Kelvin-Helmholtz
instability (KHI)) and/or gradient drift instability (GDI) [Basu et al., 1990, 1994, 1998; De Franceschi et al., 2008;
Moen et al., 2013]. Thus, clear scintillations often appear at the edges of the large-scale irregularities. The
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scintillations are generally divided into amplitude and phase scintillations based on the behavior of the
disturbance of the received signals. Previous studies suggested that amplitude scintillations, quantified
by S4 index, are mainly caused by tens of meters to hundreds of meters scale size irregularities, while phase
scintillations, quantified by σφ index, are mainly caused by hundreds of meters to some kilometers scale size
irregularities, which are above the Fresnel radius (a few hundred meters for Global Positioning System (GPS)
signals) [e.g., Kintner et al., 2007; Alfonsi et al., 2011; van der Meeren et al., 2014; Oksavik et al., 2015]. Several
publications have investigated the relationships between plasma irregularities and scintillations in the polar
ionosphere, trying to understand the generation mechanisms of the ionospheric scintillations around
the edges of different large-scale irregularities [Prikryl et al., 2010; Moen et al., 2013; Oksavik et al., 2015].
Mitchell et al. [2005] reported that both amplitude and phase scintillations coexisted with the strong gradi-
ents in total electron content (TEC) at the edge of polar cap patches near the nightside auroral oval during
the Halloween storm in October 2003. However, only phase scintillation was observed at the tip region of
TOI [van der Meeren et al., 2014]. Oksavik et al. [2015] reported severe phase scintillation and strong irregu-
larities associated with bright poleward moving auroral forms around cusp region. Jin et al. [2015] is a sta-
tistical study of the cusp auroral and GPS scintillations and proposed that the phase scintillations are
sensitive to a combination of both the auroral precipitation and the transported higher density plasma from
sunlit part of the ionosphere. Some previous studies also suggested that the amplitude scintillation seldom
occurred in the high-latitude ionosphere [Prikryl et al., 2010; Moen et al., 2013; Jin et al., 2014]. The details of
the behavior of scintillations at the edges of different large-scale irregularities are not sufficiently explored.
In this paper, we present a detailed comparison between the different irregularities and their associated
scintillations and discuss the generated mechanisms by combining the observations of the global GPS
TEC [Coster et al., 2003], scintillations measured by Canadian High Arctic Ionospheric Network (CHAIN)
[Jayachandran et al., 2009], and the plasma flows observed by the SuperDARN radars [Greenwald et al.,
1995; Chisham et al., 2007].

2. Data and Method

This study uses observations of the TEC from a dense array of ground-based GPS receivers, provided by the
Madrigal database [Coster et al., 2003]. A global TEC map is generated every 5min, which can be used to con-
tinuously monitor the formation and evolution of the large-scale irregularities in the polar ionosphere [Zhang
et al., 2013a; Thomas et al., 2013].

This study uses scintillation data observed by CHAIN, which is a network of 18 GPS ionospheric scintillation
and TEC monitors (GISTM), model GSV4004B, in the northern part of Canada [Jayachandran et al., 2009].
This provides a large coverage of scintillation measurements in this region. GISTM records the phase and
amplitude of L1 band signals at 50Hz and calculates amplitude and phase scintillations indices. The definition
of amplitude scintillation index (S4) is the standard deviation of the received signal power, normalized by the
mean signal power over 60 s intervals. The phase scintillation index (σφ) is defined as the standard deviation
of the carrier phase which has been detrended by a high-pass sixth-order Butterworth filter with a cutoff fre-
quency of 0.1 Hz. σφ is calculated at time resolution of 1, 3, 10, 30, and 60 s. In this paper, the scintillation index
with a time resolution of 60 s is used. The scintillation was classified into three grades: weak scintillation for S4
(σφ) <0.3; moderate scintillation for 0.3< S4 (σφ) <0.6; and strong scintillation for S4 (σφ) >0.6. In order to
avoid multipath effect, we have used data with elevation angle greater than 20° and signal locked time more
than 240 s.

In order to make the comparison in large-scale areas, we have developed a tool to project both the GPS TEC
and scintillations data at the Ionospheric Pierce Point (IPP) altitude of 350 km on a map of geomagnetic lati-
tude (MLAT)/magnetic local time (MLT) grid in the northern polar ionosphere and generated a movie of the
maps with 5min resolution (e.g., Movies S1 and S2 in the supporting information). Thus, this time series of
maps or movie will offer us a very good opportunity to pursue the detail comparison between the large-scale
irregularities and the scintillations in the polar ionosphere.

The solar wind and interplanetary magnetic field (IMF) data are downloaded from the OMNI-2 website
(mainly produced from the measurements of the Wind and ACE satellites in this study) [King and
Papitashvili, 2005]. The solar wind data are time shifted to account for the distance from the satellites to
the nose of bow shock.

Geophysical Research Letters 10.1002/2016GL069230

WANG ET AL. IRREGULARITIES AND SCINTILLATIONS 4791



3. Observations and Results
3.1. Solar Wind and IMF Conditions and Geomagnetic Indices

On 27 February 2014, a coronal mass ejection (CME) reached the Earth magnetopause at about 17:00 UT with
a shock in solar wind dynamic pressure, PDyn, resulting in a moderate geomagnetic storm. Figure 1 presents
the solar wind and IMF conditions as well as the geomagnetic indices during 16:00–23:00 UT. Parameters are
(a) the Geocentric Solar Magnetic (GSM) interplanetary magnetic field (IMF) components, (b) the solar wind
velocity, (c) the solar wind number density, (d) the solar wind dynamic pressure, PDyn, (e) the auroral electrojet
(AE/AL) indices, and (f) the SYM-H (Dst) index. The IMF and solar wind data have been lagged by 7min to allow
the data to propagate from the nose of the bow shock to the polar ionosphere. Before the CME impact
(~17:00UT), the IMF and solar wind conditions were weak and stable (Figures 1a–1d), resulting in quiet geo-
magnetic conditions (Figures 1e and 1f). After about 17:00 UT, however, the IMF and solar wind had strong
variations (Figures 1a–1d), resulting in a series of substorms (Figure 1e) and a moderate geomagnetic storm
(Figure 1f). The two vertical dashed lines highlight the interval of interest in this study. During this interval, the
IMF Bz component was mainly negative around �10 nT with two positive excursions at about 20:10UT and
20:15UT, the By component was all positive and Bx varied around zero (see Figure 1a), while the solar wind
was stable but kept high speed (~500 km/s) and number density (~20 cm�3), giving a stable and high
dynamic pressure (~10 nPa). These IMF conditions are favorable for reconnection at the dayside magneto-
pause. This interval was the period of the expansion phase to main phase of the storm with substorms at
the beginning (Figures 1e and 1f).

3.2. Irregularities and Scintillations

Figure 2 shows selected examples from the movies of 2-D maps of ionospheric scintillations and TEC on a
MLAT/MLT grid, where Figures 2a–2d are the maps of TEC and amplitude scintillations, and Figures 2e–2h
are the maps of TEC and phase scintillations. The noon is on the top and the dusk is on left. The two black
curves in each panel show the boundary with the sharpest flux gradient in the integral flux and the
open/close boundary (OCB), respectively, which are predicted by the auroral Oval Variation Assessment
Tracking Intensity and Online Nowcasting (OVATION) (shown in Figure 3a). The region highlighted by these
two black curves represents the region with high integral flux for the precipitating electrons (shown in
Figure 3a), generated by the Boundary-Oriented Precipitation Model [Sotirelis and Newell, 2000] and

Figure 1. An overview of the solar wind and IMF conditions as well as the geomagnetic indices during the period 16:00–23:00UT
on 27 February 2014. Parameters are (a) the GSM IMF components, (b) the solar wind velocity, (c) the solar wind number
density, (d) the solar wind dynamic pressure, PDyn, (e) the auroral electrojet (AE/AL) indices, and (f) the SYM-H (Dst)
index. The IMF and solar wind data have been lagged by 7min to allow for the propagation delay from the nose of bow
shock to the polar ionosphere.
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Figure 3. The 2-D maps of integral flux of precipitating electrons and of ionospheric convection pattern both on MLAT/MLT grid with noon at the top. The four blue
stars show the selected points same as that in Figure 2a. (a) The modeled map of integral number flux in units of log10/(cm2 sr s) from OVATION, which is predicted
by the Boundary-Oriented Precipitation Model [Sotirelis and Newell, 2000] and calibrated in intensity by the DMSP magnetotail stretching index. The two black
curvesmark roughly the auroral oval boundaries, where the equatorward curve represents the boundary with the sharpest flux gradient and the poleward one shows
the OCB. The thin black line with two “crosses” represents the projected orbit of DMSP F18, where the observations between the two crosses have been involved
into the OVATION calibrations. The input and output parameters of the model inside OVATION are presented at the right-hand bottom corner of the map. (b)
The field of view of the employed SuperDARN radars is projected in themap, which are presented as fans with the employed beam highlighted as the green area. The
direction and magnitude of the lagged IMF are indicated at the right-hand upper corner of map.

Figure 2. Selected examples from a full series of 2-D maps of median-filtered TEC and ionospheric scintillations on a MLAT/ MLT grid with noon at the top. (a–d) The
maps of TEC and amplitude scintillations and (e–f) the maps of TEC and phase scintillations. The two black curves in each panel present the model predicted
auroral oval determined by the intensity of the integral number flux of precipitating electrons (see detail in Figure 3a). There are two color bars for presenting
the scintillation and TEC data, respectively.
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calibrated in intensity by the DMSP magnetotail stretching index in OVATION. This region is roughly
referred as the location of the auroral oval in this study. There are two color bars for each panel: the left
one (grey) represents scintillation values from 0 to 0.4 (where values from 0 to 0.05 are considered as
measurement/system noise and shown as magenta, and values above 0.4 were set as 0.4 for better compar-
ison); the right one (color) represents TEC values between 0 and 40 TECU (1 TECU= 1016 el/m2). Scintillation
indices were represented by grey squares (and magenta squares indicating measurements at the noise level)
with black frames in a size of 1° × 1° in MLAT and magnetic longitude (transferred to MLT in the map). The
location of these squares represents the scintillations mapped to the Ionospheric Pierce Point (IPP) altitude
of 350 km, where the scintillation values are averaged when they are filled in a same square. The TEC data
downloaded from madrigal database have a spatial resolution of 1° × 1° in geographic latitude and geo-
graphic longitude. We transferred the TEC data into the altitude-adjusted corrected geomagnetic coordi-
nates and performed the median-filtered average for smoothening them. The white area represents the
TEC data gap. For better comparison with the 5min averaged TEC data, we only selected the scintillation data
at the middle of every 5min, for example, selected the scintillation data at 20:22 UT for comparing the TEC
data between 20:20–20:25 UT and 20:27 UT for that between 20:25 and 20:30UT. At this end, we used this
middle time as data time both for the TEC and scintillation data and presented it at the top of each panel.

From Figure 2, we identified three types of large-scale irregularities or regions from the TEC maps according
to the TEC value and density gradient: SED, middle-latitude trough, and polar cap patches/TOI. A SED, as a
plume of enhanced TEC, elongated from low-latitude afternoon sector toward high-latitude noon sector,
entering the polar cap and forming a TOI (Figures 2a and 2e). And a clear middle-latitude trough, as the
region of low TEC around 63–67° in the postnoon and premidnight sectors, convected toward the noon
sector and encountered the SED plume at subauroral latitudes (Figures 2a and 2e). At about 20:22 UT
(Figures 2b and 2f), a high-density plasma patch was completely formed pinching off from the SED
plume/TOI at subauroral latitude (equatorward of the auroral oval) in the noon sector and the low-density
plasma in the middle-latitude trough were transported to fill the gap between the patch and the left part
of SED plume, while a previously formed patch was located deeper in the polar cap. After the formation,
the polar cap patches moved poleward and duskward across the pole from dayside to nightside; however,
the patches exited the polar cap and entered the auroral oval from very wide sectors ranging of about
15–23MLT (see Figure 2 and Movies S1 and S2).

From Figure 2, we also find that clear amplitude and phase scintillations, shown by S4 and σφ indices,
appeared at the edges of these large-scale irregularities identified above. However, the behaviors of S4 and
σφ were different. σφ were much larger (blacker) than S4 both in the segmenting area of the SED and at
the equatorward edge of the middle-latitude trough in postnoon sector. S4 and σφ were very small in the
polar cap with similar magnitudes at the edges of polar cap patches, while S4 were much larger than σφ in
the auroral oval region around the exiting patches. These suggest that the generating mechanisms of the
associated scintillations were different for different irregularities, which will be discussed in some detail in
section 4.

4. Discussion

Based on the behaviors of the large-scale irregularities and the scintillations, we can divide the scintillation
areas in the polar ionosphere into four typical regions: (1) the SED segmented area, (2) the middle-latitude
trough, (3) the polar cap, and (4) the auroral oval. The auroral oval highlighted by the two black curves in
Figure 2 comes from the modeled map of integral number flux and is characterized by high flux of precipitat-
ing electrons as shown in Figure 3a, where the equatorward curve represents the boundary with the sharpest
flux gradient and the poleward one shows the OCB. Figure 3a is downloaded from OVATION, in which the
distribution of the integral flux was generated by the Boundary-Oriented Precipitation Model [Sotirelis and
Newell, 2000] and calibrated in intensity by the DMSP magnetotail stretching index. Figure 3a confirms that
strong particle precipitations happened inside the auroral oval during the interval of interest.

In order to discuss the generating mechanisms of the associated scintillations in these four regions in detail,
we selected four points from these regions around the edges of the large-scale irregularities or regions iden-
tified in section 3, shown as the blue stars in Figures 2a and 3, respectively. Around these selected points, the
ionospheric flows can bemonitored by the SuperDARN radars (Figure 3b). The SuperDARN radars can provide
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convection patterns in the whole polar ionosphere by using the “Map Potential” technique [Ruohoniemi and
Baker, 1998; Chisham et al., 2007], while the individual radars can offer us the line-of-sight velocity around the
regions of interest. These will offer us the opportunity to check the flow variations around the selected points.
Figure 3b shows the SuperDARN convection map and the field of view of the SuperDARN Kodiak (KOD),
Saskatoon (SAS), Rankin Inlet (RKN), and Kapuskasing (KAP) radars with the beams covering the four selected
points (blue stars). A typical two-cell convection pattern was shown with the observed drift vectors in Figure 3b
for southward IMF condition, which was varying with the inputting IMF conditions. The line-of-sight velocities
are shown in Figure 4 along the highlighted beams covering the selected points, where the missing data are
meaning no target presenting from which the radar could scatter, due to HF absorption and/or lack of irregula-
rities [Moen et al., 2001].

We extracted a time series of the TEC and scintillation data around the selected points from the maps in
Figure 2 and Movies S1 and S2 and also presented them in Figure 4. In order to obtain the time series of
the spatial density gradient at each selected point, we chose another point as a reference to calculate the
TEC difference between it and the selected point. The reference points are 2° higher in MLAT than the
selected points along the same MLT as these selected points, except for the one in the polar cap, which is
0.4 h higher in MLT than the selected point along the same MLAT with this selected point. Because the scin-
tillation data have very poor spatial coverage (seen in Figure 2), the time series of scintillation data has been
searched and averaged from a 3× 3 points data matrix which represents a 3° × 0.4 MLAT/MLT grid centered
by the selected point in the map.

Figure 4. The time series of the TEC, TEC gradient, and scintillation data at the selected points for the four typical areas, together the line-of-sight velocity measured
along the beams of SuperDARN radars which covered the selected points. The horizontal dashed lines represent the value of 0.3 in the scintillation indices
panels and represent the corresponding positions of the selected points in the beams of the SuperDARN radars in the line-of-sight velocity panels.
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Below, we discuss the generating mechanisms of the scintillation in these four typical regions mentioned
above, respectively, but discuss the regions 1 and 2 together because the SED segmented area and the
middle-latitude trough link together and have similar scintillation behaviors.

4.1. SED Segmented Area and the Middle-Latitude Trough

The SED plume was drifted from low-latitude afternoon sector toward high-latitude noon sector by the pole-
ward directed SAPS electric fields, entering the polar cap and forming a TOI [Foster, 2008]. Zhang et al. [2013a,
2015] found that these bursty sunward return flows or SAPS could carry low-density plasma (trough) toward
the cusp region along the dawnside and/or duskside return convection cell, thereby injecting low-density
plasma into the convection throat and cutting the SED plume into polar cap patches [Moen et al., 2006;
Goodwin et al., 2015]. In Figure 2, the low-density plasma in the middle-latitude trough was indeed trans-
ported to fill the gap between the patch and the left part of SED plume. This is more visible in Figure 4a,
where the TEC value increased to 52 TECU when the SED plume generally reached the selected point from
lower latitudes and then decreased to 37 TECU when the lower density plasma from the trough filled the
gap of the SED segmented area, resulting very strong density gradients (more than 10 TECU) at the poleward
edge of the SED plume. The scintillation data at the selected point show that the phase scintillations were
always stronger than the amplitude scintillations (S4 is very small, <~0.2) (Figure 4b). The scintillations were
small with similar magnitude of S4 and σφ during SED plume approaching the selected point (before the TEC
reaching the maximum in Figure 4a), while the phase scintillations were strongly enhanced when the low-
density plasma in middle-latitude trough pinched off the leading part of the SED between 20:12 and
20:52UT: σφ were all above 0.3 with several times above 0.6 and reaching their maximum of 0.9; and σφ were
decreased to about 0.3 with some small enhancements during the periods of 20:59–21:23UT, when the left
part of the SED plume propagating toward the selected point (Figure 4b). The line-of-sight flows show that
there were bursty flows or SAPS (~1000m/s) toward (sunward) the SuperDARN Kodiak radar during the per-
iods of 20:12–20:42UT, 20:48–20:52UT, and 20:58–21:12 UT, with a short time flow reversal (away from the
radar) during 21:16–21:24 UT (Figure 4c). From Figures 4a–4c, we can find that the scintillation enhanced
was associated with the bursty flows and the flow reversal. Note that during the period of 20:51–20:58UT,
the flows were not strong (~500m/s), the phase scintillation well less pronounced (σφ varied around 0.3)
compared to the previous periods, which may be because low flow speed and the low-density plasma fully
filled the segmented area with very small density gradient. These observations suggest that these strong
phase scintillations, which were thought to be generated by the small-scale irregularities with sizes of hun-
dreds of meters to some kilometers pinching off from the SED plume [e.g., Kintner et al., 2007; van der
Meeren et al., 2014], were mainly associated with the bursty flows or flow reversal, although there are also
strong density gradients at the edges of the segmenting area between the SED and the newly created
patch (mainly at the leading edge of the left part of the SED and the equatorward edge of the newly
created patch).

In the postnoon middle-latitude trough, the TEC and their gradient showed that the trough was extension
equatorward with strong density gradient (Figure 4d), and the phase scintillations were almost always
much stronger than the amplitude scintillations (Figure 4e). During the equatorward extending, the bursty
flows or SAPS were also measured in the trough by the SuperDARN Saskatoon radar, although the radar
backscatter echo was rare after about 20:28 UT which may be due to the radar signal be absorbed
and/or lack of irregularities in the trough region (Figure 4f) [Moen et al., 2001]. Similar to that within the
SED segmented area, these observations also suggest that the strong phase scintillation was mainly gen-
erated by the small-scale irregularities associated with the bursty flows at the equatorward edge of the
middle-latitude trough.

4.2. Polar Cap

After segmented from the SED plume, the patches moved by following the flow streamlines and entered the
polar cap region. This type of segmented process was pulsed due to injection of the bursty sunward return
flows or SAPS associated with pulsed nightside reconnections; thus, the patch appeared one following
another and may be further structured by the GDI during their evolution in the polar cap [Carlson et al.,
2007; Spicher et al., 2015]. In Figures 4g–4i, a polar cap patch appeared across the selected point with strong
density gradient, while during the whole interval, both the amplitude and phase scintillations were very weak
(both S4 and σφ were below ~0.3) with some small enhancements between 20:32 and 20:39 UT in phase
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scintillations, when the line-of-sight flows was reversed within the background of weak flows (~ �200m/s).
These observations suggest that the scintillations were very weak in the polar cap but would be enhanced by
the varied flows with the density gradient at the edges of the polar cap patches.

4.3. Auroral Oval

After transpolar evolution across the pole from dayside to nightside, the patches exited the polar cap and
entered the auroral oval in very wide sectors ranging of about 15–23MLT (see Figure 2 and Movies S1 and
S2). This may be due to the nightside reconnection occurred at very wide regions from the dusk flank to
the premidnight sectors of the magnetotail, which modulated the patches exiting the polar cap region
[Zhang et al., 2013a, 2015; Moen et al., 2007, 2015]. These nightside reconnections reclosed the open field
lines in the lobe region and generated particle precipitations into the polar ionosphere along the newly
closed field lines during their sunward moving from dawn/dusk flank driven by the convection electric field,
forming the auroral oval. Thus, the patches will be affected by the particle precipitations when they exit
the polar cap region and enter the nightside auroral oval. In Figures 4j–4l, the TEC and their gradient show
that there were several small gradient enhancements (only about 3–4 TECU) during the periods of about
20:00–20:15, 20:27–20:42, 20:50–21:02, and 21:12–21:30UT, when the patch crossed the selected point in
the auroral oval, which may be due to the particle precipitations. On the other hand, Figure 3a shows that
there are strong particle precipitations around the selected point suggested by the modeled integral flux
from OVATION and plasma observations from DMSP. During this interval, the scintillation data show an unex-
pected feature that the amplitude scintillations became dominant and increased above 0.3 when the density
gradient showed enhancement, while the phase scintillations were very weak during the whole interval.
These observations and modeled results suggested that the particle precipitations might play the main role
to generate a series of small-scale irregularities in the sizes from tens of meters to hundreds of meters around
the patch, which therefore produced clear amplitude scintillations in the auroral oval.

5. Conclusions

We developed a tool to project the global GPS TEC and large coverage of ionospheric scintillations together on
the map of MLAT/MLT grid. Using this tool, we have made a detailed comparison between large-scale irregula-
rities and scintillations in the polar ionosphere during a geomagnetic storm and identify clear irregularities from
the global GPS TEC: the SED plume, the middle-latitude trough, and polar cap patches. At the edges of these
irregularities, scintillations were apparently recorded but their behaviors were different. Based on the behaviors
of the scintillations, we divided the scintillation areas in four typical regions: (1) the SED segmented area, (2) the
middle-latitude trough, (3) the polar cap, and (4) the auroral oval. Both in the SED segmented area and at the
equatorward edge of the middle-latitude trough in postnoon sector, the phase scintillations were much larger
than amplitude scintillations associated with the bursty flows or flow reversals. In the polar cap, both the ampli-
tude and phase scintillations were very weak with small enhancements due to the varied flows with the density
gradient at the edges of polar cap patches. An unexpected scintillation feature appeared inside the auroral
oval, where amplitude scintillations were much larger than phase scintillations, most likely caused by particle
precipitations around the exiting patches. The results offer a key opportunity for improving polar ionospheric
modeling and Global Navigation Satellite System (GNSS) scintillation forecasts.
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