
Simplified estimation of ray-path
mirroring height for HF radiowaves

reflected from the ionospheric
F-region

M. Lockwood, B.Sc, Ph.D.

Indexing terms: Radiowave propagation, Ionospheric propagation

Abstract: From Milsom's equations, which describe the geometry of ray-path hops reflected from the iono-
spheric F-layer, algorithms for the simplified estimation of mirror-reflection height are developed. These allow
for hop length and the effects of variations in underlying ionisation (via the ratio of the F2- and E-layer critical
frequencies) and F2-layer peak height (via the M(3000)F2-factor). Separate algorithms are presented which are
applicable to a range of signal frequencies about the FOT and to propagation at the MUF. The accuracies and
complexities of the algorithms are compared with those inherent in the use of a procedure based on an equation
developed by Shimazaki.

List of principal symbols

a = (M(3000)r1 - 0.24) or 0.04, whichever is the
larger

B = slope of the variation of s with M(3000),~* for
r = 0.85

Bv = slope of the variation of st with M(3000)~15

for r = 1
c = intercept of linear fit to hT variation with D for

r = 0.85
Cj = intercept of linear fit to hT variation with D for

r= 1
D = ground range of a single hop
Dmax ~ maximum range for a single hop
/ = signal frequency
fe = equivalent frequency for which hT = hm at

oblique incidence
fo = critical frequency for layer
/oE = critical frequency of E-layer
/oF2 = critical frequency of F2-layer
FOT = optimum transmission frequency (= 0.85

MUF)
h' = virtual-reflection height for vertical incidence
hp = Shimazaki's estimate of hm
hm = height of layer peak
hmE = height of E-layer peak
hmF2 = height of F2-layer peak
hT = mirror-reflection height for oblique incidence
k = curved-Earth correction factor
M(D)F2 = M-factor for single hop, reflected by the F2-

layer to a range D km (= MUF//oF2)
M(3000), = M(3000)F2-factor scaled from synthesised ion-

ogram
M(3000)o = M(3000)F2-factor derived from oblique propa-

gation equations
MUF = basic maximum usable frequency
r = ratio of signal frequency to MUF (//MUF)
RE = radius of curvature of Earth's surface
s = slope of linear fit to hT variation with D for

r = 0.85
Sj = slope of linear fit to hT variation with D for

r = 1
w = ground range as a fraction of its maximum

value (D/Dmax)
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x = ratio of F2- and E-layer critical frequencies
(/oF2//oE)

ym = layer semithickness
ymE = E-layer semithickness
ymF2 = F2-layer semithickness
a = slope of variation of c with M(3000),~1 for

r = 0.85
a^ = slope of variation of cx with M(3000)~1 for

r= 1
/?0 = elevation angle of ray hop
8 = error in simplified estimate of hT

3m = maximum of <5
A = correction to linear variation of hT with D for

r = 1
e = average of S
(f> = function of / and fo, defined by Booker and

Seaton [5]

1 Introduction

The mirror-reflection height is that height at which an
equivalent plane mirror would have to be placed to reflect
unrefracted waves with the same elevation angles at the
receiver and transmitter as for the real ionosphere. It is a
convenient concept in characterising the geometry of an
ionospherically supported ray hop for use in propagation
predictions, in the evaluation of antenna gains, path loss
and group path delay [1,2].

For propagation modes reflected from the F2-layer, the
mirror-reflection height is difficult to estimate accurately;
in several of the larger HF propagation prediction pro-
cedures it is calculated iteratively [1 ,2 ] ; alternatively
equations based on some mean reference model ionosphere
can be employed [3]. The advantages of the iterative pro-
cedures are that the effects of spatial variations in the
height of the reflecting layer and changes in underlying
ionisation can be taken into account; also that the evalu-
ation can be continued until the required accuracy is
achieved. For many applications, however, the computa-
tion must be completed in a restricted period of time or
may be based on ionospheric data of accuracy which does
not justify rigorous solution. In these cases the mean-
ionosphere approach is favoured.

Reflection by a spherically curved parabolic model layer
was initially considered by Appleton and Beynon [4].
From their equations Booker and Seaton [5] derived the

IEE PROCEEDINGS, Vol. 131, Part F, No. 2, APRIL 1984 117



relationship for the virtual-reflection height, of a signal fre-
quency/at vertical incidence:

h' = hm + ym(t>{flfo) (1)

where hm, ym and /o are the layer peak height, semi-
thickness and critical frequency, respectively. The function
(j> is zero when/equals 0.834/o; hence, hm equals h' at this
frequency. From Martyn's equivalent path theorem, gener-
alised to allow for the Earth's curvature (radius = RE), hm
equals the mirror-reflection height, hT, for an equivalent,
oblique-incidence frequency [6]:

0.834/b
-

D
(2)

where /?0 is the hop elevation angle and the curved-Earth
correction factor, k, is 1.0 for short hop length, D, and
about 1.2 for large D. Shimazaki [3] derived a simple
empirical expression for an approximation to hm, hp, using
data from a global network of ionosondes:

. 1490
h> = M(3000)F2 (3)

the M(3000)F2-factor being scaled routinely from iono-
grams. Subsequently, this equation has often been used to
give estimates for hT with the inherent assumption that the
signal frequency is approximately equal to/e(D); an appli-
cation which Shimazaki had not intended. Amended coeffi-
cients were suggested by Wright and McDuffie [7];
however, eqn. 3 remains in use today as an approximate
method of determining mirror-reflection heights [8].

The Shimazaki formula (eqn. 3) is based on a single
parabolic reflecting layer. Hence, for F2-layer propagation,
the effects of underlying ionisation beneath the F2-layer
are not accounted for. A more complete model ionospheric
profile, with variable amounts of underlying ionisation, has
been proposed by Bradley and Dudeney [9], consisting of
a combination of linear and parabolic segments to rep-
resent the E-, Fl- and F2-regions. To allow exact analytic
solution of ray-path parameters, Milsom [10] has fitted
quasilinear and quasiparabolic segments to give a close
approximation to the Bradley-Dudeney profile. In a pre-
vious paper, the present author listed Milsom's equations
for the ground range and group path of a hop reflected by
such a model ionosphere, and used them to develop an
algorithm for simplified, noniterative estimation of basic
maximum usable frequency [11]. Allowance was made for
variations in both underlying ionisation and F2 peak
height. In this paper complementary algorithms for estima-
tion of mirror-reflection height are derived and assessed.

2 Model parameters used in the study

The general form of the Milsom approximation to the
Bradley-Dudeney model ionospheric profile is demon-
strated by Fig. 1. The E-layer peak height, hmE, and semi-
thickness, ymE, are fixed at 110 km and 20 km,
respectively; hence, the entire profile is characterised by
the remaining four independent variables, namely the E-
and F2-layer critical frequencies, /oE and /oF2 , and the
F2-layer peak height and semithickness, hm¥2 and ymF2.
Bradley and Dudeney [8] concluded that, in practice, the
ratio hm¥2/ym¥2 generally lies between 2.0 and 5.0. Here,
as in the previous study of basic maximum usable fre-
quency (MUF), a fixed ratio of 3.5 is adopted, thereby
reducing the number of independent ionospheric variables
to three.

For a given such ionospheric profile, hT depends on

these three ionospheric parameters and on the signal fre-
quency/, and the ground range, D. The Milsom equations

hmF2

hmE

ymF2

foE 1-7 foE
plasma frequency

foF2

Fig. 1 Fit of quasiparabolic and quasilinear segments to the Bradley-
Dudeney model profile

show that hT has the functional form:

hT = hT(hm¥2, x,foE/fJo¥2/f, D) (4)

where x is the ratio (fo¥2/foE). In this paper use is made
of a parameter r, the ratio {f/M\J¥). In Reference 11 it is
shown that:

f=rfo¥2M(x, hm¥2, D)

Hence from eqns. 4 and 5:

hT = hT(hm¥2, x, r, D)

(5)

(6)

A range of hm¥2 between 250 km and 500 km is con-
sidered here, and six values, 50 km apart, are found to be
adequate to characterise the behaviour of hT. The value of
hT is very dependent on x near 1.7, which is the limit of
applicability of the model, but is more slowly varying at
large x: x of 10, 5, 3.33, 2.5, 2.22, 2.08 and 2.0 are exam-
ined. The algorithms devised here are not, therefore,
designed for use with x less than 1.95. The greatly
increased complexity required to evaluate hT for any lower
x is not considered justified by the model approximations
used. Cases of low x are rare and are predominately found
for the daytime high-latitude ionosphere in winter at
sunspot minimum.

The variation of hT with range, D, was then studied for
each model ionosphere profile with signal frequency equal
to various fractions, r, of the basic MUF.

3 Calculation of mirror-reflection height
for model ionospheric profiles

For each of the 42 model ionospheric profiles, an ordinary-
wave ionogram trace was synthesised using the group-path
equations [11] and an M(3000)F2-value was scaled using
the standard URSI slider. The value of MUF for a fixed D
was calculated iteratively by the procedure given by Lock-
wood [11] and a value of hT then calculated for that D and
a fixed r (^/MUF) by iterating the elevation angle, /?0. In
this way hT(D) curves were calculated for various r and for
each of the model profiles.
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Fig. 2 shows a set of hT(D) curves for various values of r
with x of 3.33 and hm¥2 equal to 250 km and 500 km. The

lOOOr

200-,

0 1000 2000 3000 4000 5000 6000
D.km

Fig. 2 Mirror-reflection height, hT, as a function of distance, D, with
hmF2 of 250 km and 500 km, and x = 3.33
a /•= 1.0 d r = 0.8
b r = 0.95 e r = 0.7
c r = 0.9 / r = 0.6

constant elevation angle, [i0

for r = 0.85 and x = 3.33. At a fixed D, hT increases
approximately linearly with hm¥2. Note that at low hm¥2

1000

800 hmF2
=500km

1000 2000

Fig. 4 Mirror-reflection height, hT, as a function of distance, D, for
r = 0.85 with hm F2 of 250 km and 500 km

a x = 2.0 d x = 5.0
b x = 2.5 e x = 10.0
c x = 3.33

constant elevation angle, /?„

important range of r between 0.6 and 1.0 is considered for
both these two model profiles. It can be seen that, over a
large part of this range of r, hT at a fixed D is only weakly
dependent on r (for r = 0.8 — 0.95 when hm¥2 = 500 km
and for r = 0.7 - 0.95 when hm¥2 = 250 km, except at the
shortest ranges). In every case where r ^ 0.7, hT is greatest
at all D when r is unity; it is much greater than for the
lower r at the smallest and largest distances.

The variations of hT with x for hm¥2 of 250 km and
500 km are illustrated by Fig. 3 for r = 1.0 and by Fig. 4
for r = 0.85. The hT is most dependent on x near the lower
limit of 2.0, and increasing the underlying ionisation
(decreased x) results in an hT rise which is greater at large
D and large hm¥2.

The variation of hT with hm¥2 is considerably more
regular than that with r or x, as is demonstrated by Fig. 5

1000

800

600

400

&=70° 40

hmF2
=250km

4177//
1000 2000 3000

D.km
4000 5000 6000

Fig. 3 Mirror-reflection height, hr, as a function of distance, D, for
r= 1.0 with hmF2 of 250 km and 500 km

a x = 2.0 d x = 5.0
b x = 2.5 e x = 10.0
c x = 3.33
- - - - - - constant elevation angle, (i0

1000

800

600

1000 2000 3000 4000 5000 6000
D.km

Fig. 5 Mirror-reflection height, hT, as a function of distance, D, for
r = 0.85 and x = 3.33
a hmF2 = 250 km d hm¥2 = 400 km
b hmFl = 300 km e /imF2 = 450 km
c /imF2 = 350 km / /imF2 = 500 km

constant elevation angle, /?0

(<35O km), high x (>3.3) a n d / = FOT, hT equals hm¥2 to
within 10%.

4 Algorithms for rapid evaluation of
mirror-reflection height

Inspection of sets of hT(D) curves like that shown in Fig. 2
reveals that hT is a complicated function of r. However, for
the range of r between about 0.75 and 0.95, hT is approx-
imately a linear function of D; hence, this range can be
characterised with relative simplicity. As the majority of
HF communication circuits employ this range of r (by
operating as close as interference permits to the optimum
transmission frequency, FOT, defined b y / = F O T when
r = 0.85), such a simplification should have wide applica-
tions.
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A second requirement for prediction of mirror-reflection
height exists at the basic MUF (r = 1.0). Many prediction
procedures require this information in order that propaga-
tion losses at frequencies above the monthly median basic
MUF can be assessed.

In the following Sections algorithms are developed for
these two ranges of r.

4.1 Algorithms applicable to a range of signal
frequencies about the FOT

Fig. 2 demonstrates that, at all but the shortest ranges, hT

can be described by the linear form when 0.75 < r < 0.95:

hT = sD + c (7)

Linear regression lines were fitted to all /ir(D) curves for
r = 0.85 ( / = FOT). The slopes, 5, of these regression lines
are plotted in Fig. 6 as a function of the inverse of the

0.15

0.10

0.05

0.3 0.4
1/M(3000)j

Fig. 6 Slope of regression lines, s, as a function of the inverse of
M(3000\

A x = 2.0 x x = 3.33
• x = 2.08 O x = 5.0
• x = 2.22 • x = 10.0
• x = 2.5

M(3000)F2-factor scaled from the synthesised ionogram;
this M-factor is referred to here as M(3000), to be consis-
tent with Reference 11. For a fixed value of x, s is roughly
inversely proportional to M(3000), and is approximately
given by:

s =
1

M(3000),-
- 0.24 B for M(3000),- ^ 3.57 (8)

It was found that use of eqn. 8 for M(3000),- greater than
3.57 gave large errors in hT at large x and D. This problem
was overcome by the introduction of the condition:

s = 0.04B M(3000),- > 3.57 (9)

The slopes of the fitted lines shown in Fig. 6, B, vary lin-
early with the inverse of the fourth power of x:

B = 0.03 + 14.0/x4 (10)

The intercept, c, of the regression lines is also approx-
imately inversely proportional to M(3000), at fixed x (see
Fig. 7), and straight lines which pass through the point
(c = 358, l/M(3000), = 0.35) can be adopted. Least-squares

120

fits to these lines give the values of their slope, a, shown in
Fig. 8 as a function of x. The solid curve satisfies

<x = 1880-32000/x* (11)

500

400

300

200

0.25 0.30 0.4,0 0A50.35
1/M(3000)j

Fig. 7 Intercept of regression lines, c, as a function of the inverse of
M(JOOO),-

A
A

•
•

x = 2.0
x = 2.08
x = 2.22
x = 2.5

X

O
•

x =
X =

X =

3.33
5.0
10.0

1900

* 1300 •

1000-

900-

8 10

Fig. 8 Slope of fitted lines in Fig. 7, a, as a function of x with an
approximate polynomial fit
A x = 2.0 x x = 3.33
• x = 2.08 O x = 5.0
• x = 2.22 • x = 10.0
• x = 2.5

and c is given by:

c = 358 + a
1

- 0 . 3 5
vM(3000),.

Eqns. 7-12 can be combined into the equation:

320

(12)

14

hT = 358 - (11 - 100a) 18.8 - ^f

+ aD 0.03+-4 km (13)
V x /

where a = (l/M(3000),) - 0.24, or 0.04 whichever is the
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larger. The full eqn. 13 allows simple and rapid evaluation
of hr, the accuracy of which is assessed in Section 5.

Comparison with eqn. 2 shows that the above full equa-
tion is considerably more complex than the Shimazaki
equation which is widely used to predict hT. However, the
full equation can be simplified, with some loss of accuracy,
to separate equations for night and day by adopting rep-
resentative mean values of x:

night (x ~ 10) hT =

day (x ~ 3)

1880
- 300 km

M(3000),

= 160 + (0.143D + 1800)

f 1

(14)

[M(3000);

The night equation has the same form as that of Shima-
zaki, with new values for the constants: the increase in hT

with D is neglected in both expressions. On the other hand,
Fig. 4 demonstrates that this increase needs to be included
for the x values common in the dayside ionosphere (x < 3),
and accordingly the day equation contains an additional
distance term. The accuracy of the simplified eqns. 14 and
15 is also assessed in Section 5.

4.2 Algorithm applicable to a signal frequency
equal to the basic MUF

Fig. 3 shows that the general form of the hT(D) curves for
r = 1.0 cannot be approximated by a single linear relation-
ship as was possible for the r = 0.85 curves. Figs. 9 and 10

lOOOr

800-

600-

si
00

400

200 0.2 0.4 0.6
D/Dmax

0.8 1.0

Fig. 9 hT and hT — A as a function of D/D^^or x = 10.0
a hm¥2 = 250 km
b /imF2 = 35Okm
c hm¥2 = 400 km
d hmF2 = 500 km

/ i r - A
• hT

demonstrate that the increase of hT with decreasing D at
the lowest distances can be accounted for by the use of a
single correction term A, chosen such that (hT — A) has a
near-linear variation with (D/Dmax), where Dmax is the
maximum range (corresponding to zero elevation of the
ray path, j30) and is given by eqns. 18 and 19 of Reference
11. Curves for hT (solid line) and [hT - A) (broken line) are
given for hmF2 of 250, 350, 400 and 500 km with x of 10.0
in Fig. 9 and with x of 2.2 in Fig. 10.

The form for A used in Figs. 9 and 10 is:

A = 23 [ - - 1
w

(16)

where w equals (D/Dmax). Hence, hT can be approximated
by:

hT = 5X w •+- Cj + A

/ l r = [ ^ r ] w = 0.95

1100

900

w ^ 0.95w > °-95 (17)

- 0.24 > km (15) E 700

•500-

300-

0.2 0.A 0.6
D/Dmax

0.8 1.0

Fig. 10 hT and hr — A as a function of D/Dmaxfor x = 2.22

b hmF2 = 350 km
c hm¥2 = 400 km
d /imF2 = 5O0km

hT - A
hr

The second expression allows for the flattening of the hT{D)
curves as D approaches Dmax.

The intercept cx can be fitted in the same way as c in
the preceding Section, giving expressions of the same form
as eqns. 11 and 12 but with different constants:

= 35 +
1

M(3000)c
- 0.225

where

ax = 1785 — 4000/x2

(18)

(19)

and M(3000)o is the ordinary-wave M-factor from the iter-
ation of ray-path solutions for a range of 300 km. In
general, this differs from M(3000),- and is derived in the
MUF algorithm procedure given in Reference 10. The
slope sx varies linearly with M(3000)o to the power — 1.5:

sl = 230 + JB1(M(3000)o"
1-5 - 0.14)

and

Bl = 325 + 6.4 x 104/x 3.8

(20)

(21)

Eqns. 16-21 can be used to evaluate hT f o r / = MUF at a
given D, in conjunction with the values for M(3000)o and
Dmax obtained in the evaluation of MUF by the simplified
algorithm by Lockwood [11]. The accuracy of the hT

values is assessed in Section 5.2.

5 Accuracy of mirror-reflection height algorithms

The accuracy of the algorithms presented in Sections 4.1
and 4.2 are assessed by comparing the predicted mirror-
reflection height, for a given range and ionospheric profile,
with results of the full calculation using the Milsom equa-
tions. The error as a percentage of the correct value, S, is
evaluated; positive values of <5 representing overestimates
of mirror-reflection height.
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5.1 Accuracy of predictions for the range of r
between 0.75 and 0.95

Fig. 11 plots simplified predictions using eqn. 13 (broken
lines) and fully calculated values (solid lines) for the

1000 2000 3000 4000 5000 0
a D,km

1000 2000 3000 4000 5000
b D.km

Fig. 11 Fully calculated values and approximate estimates given by eqn.
13 (r = 0.85) for the mirror-reflection height, hT, and elevation angle, fiQ, as
a function of distance, D

a x = 10.0
h x = 2.22
i /i/nF2 = 25Okm ii hm¥2 = 500 km

calculated values
estimates

mirror-reflection height, hT, and ray-path elevation angles,
Po, for x of 10.0 and 2.22, and hm¥2 of 250 km and
500 km. It can be seen that there is a tendency to under-
estimate hT and fi0 at low D for this r of 0.85. Other results
not presented reveal that the tendency is smaller at low r,
but is larger at greater r, and increases with increasing
hm¥2 and decreasing x. Although these cases give quite
large fractional errors in hT for near-vertical propagation,
the associated errors in fi0 are small. Table 1 lists the

Table 1: Largest percentage errors (positive values are

0.90 and 0.95

hm F2

X

D = 1000 km
250
300
350
400
450
500

D = 3000 km
250
300
350
400
450
500

, km

10.0

4.9
2.4
3.6
3.6
3.1
2.1

0.0
-0.8
2.0
2.5
3.7
3.5

5.0

1.8
1.1
2.3
2.7
0.6
0.3

-2.9
-2.3
0.0
0.9

-0.4
-0.3

3.33

-3.8
-0.9
1.5
0.2

-0.2
-2.7

-6.4
-3.4
-0.6
-1.1
-1.0
-2.0

2.5

-2.6
-0.5
-0.5
-2.6
-3.7
-5.7

-3.9
0.1
1.8
1.5
1.6
1.9

2.22

-2.7
-2.4
-3.4
-4.7
-7.9
-8.5

-3.8
1.9
5.9
6.5
7.1

—

2.08

-3.9
-4.3
-7.0
-8.2
-9.1
—

-3.5
5.0
8.6
9.7

10.6
—

2.0

-4.3
-5.0

-10.9

—
—

-2.3
8.0
10.6

—
—
—

largest error, Sm, with r of 0.75-0.95 for each of the 42
model ionospheric profiles for which ray-tracing solutions
are possible. The errors for D of 3000 km were largely
independent of r, whereas those for 1000 km are largest for
the r = 0.95 case and generally decrease with decreasing r.
Errors are less than 5% in all but one case: when x ^ 2.5.

are accurate to within about 10%; worst errors arising
from high D, low x and high hm¥2 cases. For distances
near 1000 km, eqn. 13 tends to overestimate hT at high x
and underestimate at low x; for the greater ranges it tends
to overestimate at low and high x and underestimates for
intermediate x. At the shortest ranges eqn. 13 gives under-
estimates, particularly for the larger r.

Table 2 gives the equivalent errors to those in Table 1
for mirror-height evaluation using the Shimazaki eqn. 2.

Table 2: Largest percentage errors (positive values are
overestimates) in using the Shimazaki eqn. 3, 5/n for r of 0.75,
0.80, 0.85, 0.90 and 0.95

hmF2, km

X

D = 1000 km
250
300
350
400
450
500

O = 3000 km
250
300
350
400
450
500

10.0

4.0
3.2
1.0
-2.0
-4.0
-6.8

-2.0
-2.4
-3.0
-4.6
-5.1
-6.4

5.0

2.5
1.5
-0.9
-3.7
-7.1
-9.0

-3.7
-4.1
-5.9
-7.9
-11.2
-12.6

3.33

-1.6
-4.0
-5.6
-8.5
-11.3
-14.1

-9.1
-12.5
-14.7
-17.5
-19.6
-21.6

2.5

-9.5
-11.6
-15.2
-18.1
-21.0
-22.3

-21.4
-25.4
-28.5
-31.2
-32.7
-33.8

2.22

-17.0
-19.3
-21.6
-23.7
-26.6
-28.7

-30.7
-32.1
-35.5
-36.2
-36.6
—

2.08

-23.0
-25.5
-27.9
-31.3
-35.1

-40.6
-41.3
-41.8
-43.3
-44.6
—

2.0

-25.5
-29.5
-32.1
—

-42.7
-44.1
-45.2
—

—

Because eqn. 2 contains no allowance for the increase of hT

with D, it tends to seriously underestimate, particularly at
large D. Errors are similar to those given in Table 1 at
x = 10 but rise to over 30% for x ^ 2.5 and 45% for
x ^ 2.0.

The overall behaviour of the errors for the simplified
equations are compared in Fig. 12, which shows the means
of the moduli of the error deviations <5, averaged over all
six hm¥2 and as a function of x(e = <|<5|». The dotted
curve gives the error for the full eqn. 13 and the dashed
curve that for the Shimazaki equation. The former gives
mean errors which are less than 5% at all but the lowest x,
the latter is seriously in error (underestimates) at low x,
particularly for the greater range. The solid curve shows
the mean errors for the night eqn. 14 and the broken curve
those for the day eqn. 15; both of which tend to underesti-
mate hT at low x in the same way as for the Shimazaki
equation. The day equation gives smaller errors than the
Shimazaki, at all x below 5, and smaller errors than the
night equation for x below about 4.5. Hence, if in the inter-
ests of method simplicity eqns. 14 and 15 are used instead

50- D=1000 km

40-

30
>
r
20

10

D=3000km

3 4 5
x

7 10 U 5 7 10

Fig. 12 Mean of moduli of d, £, as a function of x for prediction by
various simplified equations

Shimazaki (eqn. 3)
night (eqn. 14)

— •— day (eqn. 15)
For the full range of x considered here (2.0-10.0), values fuii(eqn. n)
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of eqn. 13, the day equation should be applied when
x ^ 4.5 and the night equation at all greater x. Note that
the errors for the night equation are slightly smaller than
those for Shimazaki at all x; hence, the coefficients given in
eqn. 14 are preferable if the simplest form of a single equa-
tion for hT is required. Fig. 13 demonstrates that the day

D=1000km

x. The algorithm would be significantly more complex if
allowance were to be made for this effect.

-5

-10 250 300 350 400 450 500
hmF2

250 300 350 400 450 500
hmF2

Fig. 13 Mean error, £, as a function of hmF2 for x = 10.0 given by the
day equation and by Shimazaki
• day equation
— — Shimazaki equation

equation also gives a more desirable variation in errors
with hm¥2. The values of d are shown for x of 10 and as a
function of hmF2; the dashed and solid curves are for the
Shimazaki and high equations, respectively. The high-x
case is most applicable under night conditions when hm¥2
is generally high. Fig. 13 shows that the night equation is
more accurate for high hm¥2. The Shimazaki equation is
only more accurate for high x and high hm¥2, which is a
relatively rare combination.

5.2 Accuracy of values for r of 1.0
Fig. 14 plots fully calculated hT and /?0 (solid curves) and
values from the simplified algorithm (eqns. 13-18). Because
of the large gradient of the curves at short distance and the
simplicity of the correction term A (eqn. 13), large errors in
hT can arise for distances below 1000 km; Fig. 14 demon-
strates that errors in /?0 are still small. Table 3 gives the

Table 3: Percentage error (positive values are overestimates)
in using eqns. 16-21, 6, for unity r

hmF2

X

0=1000 km
250
300
350
400
450
500

D = 3000 km
250
300
350
400
450
500

, km

10.0

1.9
2.7
4.4
2.7
1.2

-1.5

1.9
3.0
4.5
4.1
3.3
2.9

5.0

1.1
1.5
3.1
2.3
0.9

-3.1

0.5
2.7
4.0
4.3
3.7
1.3

3.3

-1.0
0.6
1.7
1.8

-3.2
-5.4

-0.8
1.1
3.8
4.2
4.6

-0.2

2.5

-0.1
0.7
1.9
5.0
4.5
4.3

-3.4
0.7
3.9
5.7
5.5
4.3

2.22

0.7
1.5
4.5

11.1
8.3
7.0

14.3
15.3
15.9
17.8
21.4
—

2.08

-4.8
3.4
8.2
2.0
2.0

—

14.1
19.7
21.0
17.6
19.0

—

2.0

-3.1
1.9
7.6

—
—
—

10.1
19.6
31.9
—

—

percentage errors e, for D of 1000 and 3000 km. Errors are
always less than 6% for x ^ 2.5; at lower x errors are
larger, rising to over 30% for x = 2.0 at the larger distance
because of slight deviations of (hT — A) from a linear
dependence on D/Dmax, particularly for high hm¥2 and low

1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
0 km E> O.km

Fig. 14 Fully calculated values and approximate estimates given by
eqns. 16-21 (r = 1.0) for the mirror-reflection height, hr, and elevation
angle, j?0, as a function of distance, D
a x = 10.0
b x = 2.22
i hmF2 = 250 km

ii hmF2 = 500 km
calculated values
estimates

6 Conclusions

From the results of ordinary-wave ray tracing through the
Bradley-Dudeney model ionospheric profile using the
Milsom equations, simple noniterative algorithms for
rapid evaluation of mirror-reflection height have been
developed. Algorithms of various complexity and accuracy
are presented for the range of signal frequencies between
0.75 and 0.95 of the basic MUF. In addition, a single algo-
rithm is given for a frequency equal to the basic MUF.

The most rigorous equations derived allow for the
variation of mirror-reflection height with distance,
M(3000)F2 and x, the ratio of the F- and E-layer critical
frequencies; hence, all the required ionospheric inputs to
the algorithm are scaled routinely from ionograms. No
explicit dependence on signal frequency is included, but.the
equation for 0.75 to 0.95 times the basic MUF is accurate
to within 6% for x ^ 2.5 and 11% for x ^ 2.0.

This accuracy involves considerable complexity, as
compared with the widely used equation of Shimazaki
which only allows for the variation with M(3000)F2 and
has no dependence on distance or underlying ionisation;
consequently, the Shimazaki equation is only accurate to
within 34% for x ^ 2.5 and 45% for x ^ 2.0. For large x
the full equation reduces to a comparable form to that of
Shimazaki and is about 2% more accurate at all x. Such
an equation may be sufficiently accurate at night, when x
is large, but gives large errors by day when x is smaller. A
second special case of the full equation (x = 3) leads to an
expression with a non-negligible distance term which can
be applied to day conditions with errors about 10% lower
than those using the Shimazaki equation.

The algorithm presented for evaluation of mirror-
reflection height for a signal frequency equal to the basic
MUF yields values accurate to within 6% for x ^ 2.5. This
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is of comparable accuracy to the lower frequency algo-
rithm, but the largest errors rise to 32% for cases where
the elevation angle falls below a few degrees and x is
between 2.0 and 2.5.
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