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[1] Galactic cosmic ray flux at Earth is modulated by the
heliospheric magnetic field. Heliospheric modulation poten-
tial, @, during grand solar minima is investigated using an
open solar flux (OSF) model with OSF source based on
sunspot number, R, and OSF loss on heliospheric current
sheet inclination. Changing dominance between source and
loss means & varies in- (anti-) phase with R during strong
(weak) cycles, in agreement with ® estimates from ice core
records of '°Be concentration, which are in-phase during
most of the last 300 years, but anti-phase during the Maunder
Minimum. Model results suggest “flat” OSF cycles, such as
solar cycle 20 result from OSF source and loss terms tem-
porarily balancing throughout the cycle. Thus even if solar
activity continues to decline steadily, the long-term drop in
OSF through SC21 to SC23 may plateau during SC24,
though reemerge in SC25 with the inverted phase relation.
Citation: Owens, M. J., . Usoskin, and M. Lockwood (2012),
Heliospheric modulation of galactic cosmic rays during grand solar
minima: Past and future variations, Geophys. Res. Lett., 39,1.19102,
doi:10.1029/2012GL053151.

1. Introduction

[2] During the space-age, both photospheric magnetic flux
and the heliospheric magnetic flux (HMF) have varied
approximately in phase with the sunspot cycle. On longer
timescales the HMF has been evaluated using geomagnetic
activity as a proxy indicator [Lockwood et al., 2009; Lockwood
and Owens, 2011]. The HMF modulates the galactic cosmic
ray (GCR) flux incident on the terrestrial atmosphere, allowing
HMF properties to be inferred from GCR records. Ground-
based neutron monitors detect secondary particles produced by
GCRs in the atmosphere, allowing the modulation potential, ®
to be reproduced over the last half century [Usoskin et al.,
2005]. Ice core records of 08¢ [Beer, 2000; Usoskin et al.,
2003; Usoskin, 2008], a product of the GCR-atmosphere
interaction, can also be used to quantify the ®, and hence the
HMF, on timescales from l-year to thousands of years.
Another cosmogenic isotope, radiocarbon '*C, takes part in the
carbon cycle and is stored, for example, in ancient tree trunks. It
is very useful for long-term solar activity reconstructions
[Solanki et al., 2004], but cannot resolve individual solar cycles
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[e.g., Bard et al., 1997]. To infer ® from '°Be records, it is
necessary to account for the geomagnetic field strength and
beryllium deposition rates. The geomagnetic variation is rea-
sonably well characterised for the last few millennia [ Donadini
et al., 2010] and can be subtracted [e.g., Masarik and Beer,
2009; Kovaltsov and Usoskin, 2010], whereas spatial variabil-
ity in deposition rate can be largely mitigated by examining ice
cores from well-separated geographic locations. As stronger
HMEF results in fewer GCRs reaching Earth, the '°Be concen-
tration is generally found to be in anti-phase with the sunspot
number variation [Beer, 2000].

[3] During the Maunder Minimum, a grand solar minimum
approximately lasting from 1645 to 1700, the Sun was well
observed by professional astronomers but displayed remarkably
few sunspots [e.g., Hoyt and Schatten, 1998; Vaquero, 2007].
There is evidence that the solar cycle continued throughout
this period, as '°Be concentration shows an approximately
11-year periodicity in the Dye3 ice core throughout [Beer
et al., 1998]. However, the Maunder Minimum '°Be varia-
tion is in phase with the expected sunspot cycle, contrary to
expectations and the subsequent behaviour [Usoskin et al.,
2001]. Thus there is debate whether the Maunder Minimum
'Be cycling is a solar modulation effect, or the result of a
large-scale change in deposition by precipitation resulting
from, e.g., the North Atlantic Oscillation [ Heikkild et al., 2009].

[4] The last 5 or 6 solar cycles, which includes the space-
age, have displayed higher average sunspot numbers than the
rest of the record, suggesting grand solar maximum (GSM)
conditions [Solanki et al., 2004], in agreement with geo-
magnetic [Lockwood et al., 2009; Lockwood and Owens,
2011] and GCR reconstructions of the HMF [McCracken,
2007; Steinhilber et al., 2010]. However, over the last 2 or
3 solar cycles, the solar magnetic field has declined, sug-
gesting the current GSM is ending [Abreu et al., 2008;
Lockwood et al., 2009, 2012]. From the GCR record, around
10% of previous GSM exits have resulted in Maunder
Minimum-like conditions within 50 years [Steinhilber et al.,
2010; Lockwood, 2010; Barnard et al., 2011].

[5] In this study, we use a continuity model to investigate
HMF evolution through a declining solar magnetic field and
show that cycling '°Be observations during the Maunder
Minimum are consistent with a continued solar cycle, despite
the phase shift. We then use the model to explore how cycles
24 and 25 could develop given different scenarios for the
sunspot cycle.

2. Modelling Heliospheric Modulation Potential

[6] Open solar flux (OSF), the total unsigned magnetic flux
threading a heliocentric sphere at the solar wind formation
height, can be estimated from both extrapolations of the
observed photospheric magnetic field [Wang and Sheeley,
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Figure 1. From top to bottom: (first row) imposed sunspot
number (R) and (second row) HCS tilt, (third row) modelled
unsigned open solar flux (OSF) and (fourth row) helio-
spheric modulation potential (®). Alternate grey/white
panels show alternate cycles. Red (blue) vertical lines show
times of R ($) maxima. R and ® are in phase during high R,
but in anti-phase during low R.

1995] and from in situ measurements of the HMF [e.g.,
Owens et al., 2008a; Lockwood and Owens, 2009]. Solanki
et al. [2000] modelled the solar cycle variation in OSF as a
source term, S, assumed to follow the sunspot number (R), and
a loss term, L, which allows the OSF to decay with given time
constants. Owens and Lockwood [2012] used the observed
OSF and observed R to show the fractional OSF loss rate ()
was essentially cyclic over the last century and closely fol-
lowed the variation in the heliospheric current sheet (HCS) tilt
angle. Loss of OSF at regions of high HCS inclination is in
agreement with observations of coronal inflows and collapsing
loops [Sheeley and Wang, 2001]. A tilted HCS allows differ-
ential rotation to force together OSF with opposite polarity,
resulting in OSF loss through reconnection [e.g., Owens et al.,
2011a].

[7] To examine the effect of a declining solar magnetic field,
Figure 1 (first row) shows a simulated R variation using the
observed mean variation over cycles 12-23 [Owens et al.,
2011b], with amplitude linearly ramped down and up. Times
of maximum sunspot number, 7%, are shown here and in
Figure 1 (fourth row) as vertical red lines, with shaded areas
showing R within 80% of the cycle maximum. Figure 1 (sec-
ond row) shows the mean variation in x over cycles 12-23
[Owens and Lockwood, 2012], linearly scaled up by a factor
1.74 to match the HCS tilt angle variation. The HCS tilt vari-
ation is more asymmetric than the R variation, with a sharper
rise, earlier peak, and a more extended decline. The HCS var-
iation is assumed identical each cycle, which holds to first order
[Owens and Lockwood, 2012], but the details of the HCS
variation can be important for the resulting OSF, as discussed
in Section 4.

[8] The R and HCS tilt variations are used as the basis of
OSF source and loss terms, in the same manner as by Owens
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and Lockwood [2012], namely using S = a(R + Rp) and
L = xOSF, where a =1 x 10'> Wb CR™' (CR = Carrington
Rotation) and Ry = 10. The R, term gives OSF production
even at times of R = 0, as suggested by coronal mass ejection
rates at R = 0 during the recent sunspot minimum [Owens
et al., 2008b]. The resulting model OSF and ® variations are
shown in Figures 1 (third row) and 1 (fourth row), respectively.
® is computed from the OSF and HCS tilt [4lanko-Huotari
et al., 2007]. Times of maximum ®, T, are shown here and
in Figure 1 (first row) as vertical blue lines, with shaded regions
showing times when @ is within 80% of the peak cycle value.

[9] Forcycles with peak R, Ryiax, >75 (cycles 1-4 and 14—
18 of the plot), the ® variation is in approximate phase with
R. However, as Ryax drops to around 60, the OSF variation
flattens, while ® peaks later in the cycle. (The exact threshold
at which this occurs will depend on the OSF parameters and
the form of the source and loss terms.) Stepping down fur-
ther, Ryax = 40 gives OSF in anti-phase with R, which in
turn gives a flat ® variation. For Ry;ax <30, grand minimum-
like conditions, the $ variation reemerges in anti-phase with
R. This switch is due to the solar cycle variation in OSF
primarily resulting from a cycling source term at times of
high R, but the cycling loss term at times of low R.

[10] During grand minimum-like conditions, the amplitude
ofthe ® variation is greatly reduced, despite the relatively high
amplitude of the OSF variation. This is because the Alanko-
Huotari et al. [2007] form for ® results in the HCS tilt and
OSF combining during times of high R, but canceling during
times of low R. Consequently, the solar modulation signal
should be more difficult to detect in '°Be records during grand
minima. Conversely, lower ® will result in higher GCR fluxes
at Earth, giving elevated '’Be production and hence a weaker
solar modulation signal may still be detectable. Furthermore,
the Alanko-Huotari et al. [2007] relation is based on space-age
observations, so the HCS tilt may not cancel the OSF variation
to the same extent during grand solar minima.

[11] The phase between R and ® can be expressed as AT =
T — Ty. Black symbols in Figure 2a show |AT] as a function
of Ryiax: Circles are times of peak @, lines show times when &
is within 80% of the cyclepeak. | AT, rather than A7, is used
as ¢ peaks near the start/end of the cycle, creating a 1-cycle
ambiguity. The dark (light) grey panel shows times when @
and R are in anti-phase (“transition phase” where ® is essen-
tially flat and T is difficult to define). For cycles with Ryax >
50, the model ® and R are in phase to within 1 to 1.5 years.

3. Comparison With '°Be Observations

[12] Model results are now compared with '°Be observa-
tions for the period 1610 to 1980, the start of the group sun-
spot record to the last reliable ice-core observations. Minima
in '°Be are assumed to coincide with maxima in ® (see also
Figure 30) [Usoskin et al., 2001]. A 1-year lag has been added
to the '°Be-derived Ty to allow for deposition time [Beer,
2000; Heikkild et al., 2009]. Uncertainties in atmospheric
transport and ice-core dating mean there remains an approx-
imately 1-year uncertainty in the '°Be reconstructions of T,
[Beer, 2000]. Here we use two independent 19B¢ records, the
Dye3 [Beer et al., 1990] and NGRIP [Berggren et al., 2009]
ice cores, more than 1000 km apart. We note that '*C mea-
sured in annual tree rings [Stuiver and Quay, 1980] cannot be
used in this study as it is unable to resolve individual solar
cycles or their exact phase, due to the attenuation and non-
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Figure 2. (a) |AT], the time between the R and ® peaks, as a function of sunspot number. Black symbols show OSF model
estimates. Dark (light) grey panel shows the region of anti-phase (transition). Red and blue lines show '°Be estimates of
|AT|. (b) Estimates of the HCS tilt for SC22 (white), SC23 (yellow) and the SC12-23 average (black). (¢) The change in
OSF over SC24 for different HCS tilts and solar cycle lengths.

linear delay of the signal caused by the global carbon cycle
[Bard et al., 1997, Usoskin and Kromer, 2005]. Ryiax and Tp
are determined from the group sunspot record [Hoyt and
Schatten, 1998]. During the Maunder Minimum, 7% is esti-
mated by the mean of different reconstructions [Usoskin et al.,
2001, Table 1, and references therein]. Sparse sunspot data
means there is likely an additional 1-year uncertainty in 7% at
these times.

[13] Blue and red lines in Figure 2 show mean |[AT] as a
function of mean Ryax using '°Be records from NGRIP and
Dye3 ice core estimates of T, respectively. Bins are set to
contain a minimum of 5 data points. There is a change in
®-Ry1ax phase relation from approximate anti-phase at Ryjax <
20, to approximately in-phase at Ry;ax > 40, in agreement with
the model prediction outlined in Section 2. We note that the
NGRIP data set was not employed by Usoskin et al. [2001], but
it also shows the inverted phase relation during the Maunder
Minimum. These results suggest the '°Be cycling during the
Maunder Minimum was a solar modulation effect.

4. Cycles 24 and 25

[14] The model is now used to investigate OSF over the
remainder of cycle 24 and cycle 25, given possible scenarios
for the sunspot number variation. The black line in Figure 3
(first row) shows the observed sunspot number over the space
age. The green line for solar cycle 24 (SC24) shows a forward
extrapolation which follows the average variation over past
cycles [Owens et al., 2011b]. The red and blue curves for
SC24 show one standard deviation above and below the aver-
age variation, respectively. For SC25, the green line shows the
assumption that SC24 will be repeated exactly, while red (blue)
shows an increase (decrease) in Ryiax of 40% compared to
SC24. Figure 3 (second row) shows the HCS inclination index
[Owens et al., 2011a], factored up by 1200 so that it has a
maximum value of 90, allowing comparison with HCS tilt
angle. The green line shows the cycle average variation [Owens
and Lockwood, 2012].

[15] The black line in Figure 3 (third row) shows the
observed OSF variation using 1-day averages of the OMNI
[King and Papitashvili, 2005] radial magnetic field. The
green/red/blue lines show the OSF model results using the
three R scenarios from Figure 3 (first row) and the HCS tilt
from Figure 3 (second row). The model is initiated at the
minimum between SC23 and SC24. The initial rise in OSF
observed in SC24 is well matched. All three curves then

show a reasonably small OSF variation over SC24. The green
and blue curves for SC24 are quite flat, not dissimilar to
SC20 and the R = 60 case in Figure 1. Interestingly, even the
lowest R estimate does not give a large drop in OSF between
cycle minima SC23/SC24 and SC24/SC25. However, in the
continued decline scenario for SC25, the OSF does then go
on to drop below the SC23 minimum, suggesting that even
for a steady fall in R through SC21 to SC25, SC24 could
form a temporary plateau in OSF. Such a stalling of the OSF
decline was not considered in the solar cycle projections of
Barnard et al. [2011].

[16] The model OSF is sensitive not only to the R variation,
but also to solar cycle length and the shape of HCS inclina-
tion variation. The black line in Figure 2b shows the mean
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Figure 3. Space age variations in solar and heliospheric
properties. From top to bottom, black lines show (first row)
sunspot number, (second row) HCS tilt angle, (third row)
unsigned open solar flux (OSF) and (fourth row) heliospheric
modulation potential (®). Green, red and blue lines show
extrapolations based upon unchanged, increasing and decreas-
ing solar magnetic field, respectively (see text). White and yel-
low lines in the bottom panel show the Dye3 and NGRIP '’Be
concentrations, respectively, linearly scaled to fit the plot axes.
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fractional OSF loss over cycles 12-23 [Owens et al., 2011b],
converted to an equivalent HCS tilt. White and yellow lines
show the HCS inclination for SC22 and SC23, respectively,
converted to HCS tilt angle [Owens et al., 2011a]. The curves
have been normalised, so the integrated fractional OSF loss
over each cycle is equal, but the solar cycle phase at which OSF
loss occurs is also important. Assuming the mean R variation
for SC24, Figure 2¢ shows the change in OSF between the ends
of SC23 and SC24 as a function of solar cycle length and HCS
tilt. In all cases longer cycles result in lower OSF, though the
magnitude of this effect depends on the form of the HCS var-
iation. The ordering of the yellow, black and white lines show
that an elevated HCS during the declining phase of the solar
cycle is key to reducing OSF over a solar cycle. Indeed, the
large drop in OSF from the end of SC22 to the end of SC23 can
be largely attributed to the high HCS inclination through the
protracted declining phase of SC23.

[17] Returning to Figure 3 (third row), the red line shows the
increasing sunspot number scenario for SC25. The increase in
sunspot number between SC24 and SC25 is similar to that in
SC20 and SC21: After a flat OSF in SC20 and SC24, both
SC21 and SC25 show a slight OSF increase early in the cycle,
before a more pronounced increase late in the cycle.

[18] Finally, the black line in Figure 3 (fourth row) shows
the neutron-monitor derived heliospheric modulation poten-
tial [Usoskin et al., 2005] in black. The red, green and blue
lines show ® estimated from the model OSF and cyclic HCS
tilt angle. The white and yellow lines show '°Be concentra-
tion from the Dye3 and NGRIP ice cores, scaled to fit on the
same axis, which as expected are in anti-phase with ®. The
blue,green and red lines are in reasonable agreement with the
predictions of Barnard et al. [2011] for probabilities of ®
exceeding the given value of P[> ®] = 15%, 50% and 85%.
Given that the red and blue lines are for 1o deviation from the
average prediction of R, the continuity modelling presented
here is in general agreement with the trends that Barnard
et al. [2011] derived from a super-posed epoch analysis of
the ends of grand solar maxima.

5. Discussion and Conclusions

[19] A continuity model of open solar flux (OSF) was used
to investigate the heliospheric modulation potential, ®, dur-
ing varying solar magnetic field conditions, in particular
during grand solar minima. Sunspot number, R, is used as a
proxy for the OSF production rate. During strong cycles (i.e.,
high peak R), both ® and R vary closely in phase. However,
for weakening cycles (i.e., decreasing peak R), OSF and ®
first go through a transition phase, wherein neither parameter
shows much of solar cycle variation, before emerging with a
solar cycle variation that is in anti-phase with R. This is
because during times of low R, the OSF loss term, which
closely follows the heliospheric current sheet (HCS) incli-
nation, dominates over the solar cycle variation in the OSF
source.

[20] The modelled behaviour of OSF is in good agreement
with the variation of '°Be obtained from ice cores. It suggests
that '°Be cycling during the Maunder Minimum was a solar
modulation, rather than a local climate effect, as proposed by
Usoskin et al. [2001] in the absence of an appropriate model of
the heliospheric variation. As the present OSF model provides
a natural explanation for the phase change, there is no need
to invoke a speculative meteorological influence dominating
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19Be data around the Maunder Minimum. Moreover, it would
be difficult to explain the similar '°Be variability in two sites
separated by >1000 km by the action of an unspecified local
effect.

[21] In the model, the change in phase between the helio-
spheric modulation potential and sunspot maxima is a direct
result of assuming the HCS continues to cycle in the same
manner, regardless of the strength of the sunspot cycle. Thus
we suggest that the solar cycle polarity reversals where
unaffected by the relative absence of sunspots during the
Maunder Minimum. In turn, this argues that the solar
dynamo continues to cycle with an approximately 11-year
period throughout grand solar minima, but that the necessary
photospheric flux emergence takes place in flux tubes with
field too weak, or of too small a diameter, to form sunspots
[Spruit, 1977]. The presence of small flux tubes with no dark
sunspots may imply that although UV emission from the
chromosphere would be lower during grand minima (such as
the Maunder Minimum) than during grand maxima (such as
recent decades), the visible and infrared emissions from the
photosphere would actually be greater than in recent years.
During the recent long and extended solar minimum SC23/
SC24 observations by the SORCE satellite [Harder et al.,
2009] show that the decline in UV was larger than expected
but that IR and visible emissions increased. There has been
much debate about the veracity of these results but indepen-
dent ozone measurements do lend some support to them (see
discussion by Lockwood [2012]).

[22] Applying the OSF model to future variations, we note
a continued decline in solar activity over cycles 24 and 25
may not produce a steady decline in OSF. The model predicts
that even a steady decline in sunspot number may result in a
plateau in OSF during SC24, before a continued decline in
SC25 with the inverted phase relation between R and OSF.

[23] Acknowledgments. We thank T. Hoeksema of Stanford Univer-
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shop 233, “Long-term reconstructions of solar and solar wind parameters”
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