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Abstract. Numerical simulations are presented of the
ion distribution functions seen by middle-altitude space-
craft in the low-latitude boundary layer (LLBL) and
cusp regions when reconnection is, or has recently been,
taking place at the equatorial magnetopause. From the
evolution of the distribution function with time elapsed
since the ®eld line was opened, both the observed
energy/observation-time and pitch-angle/energy disper-
sions are well reproduced. Distribution functions show-
ing a mixture of magnetosheath and magnetospheric
ions, often thought to be a signature of the LLBL, are
found on newly opened ®eld lines as a natural conse-
quence of the magnetopause e�ects on the ions and their
¯ight times. In addition, it is shown that the extent of the
source region of the magnetosheath ions that are
detected by a satellite is a function of the sensitivity of
the ion instrument . If the instrument one-count level is
high (and/or solar-wind densities are low), the cusp ion
precipitation detected comes from a localised region of
the mid-latitude magnetopause (around the magnetic
cusp), even though the reconnection takes place at the
equatorial magnetopause. However, if the instrument
sensitivity is high enough, then ions injected from a large
segment of the dayside magnetosphere (in the relevant
hemisphere) will be detected in the cusp. Ion precipita-
tion classed as LLBL is shown to arise from the low-
latitude magnetopause, irrespective of the instrument
sensitivity. Adoption of threshold ¯ux de®nitions has
the same e�ect as instrument sensitivity in arti®cially
restricting the apparent source region.
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1 Introduction

Recently. two complementary models of the precipita-
tion of magnetosheath ions into the dayside auroral

ionosphere have been developed and have successfully
reproduced the energy-latitude dispersion plume of ions
spanning the precipitation regions classed cusp, mantle
and polar cap. These models are based on the open
magnetosphere theory in which the plasma gains entry
to the magnetosphere by ¯owing along newly-opened
®eld lines produced by magnetopause reconnection. The
model of Onsager et al. (1993) employs ®xed, steady-
state distributions of magnetic and electric ®eld through-
out the dayside magnetosphere to evaluate the trajecto-
ries of the ions. The model developed by Lockwood and
Smith (1994), Lockwood (1995a) and Lockwood and
Davis (1996) is based on the same general principles but
is di�erent in a number of details. One of the more
fundamental di�erences from the Onsager et al. model is
that the spatial distribution of electric and magnetic
®elds does not need to be speci®ed. Instead, it is assumed
that the frozen-in theorem and E á B = 0 apply every-
where away from the reconnection site and the precip-
itation is studied as a function of the time elapsed since
the reconnection of the ®eld line onto which it is frozen.
This is done by solving the tangential stress balance on
newly opened ®eld lines to evaluate how they evolve
over the magnetopause. A major advantage of the
model by Lockwood and co-workers is that it can
readily be used to study time-varying situations like
pulsed reconnection: an important disadvantage is that
non-ideal-MHD e�ects (such as gradient-B and curva-
ture drifts of the more energetic particles) cannot easily
be included.

A key part of the identi®cation of the low-latitude
boundary layer (LLBL) precipitation is the presence of
both magnetosheath-like and magnetosphere-like ion
populations. In this respect, the presence of energetic
magnetosphere-like ions, at energies above those of the
ions from the magnetosheath, is a crucial de®ning
feature of the LLBL (Woch and Lundin, 1993) and is
usually interpreted as showing that the LLBL ®eld lines
are closed. However, Lockwood (1997) has recently
argued that the open magnetosphere theory provides an
explanation not only of the LLBL ion precipitation, but

Ann. Geophysicae 15, 1501±1514 (1997) Ó EGS ± Springer-Verlag 1997



also of any dayside boundary plasma sheet (BPS), with
both being on open ®eld lines. The open-closed ®eld line
boundary is inferred to be equatorwards of the BPS (or
void if ¯uxes are low or di�cult to classify), close to the
poleward edge of the central plasma sheet (CPS). The
locations where all these classes of precipitation are
typically found have been surveyed statistically by
Newell and Meng (1992).

The velocity ®lter e�ect on injected magnetosheath
ions was ®rst discussed by Rosenbauer et al. (1975).
These authors considered the trajectories of ions of
di�erent energies and pitch angles from a single point on
the magnetopause in the presence of the large-scale
dawn-to-dusk electric ®eld which gives convection of
plasma and magnetic ¯ux from the dayside magneto-
sphere into the tail lobe. In particular, they provided an
explanation of upgoing magnetosheath ions, seen by
mid-altitude satellites in the mantle region of the
magnetosphere, in terms of ions entering through the
cusp region and mirroring at low altitudes in the
converging geomagnetic ®eld lines. The lower-energy
ions are swept further towards the tail lobe by the ®eld-
perpendicular convection because they have lower ®eld-
aligned velocities and thus longer ¯ight times (from the
magnetopause down to the mirror point and then back
up to the satellite). There are two competing pitch-angle
e�ects on the ¯ight time: higher pitch-angle ions have
lower ®eld-parallel velocities than more ®eld-aligned
ions of the same energy; however, the mirror point for
smaller pitch angles is further below the satellite, making
the path travelled longer.

Rei� et al. (1977) used the velocity ®lter concept to
show that the energy-latitude dispersion of magneto-
sheath ions seen at low altitudes in the topside
ionosphere was also due to the e�ect of ion ¯ight times
in a convecting magnetosphere. Hill and Rei� (1977)
also showed that the ion ¯uxes at the high-energy end of
this dispersion ramp were at higher energies than in the
magnetosheath, providing evidence that they were
associated with the accelerated ion ¯ows seen at the
dayside magnetopause (see review by Cowley, 1982).
The highest-energy ions are found at the equatorward
edge of the dispersion ramp for southward IMF, but at
the poleward edge for northward IMF (Woch and
Lundin, 1992).

The fact that the velocity ®lter e�ect is seen in the ion
dispersion is consistent with the ions, in the main,
undergoing adiabatic, scatter-free motion from the
magnetopause to the satellite. This being the case, an
ion's magnetic moment is conserved so that its pitch
angles at its magnetopause source, at a distance z along
the ®eld line from the magnetopause, and at the satellite
(respectively, am, a(z) and as) are related by:

sin2 am=Bm � sin2 a�z�=B�z� � sin2 as=Bs; �1�
where Bm, B(z) and Bs are the corresponding magnetic
®eld intensities at these three locations. Using order-of-
magnitude estimates of Bs � 5� 10ÿ5 T (for a low-
altitude satellite, geocentric distance, r �1 RE) and
Bm = 50 nT, and noting that ions with mirror points

at or below the satellite have as < 90°, Eq. (1) shows
that only the ions close to ®eld-aligned at the
magnetopause (am< 2°) will reach satellites in the
topside ionosphere.

However, at higher altitudes (and we here use a
typical r of 4 RE), the lower Bs (� 200 nT) means that a
larger angular slice of the distribution function at the
dayside magnetopause (am up to about 30°) can be
detected. The ion velocity along the ®eld line is (2E/m)1/2

´ cos a(z), where E is the (conserved) ion energy and m
is its mass. From Eq. (1) the time of ¯ight T, along the
®eld-aligned distance of s from the magnetopause to the
satellite, is therefore (Burch et al., 1986):

T � �m=2E�1=2
Z s

o
f1ÿ sin2 asB�z�=Bsgÿ1=2 dz: �2�

Note that in general, the solution of Eq. (2) requires
knowledge of the ®eld B(z) at all z from the magne-
topause between zero and s: however, this is not true in
the special case of purely ®eld-aligned ions for which as
is zero, and Eq. (2) reduces to T = s(m/2E)1/2.
Equation (2) shows that ions observed at larger pitch
angles, as, have a longer time-of-¯ight at a given
energy; conversely, for ions to have the same time of
¯ight, higher energies are required at larger pitch
angles. If we consider a point magnetopause source,
the ions which are swept the same amount downstream
by the convection electric ®eld will all share the same
¯ight time, T, and so those seen together at the satellite
must have higher energies E at higher pitch angles, as.
On an ion spectrogram, in which ion ¯ux is contoured
as a function of energy and observation time, the ions
will form a characteristic V-shape as the satellite spins
and repetitively samples the full range of as. These ``ion
Vs'' are observed by mid-altitude satellites in the
LLBL/cusp region (e.g. Burch et al., 1982, 1985; Woch
and Lundin, 1992; Kremser et al., 1995). This has
therefore been interpreted as showing that the LLBL/
cusp ions come from a relatively narrow source region.
A spread in source locations would allow a range of T
to be sampled simultaneously and so introduce a range
of ion energies at any one pitch angle (which is
equivalent to a spread of pitch angles at any one
energy), i.e. it gives width to the ion Vs. From these
ideas, Menietti and Burch (1988) used the width of the
ion Vs to deduce that the source region was only about
1 RE in extent.

On the other hand, Lockwood and Smith (1993) have
argued that the spread of the ion energies seen in cusp at
low altitudes reveals that the magnetopause source
region of these magnetosheath ions must be of order 10±
20 RE in extent. This is consistent with the open
magnetosphere theory in which plasma streams contin-
uously across the magnetopause at all times for which
the ®eld line is open. At times when the ®eld line threads
the dayside magnetopause, ions crossing the boundary
are accelerated such that they acquire large ®eld-aligned
velocities towards the Earth as the ®eld lines contract
Earthwards. The contrasts with later times, when the
®eld lines thread the boundary in the mantle region (the
magnetopause edge of the tail lobe) where the ions
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crossing the boundary are decelerated and ¯ow towards
the tail as the ®eld lines are stretched in the tail lobe [see
discussion by Cowley et al. (1991) and Lockwood
(1995a, b)]. Thus, at larger elapsed times since recon-
nection, most of the injected sheath ions do not
precipitate down to the inner magnetosphere (and so,
in the main, they reach neither low nor middle altitudes);
rather, they mainly ¯ow antisunwards into the tail lobe.
In addition, the density and temperature of the source
magnetosheath population is highest on the dayside, but
decreases with distance away from the nose of the
magnetosphere (Spreiter et al., 1966). As a result, the
high-¯ux cusp precipitation evolves into the lower-¯ux,
lower-energy mantle precipitation and, later, into the
almost non-existent polar-cap ion precipitation. These
e�ects mean that, although the ions continue to ¯ow
across the magnetopause as the newly opened ®eld line
evolves into the tail lobe, they cease to be a source of
high ¯uxes in the inner magnetosphere. These e�ects can
act to restrict the e�ective source region for the ions in
the ionospheric cusp region to 10±20 RE, though they
would not be consistent with the smaller (�1 RE) extents
derived from the ion Vs.

In this paper, we investigate whether the open
magnetosphere theory is indeed consistent with the
observed ion Vs and discuss the size of the source
region. In Sect. 2 we extend the modelling of Lockwood
(1995a) to cover all pitch angles sampled by satellites at
mid-altitudes. In addition, we include the acceleration of
magnetospheric ions at the magnetopause, via the
mechanism proposed by Lockwood et al. (1996). The
results are discussed in Sect. 3 and compared with
observations. In Sect. 4 we show that the geometric
factor and sensitivity of the ion detector determines how
extensive the source region is inferred to be and also
discuss the role of ¯ux thresholds employed in de®ni-
tions of the precipitation class.

2 The model

The model used is a development of that described and
employed by Lockwood (1995a) to investigate the
dispersion of injected sheath ions in the (open) LLBL/
cusp/mantle/polar-cap dispersion plume. This model
was developed from the theory presented by Lockwood
and Smith (1994) and has been used by Lockwood and
Davis (1996) successfully to predict the observed ion
precipitation signatures (in spectrogram format) for
various low-altitude satellite passes with pulsed magne-
topause reconnection. The model combines ®ve key
elements: (1) gas dynamic predictions of the morphology
of the magnetosheath near the magnetopause boundary
(Spreiter et al., 1966); (2) the method for determining the
evolution of newly opened ®eld lines over the magne-
topause of Cowley and Owen (1989); (3) the theory of
the interactions of ions with the magnetopause current
sheet by Cowley (1982), recently extended to cover
another magnetopause AlfveÂ n wave by Lockwood et al.
(1996); (4) the velocity ®lter e�ect of ion ¯ight times,
originally invoked by Rosenbauer et al. (1975); and (5)

Liouville's theorem of the conservation of phase space
density for a dynamical processes (e.g. Elliott, 1993).

The starting point of the model is the method to
compute how newly opened ®eld lines evolve over the
dayside magnetopause, away from the reconnection site,
using the stress-balance concepts introduced by Cowley
and Owen (1989). This is achieved using a gas-dynamic
model of the boundary-tangential magnetosheath bulk
¯ow over the boundary (Spreiter et al., 1966) and an
input draped magnetosheath ®eld orientation (as a
function of position), as speci®ed by Lockwood (1995a).
(Note that this draped sheath ®eld determines the spatial
distribution of the boundary-normal ®eld, Bn, at the
magnetopause, which is therefore e�ectively an input to
the model and not self-consistently computed). Appli-
cation of the algorithm of Cowley and Owen (1989)
yields not only the location where each newly opened
®eld line threads the boundary (here referred to gener-
ically as the point Pn) as a function of time elapsed since
reconnection, but also gives the ®eld-line speed over the
boundary (the de Ho�man-Teller velocity) at each Pn
(de Ho�man and Teller, 1950). We de®ne the distance
along the magnetopause (along the locus of the points
where the convecting ®eld line threads the boundary)
from the reconnection site to the point Pn to be dn and
the time taken for the open ®eld line to reach Pn to be tn.
The Spreiter et al. gas-dynamic model is used to give the
ion gas density and temperature at each Pn, and the
theory of Cowley (1982) is used with the de Ho�man-
Teller velocity to compute the distribution function of
the ions injected by ¯owing along the newly opened ®eld
lines across the magnetopause at each Pn. This theory of
the ion acceleration is a vital part of both this model and
that by Onsager et al. (1993): its application and its
veri®cation in ion observations from the magnetopause
have been discussed by Lockwood (1995a). In order to
apply the theory, the angle /(tn) that the magnetospher-
ic part of the open ®eld line makes with the boundary
must be known. This was determined from the boun-
dary normal ®eld at Pn , Bn (as just discussed), and the
magnitude of the interior ®eld Bsp, taken from a
Tsyganenko T87 model in a way described in the
following (/ = sin)1[Bn/Bsp]).

The next element of the model is to compute the time
of ¯ight, T, of the ions from each Pn to the altitude of
the satellite (in this paper we consider a satellite at a
geocentric distance of r = 4 RE). In the previous work,
this was restricted to ®eld-parallel ions for ease of
computation (one major complication introduced in the
following is to consider ions at other pitch angles): to
compute T, Lockwood (1995a) employed the Tsyganen-
ko T87 magnetic ®eld model to give an estimate of the
®eld-aligned distance s from each Pn to the altitude of
the satellite. The T87 model contains no systematic open
¯ux and thus ®eld lines do not thread the magnetopause
in the way required to de®ne the Pn. In order to simulate
the open magnetosphere, an arti®cial magnetopause was
introduced just inside the main magnetopause current
sheet implied by the model. This gave not only an
estimate the required distance s, but also the estimate of
the ®eld strength just inside the boundary, Bsp, which
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was used to compute the angle /. With knowledge of
their time of ¯ight we can, for every time elapsed since
reconnection, evaluate when and where any ions ob-
served by the satellite were injected across the magne-
topause. We here use the same notation as Lockwood
(1995a), in which the time elapsed since reconnection is
ts ÿ to (ts is the time of observation at the satellite and to
is the time that the ®eld line was opened). The point of
entry of every particle is known because

ts � to � tn � T ; �3�
and so for a known (ts ÿ to) and T, the time tn can be
evaluated and, as already described, dn is known. From
the distribution functions computed by the Cowley
theory at each Pn, we know the phase space density of
the ions of the energy E corresponding to the ¯ight time
T. Because the ion motion considered is adiabatic
(E á B = 0 in ideal MHD so ®eld-parallel electric ®elds
are neglected) and scatter free, both the ion energy and,
by Liouville's theorem, the phase space density are
conserved in travelling from Pn to the satellite. Thus the
distribution function f (E, as) of the ions at the satellite
can be computed, as a function of time elapsed since
reconnection (ts ÿ to). The location of the source point
on the magnetopause Pn (quanti®ed by the distance dn)
of the ions seen at any one position in phase space (E, as)
at that (ts ÿ to) is also known.

As already mentioned, we here extend the modelling
of Lockwood (1995a) to allow for pitch angles other
than zero. Equation (2) shows that in order to evaluate
the time of ¯ight T for a given ion energy E we need not
only the distance s, but also the variation of the
magnetic ®eld strength B along the ®eld line along the
distance s. This is also taken from the Tsyganenko T87
magnetic ®eld model.

The model used here also includes the e�ect of
acceleration of magnetospheric ions by re¯ection o�
both of the two AlfveÂ n waves launched by the recon-
nection site. This concept is a generalisation of the
Cowley (1982) theory and was used by Lockwood et al.
(1996) to model the highest-energy ions of an observed
ion dispersion plume reported by Newell et al. (1991a).
A second observed example, reported by Moen et al.
(1996), was also successfully explained using this theory
(Lockwood and Moen, 1996). The basic concept is
illustrated in Fig. 1. This schematic shows three newly
opened ®eld lines emanating from a reconnection site,
X; the ®eld line passing through X makes up the two
magnetic separatrices (s) and is for a (ts ÿ to) of zero; the
other two ®eld lines are for larger (ts ÿ to). The recon-
nection site, X, launches two AlfveÂ n waves (also called
intermediate mode or rotational discontinuity, RD)
shown by the dashed lines: the interior wave, i, stands in
the in¯ow to the reconnecting boundary on the magne-
tospheric side, the exterior wave, e, stands in the in¯ow
from the magnetosheath side. In the sense that the
majority of the ®eld rotation takes place at it, e is the
magnetopause. In this simpli®ed view of the reconnect-
ing magnetopause, all of the ®eld rotation takes place at
these two AlfveÂ n waves and, because the AlfveÂ n speed is
much greater on the magnetospheric side of the boun-

dary (owing to the lower plasma density), the ®eld kink
at the interior wave moves at a speed Vi which is
considerably greater than that of the kink at the exterior
wave, Ve. It should be noted that MHD theories suggest
a more complex structure than is proposed here (e.g.
Biernat et al., 1989), including a fast wave, an interme-
diate shock and a slow expansion wave on the magne-
tosheath side of the reconnection layer, and a fast wave,
AlfveÂ n wave and slow shock on the magnetospheric side:
the two sides being separated by a contact discontinuity.
Although such structure is reproduced in MHD simu-
lations, it is not found in hybrid simulations, which yield
the simpler picture of a mixing of the two plasmas in an
open LLBL which is bounded by two AlfveÂ n waves (Lin
and Lee, 1993). The attraction of these hybrid simula-
tions (for the work presented here) is that they also
reproduce the ion distribution functions seen near the
magnetopause, as predicted by Cowley (1982) and
observed by Gosling et al. (1990), Fuselier et al.
(1991) and Smith and Rodgers (1991). An important
part of Cowley's predictions is that ions incident on an
RD are either transmitted through it or re¯ected o� it.
The hybrid simulations by Chapman and Moukis
(1996) show that this occurs because ions fall into a
potential well at the centre of the RD and emerge (with
the same energy and pitch angle) on one or other side,
depending on their initial gyrophase. Thus a fraction r
of incident ions at a certain point in (V^, Vi ) velocity
space are re¯ected while the remaining fraction (1)r) are
transmitted. Chapman and Moukis also show that this
does not occur in ideal MHD simulations. This behav-
iour is almost exactly as assumed by Cowley (1982)
when he made his predictions.

Figure 1 shows the bulk motion of the relevant ion
populations in the frame of the Earth. The magneto-
sheath population adjacent to the boundary is shown
¯owing away from the X-line, but because its speed is
considerably slower than Ve, it is e�ectively being
overtaken by the ®eld-line kink and will be incident

Fig. 1. Schematic of the open LLBL emanating from a magnetopause
reconnection site, X. The magnetic separatrices s are the locations of
the ®eld lines at time elapsed since reconnection (ts ÿ to) = 0: newly
opened ®eld lines are also shown for two later (ts ÿ to). The exterior
and interior AlfveÂ n waves (launched by the reconnection site into the
magnetosheath and magnetosphere in¯ow regions) are e and i, along
which the kinks in the newly opened ®eld lines evolve at speedsVe and
Vi. The bulk motions (in the Earth's frame of reference) of various ion
populations discussed in the text are shown with broad arrows.
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upon the boundary e. This results in the magnetosheath
plasma motion in the ®eld line rest frame (the de
Ho�man-Teller frame) being purely ®eld aligned and
towards the RD at the local AlfveÂ n speed, VAsh , i.e. the
WhaleÂ n relation holds (Cowley and Owen, 1989). This
population is therefore labelled i-sh (i for incident, sh for
sheath origin). Some of this i-sh population will pass
through the magnetopause to form the t-sh population
(t for transmitted) which near the X-line moves Earth-
wards with a bulk ¯ow speed of about (Ve+VAsh) in the
Earth's frame. Lockwood (1995a, b) has discussed how
this velocity and the t-sh ion population subsequently
evolves with the distance dn. The changes occur for three
reasons: ®rstly, the ®eld line accelerates away from the
reconnection site towards the tail lobe; secondly the ion
acceleration decays as the ®eld line straightens (specif-
ically, the angle / that the magnetospheric arm of the
®eld line makes with the magnetopause increases);
thirdly, the characteristics of the magnetosheath source
plasma change with dn. On the magnetospheric side of
the boundary, the ion population, sp, is at rest in the
Earth's frame and thus the interior kink of the newly-
opened ®eld lines will engulf it at speed Vi, which will be
the local (interior) AlfveÂ n speed, VAsp(i.e, as at the
exterior RD, the WhaleÂ n relation holds). On interaction
with the wave i, any sp ions re¯ected move away from
the boundary and towards Earth with bulk ¯ow speed of
about 2VAsp (these re¯ected ions are referred to ri-sp: ri
for re¯ected o� the interior wave and sp for magneto-
sphere in origin). Note however, that the ri-sp popula-
tion can only be seen from the magnetospheric side of i ,
so at low altitudes they should only found equatorward
of the interior wave. Most sp ions will pass through i
and some of these will be re¯ected o� e to give a
population termed re-sp, which near the X-line has an
Earthward bulk ¯ow speed of about 2Ve. The re-sp
population will evolve with (ts ÿ to) for three reasons.
The ®rst two reasons are the same as for the t-sh
population, namely the de Ho�man-Teller velocity
changes as the ®eld line accelerates, and acceleration
decays as the ®eld line straightens. The third reason is
that the source sp ions are progressively lost by
interaction with the magnetopause. Once the ®eld line
is opened a loss of sp ions commences, either because
they are re¯ected o� the magnetopause to become re-sp
or ri-sp ions, or because they are transmitted through it
into the magnetosheath. At any one (ts ÿ to) > 0, the sp
ions which remain are those which have not had time to
interact with the open magnetopause: they have a half-
bounce time-of-¯ight (from the reconnection site down
to a mirror point and back up to the magnetopause)
which is greater than (ts ÿ to).

Applying the theory of Cowley (1982) to each of
these populations, the model generates the total ion
distribution functions at each Pn in the open LLBL: in
the example shown in Fig. 2, Pn is in the immediate
vicinity of a subsolar reconnection site (i.e. dn and tn are
nearly zero in this example). These plots show the phase
space density, f, colour coded as a function of the ®eld-
perpendicular and ®eld-parallel ion velocities (in the
Earth's frame of reference and positive towards the

Earth). The upper plot is for the part of the open LLBL
that is between the interior wave i and the ion edge
(which is closer to the separatrix s in Fig. 1). On the
other hand, the lower plot is for within the open LLBL
and between the two waves i and e. The input
parameters to the model are derived to give the same
conditions at the reconnection site (at the nose of the
magnetosphere) as were deduced from observations in
the low-altitude cusp region by Lockwood et al. (1994,
1996): they are listed in full in Table 1. Note that many
of the parameters are not ®xed by the theory or
simulations discussed here (for example the re¯ection
coe�cients ri and re) and values used are simply those
that give the best ®ts to the data. The ri-sp ions can only
be seen in the upper plot and appear at the highest
Earthward ®eld-aligned velocities. The main peak in f
shows the characteristic D-shaped distribution of the t-
sh population, as predicted by Cowley (1982) and as has
been observed in a number of studies (Gosling et al.,
1990; Fuselier et al., 1991; Smith and Rodgers, 1991)
and produced in the hybrid simulations of Lin and Lee
(1993). The population centred on the origin is the
initial, isotropic sp population (usually called the central
plasma sheet, CPS). Figure 3 gives the spectra of the
®eld-aligned ions (am = 0) of the various components of
the total distribution function shown in Fig. 2a. Figure 3
is in the form of a log-log plot of the di�erential energy
¯ux, JE, as a function of the energy, E. The t-sh, sp, re-
sp and ri-sp populations are labelled. Note that in this
paper, we make predictions of the phase space density, f,
the di�erential number ¯ux (sometimes referred to as the
intensity), J, and the di�erential energy ¯ux, JE: at any
one energy, E, these are related by:

JE � f �2=m2�E2 � J E: �4�
Figure 4a shows an example set of ¯ight times of all the
ions injected/accelerated at this Pn, in the immediate
vicinity of the X-line (dn » 0), to a mid-altitude satellite at
a geocentric distance of r = 4 RE. These are computed
from the magnetic ®eld model, using Eq. (2). The time of
¯ight, T, is colour coded on a logarithmic scale as a
function of the ®eld-perpendicular and ®eld-parallel ion
velocities of the ions when they reach the satellite. The
¯ight times can be used in the way described to
determine the distribution function f(E,as) at a given
elapsed time since reconnection (ts ÿ to).

3 Results

3.1 Distribution functions

Parts b-f of Fig. 4 show a set distribution functions
generated in the manner described in the previous
section and using the model inputs listed in Table 1. The
sequence shows how the distribution function evolves
with increasing elapsed time since reconnection, (ts ÿ to).
From the preceding discussion of the model, it should be
remembered that this evolution is caused by a convo-
lution of three factors: the spatial variation of the ion
gas in the magnetosheath, the e�ects of the motion of
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the ®eld line tailward and the time of ¯ight of the ions
from the magnetopause to the satellite.

In Fig. 4b, (ts ÿ to) = 75 s and two ion populations
can be seen. The lower-energy population is a loss-cone
distribution of the sp ions (i.e. CPS) which were present
on closed ®eld lines (ts ÿ to < 0) and have yet to be
in¯uenced by the fact that the ®eld line has been opened.
Note that it has been assumed here that equatorial
scattering has ®lled the loss cone corresponding to
mirror points in the opposite hemisphere; however, this
assumption was not necessary and a double loss cone
distribution could equally well have been used. At the
satellite, the loss of sp ions is ®rst noted at the highest
energies as the lowest ¯ight time sp ions fail to arrive: for

(ts ÿ to) as low as 75 s, only loss of ions with T <
(ts ÿ to) = 75 s could be noted and the ¯uxes of such
ions in the sp population is negligibly small. The
boundary in (V^, Vi) phase space de®ned by
T = (ts ÿ to) is here called the time-of-¯ight cut-o�.
Below this cut-o� only the sp ions from the closed ®eld-
line region can be seen, above it only the populations
generated by the open magnetopause (t-sh, re-sp and ri-
sp) can be found. For reference with Fig. 3, the lower
cut-o� energy of ®eld-aligned ions is given by:

Eic�as � O� � �m=2�fsx=�ts ÿ to�g2; �5�
where sx is the distance along the ®eld line from the X-
line to the altitude of the satellite, which is here 23.5 RE.
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Fig. 2. Ion distribution functions in the open
LLBL in the immediate vicinity of the recon-
nection X-line (dn » 0, tn » 0). The parallel
velocity is positive towards the Earth and is in
the Earth's frame of reference: (top) between
the interior wave (i in Fig. 1) and the ion edge
which is closer to the separatrix s; (bottom)
between the exterior and interior waves
(e and i)
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For Fig. 4b, Eic is 2.08 ´ 104 eV (in Fig. 3, log10(Eic) is
4.32).

In addition to the sp population in Fig. 4b, a second
higher-energy population forming a ``halo'' has ap-
peared which is not seen on closed ®eld lines. These are
only seen above the time-of-¯ight cut-o� and Fig. 3
shows that for log10(Eic) > 4.32 the dominant ions are
ri-sp. Thus the halo is caused by ri-sp ions reaching the

satellite. Note that somewhat lower energies have
reached the satellite at as = 0 than for larger pitch
angles, in accordance with Eq. (2). This population has
developed further in Fig. 4c which is for (ts ÿ to)
= 100 s (Eic = 1.17 ´ 104 eV; log10(Eic ) = 4.07), as
lower energy ri-sp and re-sp ions have had time to reach
the satellite. At a (ts ÿ to) shortly after this, the (appar-
ent) gap between the t-sh and re-sp/ri-sp populations
disappears. Lockwood (1997) argues that the ion pop-
ulations in Fig. 4b and c would qualify them as a BPS
precipitation.

Figure 4d is for (ts ÿ to) = 200 s (Eic = 2.93 ´ 103

eV; log10(Eic) = 3.47), when substantial changes have
taken place. Firstly, the interior AlfveÂ n wave has passed
over the satellite, which can therefore no longer detect
any ri-sp ions. This means that the re-sp population is
revealed at the highest energies. In addition, the time-of-
¯ight cut-o� has moved down to still lower values and
Fig. 3 shows that for this Eic, t-sh ions will dominate just
above the time-of-¯ight cut-o� (giving phase-space
densities of over 1011 m)6 s3 , shown in red in Fig. 4d).
The sp ions at energies above the time-of-¯ight cut-o�
(ions with T > ts ÿ to) have been lost, but this loss is
masked by the presence of the t-sh and re-sp ions. The
dashed line in Fig. 5 shows the spectrum of ®eld-aligned
ions at the satellite at this (ts ÿ to), shown here as the
di�erential number ¯ux, J, and as a function of energy
on a log-log scale. The presence of the re-sp ions at high
energies means that the satellite observing a ®eld line of
this (ts ÿ to) would classed as being in the LLBL (Woch
and Lundin, 1993).

At (ts ÿ to) = 300 s (Fig. 4e), the time-of-¯ight cut-
o� has moved to yet lower velocities (Eic = 1.30 ´ 103

eV; log10(Eic) = 3.11), below which sp ions are seen, but
above which t-sh ions and a few remnant re-sp ions are
seen. The population is now like that seen in the
magnetosheath so that it is classed as cusp or cusp
proper. Lastly, for (ts ÿ to) = 500 s (Eic = 468 eV;
log10(Eic ) = 2.67), Fig. 4f shows that the re-sp ions
are almost all gone and the lower cut-o� energy of the t-
sh population has moved to yet lower values. This
precipitation is also classed as cusp. This is con®rmed by
the di�erential number ¯ux spectrum of ®eld-parallel
ions, shown by the solid line in Fig. 5. [Compare with,
for example, the cusp spectra in Figs. 1 and 2 of Woch
and Lundin (1992)]. As the ¯ux is approaching the lower
limit for the cusp classi®cation, this case is quite close to
the boundary of the cusp and mantle precipitation
regions (Newell et al., 1991b).

Comparison of Fig. 5 with the cusp and LLBL
spectra presented in Fig. 1 of Woch and Lundin (1992)
shows that the model is able to reproduce the important
features of both the cusp and the LLBL precipitations.
Note that the model predictions presented here di�er
from the observed examples at low energies (10 eV±1
keV); this is because the observed CPS population
contains a low-energy ionospheric component (cf. Fig. 2
of Woch and Lundin, 1993), which is not included in
Fig. 5: for simplicity, the sp population used in the
model was a single Maxwellian. The model also explains
the evolution of the LLBL spectrum into that of the

Table 1. Input parameters to the model

parameter value

solar-wind density, Nsw 5.67 ´ 106 m)3

solar-wind temperature, Tsw 2.09 ´ 105 K
solar-wind Mach number, Msw 8
polytropic index, c 5/3
stand-o� distance of magnetospheric
nose, dm

12 RE

GSE (X,Y,Z) co-ordinates of
reconnection site

(12 RE, 0, 0)

®eld-aligned distance from reconnection
site to satellite height, sx

23.5 RE

mean magnetospheric CPS (sp) ion mass 1 a.m.u.
mean solar wind ion mass 1 a.m.u.
solar-wind speed, Vsw 500 km s)1

density of magnetospheric CPS ions, Nsp 0.4 ´ 106 m)3

temperature of magnetospheric CPS ions, Tsp 1.4 ´ 107 K
AlfveÂ n speed at interior RD, VAsp 600 km s)1

AlfveÂ n speed at exterior RD, VAsh 170 km s)1

fraction of CPS ions re¯ected o� the
interior RD, ri

0.1

fraction of sheath ions transmitted
through the exterior RD, te

0.5

fraction of sp ions re¯ected o� the
exterior RD, re

0.4

heating factor of sp ions at the
interior RD, hi

1.3

heating factor of i-sh and sp ions
at the exterior RD, he

1.5
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Fig. 3. The spectra of ®eld-aligned ions (pitch angle, am = 0) in the
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cusp, for example as revealed by the sequence shown in
Fig. 2 of Woch and Lundin (1992).

In cases such as that for (ts ÿ to) = 200 s, the
magnetospheric (sp) ions below the cut-o� appear to
belong to the same population as those magnetospheric
ions that have been re¯ected o� the exterior wave (re-sp)

and that are seen at energies above where transmitted
sheath (t-sh) ions dominate: these two populations (sp
and re-sp) could therefore be ®tted with a single
Maxwellian (of higher temperature and density than
the sp population ± cf. Fig. 3). This point is demon-
strated in Fig. 6, in which the J(E) spectrum for
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Fig. 4a. Ion ¯ight time from a point Pn on the magnetopause to the
altitude of satellite, T, colour coded (on a logarithmic scale) as a
function of the ®eld-parallel and ®eld-perpendicular ion velocities at
the satellite. In this example, Pn is at the (subsolar) reconnection site

(dn = 0, tn = 0). b±f Ion distribution functions at the satellite; the
elapsed time since reconnection (ts ÿ to) is: b 75 s; c 100 s; d 200 s; e
300 s; and f 500 s
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(ts ÿ to) = 200 s (dashed line, as in Fig. 5) is shown with
two Maxwellian spectra A and B: A is the sp population
that was input into the model (with temperature
Tsp = 1.4 ´ 107 K and density Nsp = 4 ´ 105 m)3)
whereas B is a ®t to the visible parts of the sp and re-
sp populations model (with temperature
Tsp = 2.5 ´ 107 K and density, Nsp = 8 ´ 105 m)3).
The only indication that this ®t may not be valid is the
fact that the observed ¯uxes are a bit lower at energies
just below the time-of-¯ight cut-o�, Eic. This situation
can indeed be seen in the boundary-layer spectra
presented in Fig. 1 of Woch and Lundin, (1992). Note

that the re-sp ions can appear as a continuation of the sp
ions because although only some of the sp ions are lost
at the magnetopause, those that are re¯ected are
accelerated. The slope of the sp distribution function
f(E) is steep at higher energies and so the rise in ion
energy E on re¯ection acts to increase f and so
counteracts the loss of ions by transmission through
the magnetopause.

Therefore, an important point about Fig. 4d and 6 is
that this distribution function [for (ts ÿ to) = 200 s]
appears to be a mixture of an sp population, with
magnetosheath ions added, whereas, in fact, the higher
energy ions are re-sp and not sp at all. This situation is
that expected in the LLBL, with a mixture of magne-
tosphere-like and magnetosheath-like populations seen
at the same location. The apparent presence of a full
magnetospheric population is one reason why this
LLBL is thought to be on closed ®eld lines; however,
the modelled distributions are on open ®eld lines
(ts ÿ to > 0), and the population which mimics the CPS
is in fact made up of the remnant sp population at low
energies (ions with T < ts ÿ to) with the re-sp population
at higher energies. These e�ects therefore o�er a good
explanation of sheath plasma injected onto seemingly
closedmagnetospheric ®eld lines in the LLBL: they are on
®eld lines which have been open for a time of order 200 s.

3.2 Pitch-angle dispersion

The distribution functions like those shown in Fig. 4 can
be re-plotted in a pitch angle-energy format, as often
used for satellite data. This is done here in Fig. 7. The
distribution function has been converted to di�erential
energy ¯ux using Eq. 4 because either this or count rates
are usually plotted (count rates being proportional to
di�erential energy ¯ux for a di�erential ion instrument).
In Fig. 7, the spin-angle distributions are plotted for
eight di�erent (ts ÿ to) values, as given at the top of each
panel. The di�erential energy ¯ux JE is colour coded on
a logarithmic scale as a function of the logarithm of the
ion energy, E, and the pitch angle as: in each panel the
pitch angle varies linearly from as = 180° on the left, to
as = 0 (the downward ®eld-aligned direction) at the
centre and then returns linearly to as = 180° on the
right.

In the ®rst panel of Fig. 7 (ts ÿ to � 40 s) we see
mainly the sp population which cannot be di�erentiated
from that on closed ®eld lines as the ion loss is only at
such high energies that the ¯uxes could not be detected
anyway. However, ions belonging to the ``halo'' of ri-sp
ions, as seen in Fig. 4b, could be seen at low pitch angles
by detectors if their one-count level was below (an
unrealistically low) 10)2 cm)2 s)1 sr)1. This higher-
energy population grows in ¯ux and descends in
minimum energy as (ts)to) increases giving a ``bowl-
like'' appearance on the spectrogram. By
(ts ÿ to) = 200 s, the ®rst magnetosheath ions can be
seen at the lower pitch angles and lower energies of this
bowl feature, after which the characteristic V-shaped
feature of the cusp precipitation becomes clear. This
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Fig. 6. The intensity spectrum for (ts ÿ to) = 200 s, as shown in
Fig. 5 (dashed line), compared with twoMaxwellian sp populations: A
is the input to the model with temperature Tsp = 1.4 ´ 107 K and
density,Nsp = 4 ´ 105 m)3; B is a ®t to the visible parts of the sp and
re-sp populations with temperature Tsp = 2.5 ´ 107 K and density,
Nsp = 8 ´ 105 m)3. The dominant ion population in the three parts
of the total spectrum are marked (sp at low energies, t-sh at middle
energies and re-sp at the high energies).
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development of the form from a bowl to a V was noted
by Menietti and Burch (1988). Note that at the lower
edge of the ion Vs, all ions have come from the
reconnection site because they have the lowest energy
and thus longest ¯ight time T at that pitch angle as. As a
result, this edge is not dependent on the contour level,
but this is certainly not true of the upper edge of the V.
Thus the width of the V (in energy at any one pitch
angle) depends on the sensitivity of the instrument,
speci®cally the geometric factor and the one-count level.
As a result, the extent of the source region inferred from
the V will depend on the instrument. This point is
addressed further in the next section.

Comparison of Fig. 7 with observations shows that
the model reproduces well the observed ion Vs in this
spectrogram format. For example, Fig. 7 can be com-
pared with the second panel of Fig. 2 of Kremser et al.
(1995). In making this comparison, it must be remem-
bered that Fig. 7 has not been convolved with any
instrument response characteristics and many of the
features shown will be below the one-count level. In
particular, note that the JE scale in Fig. 7 covers 12
decades, whereas the data presentation given by
Kremser et al. (1995) covers only 3.7. For this reason,
the low-¯ux features at the highest energies are not as
clear in the data as they are in this model. Nevertheless,
the data clearly reveal ions at higher energies than are
seen equatorwards of the cusp on closed ®eld lines. The
bottom panel of Fig. 2 of Kremser et al: (1995) is from a
high-energy-ion instrument which detects ions of energy
up to about 100 keV, as in Fig. 7. These high-energy
ions are observed to share the same energy/time-of-
observation dispersion ramp as the cusp ions, as is also
predicted in Fig. 7. Furthermore, from the ratios of the

¯uxes of di�erent species, Kremser et al. (1995) ®nd that
these higher-energy ions are of magnetospheric origin
and suggest that they are generated by interaction with
the magnetopause. This is con®rmed to be the mecha-
nism in the modelling presented here.

Looking closely at the spin-angle distribution for
(ts ÿ to) = 500 s, it can be seen that a minimum is
starting to form at zero pitch angle, with peaks at larger
values. This is also seen in the data presented by
Kremser et al. (1995) and represents the evolution
towards upgoing, mirrored mantle ions, as discussed by
Rosenbauer et al. (1975).

Note that in Fig. 4, 5 and 7, the magnetospheric CPS
ions (sp) are always seen at energies below the time-of-
¯ight cut-o� energy (which is de®ned by T � ts ÿ to and
so depends on the pitch angle and the time elapsed since
reconnection), whereas the injected sheath ions and
energised magnetospheric ions are simultaneously pres-
ent above this cut-o� energy. This predicted continua-
tion of sp ions at energies below the injected
magnetosheath ions is a feature of all observations of
dispersed LLBL and cusp ions, at both middle and low
altitudes.

4 Injection locations of observed cusp and LLBL ions

It is instructive to return to the debate about where the
precipitating ions seen in the cusp region were injected
across the magnetopause. As was discussed in the
introduction, Menietti and Burch (1988) used the ion
Vs modelled in Fig. 7 to derive a spread of source
locations of about 1 RE, whereas Lockwood and Smith
(1993) argued that the spread of ion energies seen in low-
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altitude data reveal ions injected over regions 10±20 RE

wide. The modelling by Onsager et al. (1993) gave
source extents which were somewhere between the two.
Lockwood and Smith (1994) and Lockwood (1997) have
discussed several reasons for these discrepancies. Men-
ietti and Burch argued from the similarity of their
estimate to the known dimensions of magnetopause ¯ux
transfer events (FTEs) that the cusp precipitation
originated in bursts of reconnection; however, Lock-
wood and Smith (1994) point out that because the ions
are largely frozen onto each newly opened ®eld line, the
distribution function seen on any one ®eld line (and thus
the width of the cusp ion V) depends on the sequence of
ions injected onto that ®eld line as a function of time,
not on what happens to other ®eld lines around it. Thus
the precipitation is determined by the evolution of each
newly opened ®eld line after reconnection and is
independent of the reconnection rate with which it was
opened. Lockwood and Smith also show that the
reconnection-rate variations, rather than restricting the
width of the dispersion signature, cause one of a number
of step-like features, as recently modelled in spectro-
gram format by Lockwood and Davis (1996).

Figure 8 shows the di�erential energy ¯ux spectrum
JE(E) at three (ts ÿ to) for ®eld-aligned ions (as = 0).
From the preceding discussion, we class that for
(ts ÿ to) = 200 s as LLBL, that for (ts ÿ to) = 300 s as
in the cusp near the cusp/LLBL boundary and that for
(ts ÿ to) = 500 s as also being in the cusp but near the
cusp/mantle border. In all three cases, the time-of-¯ight
cut-o� can be clearly de®ned: below this cut-o�, the
remnant sp ions are seen. The dotted line shows one
possible one-count level of the instrument (JE = 107

cm)2 s)1 sr)1), below which no ions would be detected.
One can see that the width (energy range) of the

population detected depends on not only on (ts ÿ to), but
also on the one-count level: the width will decrease/
increase if the threshold JE is higher/lower. A corre-
sponding decrease/increase in the energy width of the
magnetosheath-like ion precipitation feature, as detect-
ed by any one instrument, would also be caused by a
fall/rise in the solar-wind density, relative to that input
into the model to generate the results shown here (see
Table 1).

The velocity ®lter e�ect of the convection electric
®eld means that a spread in ion energies at the satellite
(at any one pitch angle) corresponds to a range of source
locations (Lockwood and Smith, 1993). The range of
detectable energies will depend on the instrument
geometric factor, which sets the one-count level (note
that because counts are proportional to di�erential
energy ¯ux JE for any one di�erential ion detector, the
threshold (one-count level) JE is independent of energy).
The spread of source locations of detected ions will
increase with higher instrument sensitivity (lower one-
count levels). This e�ect is investigated here in Fig. 9.
The ®gure shows the distances dn from the reconnection
site to the magnetopause source points (Pn) of those ions
in Fig. 8 whose ¯ux equals the one-count level. These
distances are given as a function of the value of that one-
count level. For comparison, the dotted lines in Fig. 8
and 9 give one example of a threshold JE (one-count
level) of 107 cm)2 s)1 sr)1 . The three curves shown are
for the same three values of (ts ÿ to) as in Fig. 8 and are
plotted using the same types of line. The curves in Fig. 9
mark the boundaries of the source regions of the
detected ions and so de®ne their apparent extent, as a
function of the instrument one-count level.

If we consider the LLBL spectrum in Fig. 8
(ts ÿ to � 200 s), we see that the largest JE(E, as = 0)
is about 108.5 cm)2 s)1 sr)1 and that this is at the lower
cut-o� energy, Eic = 2.93 ´ 103 eV (log10(Eic ) = 3.47).
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Fig. 8. Di�erential energy ¯ux spectra of ®eld-aligned ions (as = 0)
detected at the mid-altitude satellite at three elapsed times since
reconnection, (ts ÿ to): 200 s (LLBL), 300 s (near the LLBL-cusp
border) and 500 s (cusp). The dotted line shows an example threshold
(imposed as a classi®cation criterion or by the instrument one-count
level) of JE = 107 cm)2 s)1 sr)1

Fig. 9. The distance dn (of the magnetopause source point from the X-
line) for ions whose ¯ux JE is at a threshold level, as a function of that
level and for the three elapsed times since reconnection (ts ÿ to) used
in Fig. 8
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These ions have the largest T which, at a given (ts ÿ to),
means that they have the minimum tn [Eq. (3)] which is
zero, i.e. these ions were injected at the reconnection site
(at dn = 0). [As discussed by Lockwood (1995a, b),
there is a caveat which needs placing on this argument
when the time-of-¯ight cut-o� energy falls below the
minimum energy injected at the X-line, which is mVex

2/
2, where Vex is the value of Ve in the immediate vicinity
of the X-line; however, this only occurs at larger (ts ÿ to)
than in Fig. 8 and 9)]. As we lower the threshold in JE,
Fig. 8 shows that the low-energy limit of the detected
ions does not change and these ions still all come from
the X-line. However, ions are detected at increasingly
higher energies and these ions thus have lower T and
higher tn and dn. This can be seen in Fig. 9. For the
lowest JE threshold shown (105.7 cm)2 s)1 sr)1), the
upper dn has grown to 4 RE, i.e. the source region has
expanded to cover a region on the low-latitude magne-
topause 4 RE wide from the reconnection site. At this
(ts ÿ to) of 200 s, the ®eld line that is being observed
actually threads the boundary at a distance of 8.7 RE

from the X-line: thus if we could detect sheath ions of
zero ¯ight time (in®nite energy) this would be the limit
of the source region. This means that at this elapsed time
since reconnection, the satellite is magnetically connect-
ed to the magnetic cusp region of the mid-latitude
magnetopause (8.7 RE from the X-line) but the precip-
itation at the satellite is classed as LLBL and was
injected by ¯owing along open ®eld lines across the low-
latitude magnetopause, within a few RE of the recon-
nection site.

For (ts ÿ to) = 300 s, a very similar situation applies,
but the source region is wider. The relatively ¯at top to
the spectrum shown in Fig. 8 means that as we lower the
threshold, the source region widens very rapidly after
the ®rst detection of the ions. This can be seen in Fig. 9,
such that at JE of 10

8.5 cm)2 s)1 sr)1, the source region is
3 RE wide, and this grows to over 8 RE for 10

5.7 cm)2 s)1

sr)1. At this (ts ÿ to), the ®eld line threads the boundary
at 15.2 RE from the X-line.

However, for the case of (ts ÿ to) = 500 s, the
behaviour is signi®cantly di�erent. Fig. 8 shows that
the peak JE(E, as = 0) is not at the lower cut-o�, but is
at a higher E of around 1 keV. Thus, as we lower the
detection threshold, the ®rst ions we see are not from the
reconnection site in this case, rather they come from
near dn = 7 RE (Fig. 9). The extent of this source region
spreads rapidly about this dn until at a threshold JE of
107.9 cm)2 s)1 sr)1, the lower cut-o� ions are seen for the
®rst time: the source then extends from the X-line to dn
of 14 RE. At the left of the plot, this source range has
increased to 0±18 RE. These values are similar to those
modelled by Lockwood (1995a) and are comparable to
those inferred from observations by Lockwood and
Smith (1993). At this (ts ÿ to), the ®eld line threads the
boundary 39.5 RE. Notice, therefore, that the precipi-
tation is classed as cusp on a ®eld line that actually
threads the magnetopause so far down the tail that it
would be called part of the mantle.

The preceding discussion has been in terms of the
e�ects of instrument sensitivity on the location and

extent of the source of the ions seen. The same sort of
e�ects will be present if the di�erential energy ¯ux of the
ions is used to de®ne the precipitation classi®cation. In
other words, if one de®nes cusp as requiring ¯ux values
over a su�ciently high threshold, one will inevitably
select those ions that come from a restricted region
around the magnetic cusp.

5 Summary and conclusions

The open magnetosphere model can explain the energy/
pitch-angle dispersion of injected magnetosheath ions
seen at middle and low altitudes, as well as the energy/
observation-time dispersion.

The ion distribution function evolves as a function of
time elapsed since reconnection in a way that explains
the BPS and LLBL precipitations as being on open ®eld
lines, in addition to the cusp, mantle and polar cap. The
implications of this have been discussed by Lockwood
(1997); speci®cally, some outstanding anomalies con-
cerning the location of the precipitations with respect to
the pattern of convection can be resolved.

The distribution seen in the LLBL is a mixture of
magnetosheath ions and magnetospheric ions. However,
at energies below the time-of-¯ight cut-o� the magne-
tospheric ions are that part of the pre-existing closed-
®eld-line (CPS) population which has not yet had time
to be in¯uenced by the fact that the ®eld line has been
opened. At energies above the magnetosheath-like ions,
ions of magnetospheric origin are seen. However, these
are not part of the same population as is seen simulta-
neously at lower energies. Instead, these ions have been
re¯ected o� the magnetopause. The re¯ection coe�cient
employed here has a constant value of 0.4: this may be
rather large, although it is consistent with the magne-
topause observations of Fuselier et al. (1991). However,
these ions would be detected even if this re¯ection is
much weaker, because the ions are accelerated when
they are re¯ected. The slope of the distribution function
f(E) is very steep at the hot tail of the distribution and
thus the rise in energy E tends to increase the phase
space densities of the re¯ected ions: they can be detected
at high energies even if the re¯ection coe�cient is very
low. There is, however, no reason why these two
opposing e�ects should exactly counteract each other
and make the re-sp tail an exact continuation of the
remnant sp population. This can be seen to be true for
many examples of boundary-layer spectra (e.g. Fig. 1 of
Woch and Lundin, 1992).

The higher-energy, magnetosphere-like population
which de®nes the LLBL (the re-sp) decays away as the
®eld line evolves. This is because the ion acceleration
turns to a deceleration as the ®eld line straightens (plus,
in reality, the re¯ection coe�cient may decrease). In
addition, the source sp population is progressively lost
by interaction with the boundary. At the same time, the
time-of-¯ight cut-o� decreases with time elapsed since
reconnection, allowing the lower-energy sheath ions to
arrive. In this way the LLBL precipitation evolves into
cusp as is often observed (e.g. Newell et al., 1991a;
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Woch and Lundin, 1992). Lockwood (1997) has pointed
out that time-of-¯ight dispersion gives several severe
conceptual di�culties if one thinks of the LLBL/cusp
boundary as at the closed/open ®eld line boundary.

The precipitation classed as LLBL at middle and low
altitudes is on ®eld lines that are magnetically connected
to the mid-latitude magnetopause, i.e. which thread the
magnetic cusp. Similarly, the precipitation classed as
cusp is on ®eld lines that thread the magnetopause in the
high-latitude boundary layer (or mantle) and that
classed as BPS is magnetically connected to the low-
latitude magnetopause. This is to be expected because
the ®eld lines evolve towards the tail during the ¯ight
time of the ions.

The extent of the source region of ions of a given
classi®cation depends on the threshold set to de®ne that
precipitation class and, in some cases, may be set by the
instrument's sensitivity. A su�ciently high threshold
de®nition of cusp particles restricts the source region to
the vicinity of the magnetic cusp. However, a lower
threshold shows that the particles in fact originate from
the entire dayside magnetopause, at all latitudes down
to the reconnection site. The threshold also in¯uences
the extent of the inferred source of LLBL ions.
However, LLBL ions always arise from adjacent to the
reconnection site.
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