Toeplitz and Hankel Operators on Weighted Fock Spaces

Alexander P. Schuster

Let \(\varphi \) be a subharmonic function satisfying certain conditions. The weighted Fock space \(\mathcal{F}_\varphi^p \) consists of entire functions \(f \) such that

\[
\|f\|_{p, \varphi}^p = \int_{\mathbb{C}} |f(z)|^p e^{-p\varphi(z)} \ dA(z) < \infty.
\]

The respective Lebesgue \(L^p_\varphi \) spaces and their norms are defined in an obvious way. When \(\varphi(z) = \frac{1}{2} |z|^2 \), we obtain the standard Bargmann-Fock space.

For a symbol \(f \) (satisfying suitable conditions), we define the Hankel operator \(H_f \) by

\[
H_f = (I - P) M_f,
\]

where \(P \) is the orthogonal projection from \(L^2_\varphi \) onto \(\mathcal{F}_\varphi^2 \), and \(M_f \) is the operator of multiplication by \(f \).

There are necessary and sufficient conditions describing when \(H_f \) is bounded or compact, when considered as an operator on the standard Bargmann-Fock space. We will describe these results, as well as consider the case of more general weights.