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Pooling speed information in complex tasks: Estimation 
of average speed and detection of nonplanarity 
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To gain insight into how speeds are combined in structure-from-motion, we compared performance for estimating the 
mean speed and performance for detecting deviations from planarity. The stimuli showed a center dot surrounded by an 
annulus of dots. In one (plane) condition, the stimuli simulated a rotating plane. In a two alternative forced choice (2AFC)  
task, the subject had to choose in which of two stimuli the center dot moved in the plane. In another (cloud) condition, the 
same dot locations and speeds were used but now assigned to different dots. Such a stimulus resembles a translating 
and rotating cloud of dots. In this case, the subject had to choose the stimulus in which the center dot moved with the 
mean speed of the surrounding dots. Performance was measured as a function of deformation/slant. Although location 
and speeds were the same in both conditions, performance was much poorer in the cloud condition. Subsequent 
experiments and an ideal observer model point to a plausible explanation: in detecting deviations from planarity, the visual 
system can focus on the most reliable pieces of information (the slower dots, closest to the test dot). Although 
performance could benefit by taking more dots into account, performance barely improved with an increase in the number 
of dots. This may reflect a limited processing capacity of the visual system. 
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In more complex tasks, such as estimation of ego-
motion or 3D SFM, it is essential to combine motion 
information from various locations and sometimes from 
different times. Also, the combination rule can be quite 
complex, as in SFM (see, e.g., Koenderink & van Doorn, 
1991). However, this does not mean that the visual system 
uses the mathematically correct algorithm to estimate a 
property. Such a case is presented by Werkhoven and 
Koenderink (1991), who investigated human processing 
of angular 2D rotation. Their results suggest that subjects 
based their judgments of the rotation magnitude on the 
average of the speeds and did not take the eccentricities 
into account. Their study shows some improvement with 
increasing numbers of dots, although beyond 8 dots no 
further improvement is found. The latter finding suggests 
that some amount of spatial integration occurred, but 
that this is limited to a few dots. Verghese and Stone 
(1995, 1996, 1997) investigated human performance for 
speed discrimination using Gabor patches. Performance 
was found to increase with the number of patches (up to 
6 patches were used). Intriguingly, no improvement was 
found when the area of a single Gabor patch was 
increased by the same amount. Their results suggest that 
performance improves with the number of independently 
treated entities rather than with the stimulus area.  

Introduction 
The importance of motion for the visual system stems 

largely from the fact that it contains valuable information 
about 3D layout and ego-motion (e.g., see Nakayama, 
1985). Most psychophysical research into human 
processing of motion has been focused at the analysis of 
uniformly translating textures. However, the motion 
patterns associated with 3D structure-from-motion (SFM) 
and ego-motion are much more complex, and it is still 
largely unclear how human processing of uniform moving 
patterns is related to that for processing of more complex 
flow fields. Here we investigate how speed information is 
pooled over space in a SFM task. 

In principle, a better estimate of the speed can be 
obtained by integrating over a larger area or more dots. 
However, human performance for discriminating speed 
(de Bruyn & Orban, 1988) or detecting changes in speed 
(Snowden & Braddick, 1991; Werkhoven, Snippe, & 
Toet, 1992) of a uniformly moving texture is found to be 
the same for stimuli containing a large number of dots as 
for stimuli containing only a single dot. These studies 
show that the visual system does not make effective use of 
the additional information supplied by the additional 
objects in the stimuli. 
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Other studies suggest that the visual system can 
integrate speed and direction information over a large 
number of dots. When humans are shown a stimulus 
containing many different local motion vectors, a unified 
global percept in the direction of the mean may arise if 
the range of component directions is 180 deg or less 
(Williams & Sekuler, 1984), and subjects can estimate the 
average direction within 1-2 deg (Watamaniuk, Sekuler, 
& Williams, 1989). Watamaniuk and Duchon (1992) 
performed an experiment in which subjects discriminated 
the average speed of two distributions of speeds with the 
same width. They found that thresholds were unaffected 
by the width of the speed distribution in the tested range. 
These results suggest that velocity can be averaged over 
many dots. 

Performance in 3D SFM tasks is constrained by the 
accuracy with which 2D motions are represented within 
the visual system (e.g., Nakayama, 1985; Hogervorst, 
Kappers, & Koenderink, 1996). To make specific 
predictions, explicit assumptions have to be made about 
the accuracy with which speeds are represented. A simple 
assumption that has been used is that all speed 
measurements are independent. With assumptions about 
the magnitude of the noise in these measurements, the 
maximum accuracy with which structural properties and 
ego-motion can be deduced can be estimated (e.g., 
Koenderink & van Doorn, 1987). Similarly, one can 
determine for which amount of noise such a model 
reaches the same level of performance as the human 
subjects (e.g., Werkhoven & van Veen, 1995). Eagle and 
Blake (1995) have shown that the relative inability of 
subjects to estimate the depth of objects can be explained 
from the low accuracy of the visual system in processing 
accelerations. Hogervorst and Eagle (1998, 2000) have 
shown that misjudgments of the depth of objects can be 
explained from noise on the 2D motions (velocities and 
accelerations) when one takes into account the fact that 
certain 2D motions are more likely than others, when 
they arise from a rotating 3D object. The same model also 
explains thresholds for discriminating the depth of a 
rotating pair of rigidly connected hinged planes (Eagle & 
Hogervorst, 1999). In these analyses, estimates for the 
noise on the velocities and accelerations were derived 
directly from thresholds for discriminating speed and 
direction, and from thresholds for detecting changes in 
speed and direction of uniformly moving patterns. In 
their model, simple assumptions are used about the way 
in which these elementary motions are combined. To 
advance this approach further, it is necessary to determine 
how motion information from different spatial locations 
is combined. 

This study is a first step in establishing how speeds 
are integrated across space in the recovery of surface 
structure. We determined human performance for two 
tasks that require the combination of different speed 
vectors. We compared human sensitivity to average speed 
with human sensitivity to detecting nonplanarity using 

stimuli that contained the same set of speeds and dot 
locations. This approach gives direct insight into the way 
in which speeds are pooled in both tasks. Finally, we 
compared the results with a model in which 
(independent) speed measurements are combined in an 
optimal way.  

Methods 
Tasks 

Two stimuli were shown containing an annulus of 
moving dots and a central test dot. The subject indicated 
in which of the two stimuli (1) the test dot moved with 
the average speed of the surrounding dots or (2) the test 
dot lay in the plane defined by the movement of the 
surrounding dots.  

Subjects 
Three subjects participated in the experiments: MH 

(the author), who was fully aware of the objectives of the 
study, and JR and ES, who were naive to the objectives of 
the study. All subjects had normal or corrected-to-normal 
vision.  

Apparatus 
All stimuli were generated on a Silicon Graphics O2 

workstation. They were presented on a 19-inch Silicon 
Graphics monitor whose screen resolution was 1,280 x 
1,024 pixels at a frame rate of 75 Hz. 

Stimuli 
Measurements were obtained in two conditions in 

which the stimuli resembled a rotating plane and a 
rotating cloud of dots and will be referred to as plane and 
cloud conditions. For small rotation angles, both plane 
and cloud stimuli are compatible with rigid 
interpretations, in which depth is proportional to speed. 
For larger assumed rotations, they are not. (How small a 
rotation angle is compatible with a rigid rotation is a 
matter of tolerances [noise] in the visual system). Note, 
however, that the task does not require that the stimulus 
is interpreted as a (rigid) 3D object. Figure 1 shows 
schematically an example of both types of stimuli (see 
Figure 2 for demos).  

In this section, the parameters in the standard 
settings (used in Experiment 1) are given. In a range of 
experiments, the effect of different parameters was 
investigated and changes from the standard settings are 
given in the appropriate sections. Each stimulus consisted 
of a central dot surrounded by an annulus of dots. All 
dots moved horizontally with different speeds. The dots 
were depicted as white dots, size 2 x 2 pixels, against a 
black background at high contrast, using standard 
subpixel interpolation. 
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To generate the stimuli in both the plane and the 
cloud conditions, a set of speeds and positions were 
chosen as if the dots were part of a rotating plane. In the 
cloud condition, the speeds were later assigned to 
different dots. In this way, we ensured that the stimuli in 
both conditions contained similar speeds and locations 
(see Figure 1).  

Figure 2 shows example stimuli for the plane (a and 
b) and cloud (c and d) conditions. The process of 
generating a sequence began with the middle frame of the 
sequence, in which the dots were randomly positioned 
within an annulus. The rest of the sequence was created 
by applying an affine (shearing, stretching, and 
translation) transformation to the texture. In the reference 
stimulus, the center dot moved also in accordance with 
the affine transformation (Figure 2a and 2c). The speed of 
the center dot was also equal to the average speed. In the 
signal stimulus, the center dot moved either with a larger 
or a smaller speed (Figure 2b and 2d). The task of the 
subject was to indicate which of the two stimuli was the 
reference stimulus.  

The speeds and locations were chosen as follows. In 
the first stage, the locations of the total of N number of 
dots (N = 49) in the middle frame of the stimulus 
sequence were chosen uniformly and randomly 
distributed within an annulus with inner radius of rmin 
and outer radius rmax (rmin = 100 pixels = 1.9 deg, rmax = 
200 pixels = 3.8 deg). The angles of the positions in polar 
coordinates (ri,α i ) were equally distributed from 0 to 360 
deg with +/- 30% scatter: the angle αi of a point with 

index i is given by 

α i = α o + (i + 0.3∗(2∗ random −1)) / N ∗ 360° , 

in which random represents a random number between 0 
and 1 and α0 is fixed for all dots and randomly chosen. In 
the second stage, the center of mass was calculated and 
subtracted from the positions, such that the test dot, 
located at the center of the screen, coincided with the 
center of mass. A set of horizontal displacements S was 
assigned to the dots. The dots moved linearly from x+S/2 
to x–S/2. The displacement S assigned to the dots was a 
linear function of the horizontal and vertical positions x 
and y: 

S = Def ∗ (x cosϕ + y sinϕ ) + T , (1) 

in which Def is the deformation, ϕ the direction of 
deformation and T the overall displacement.  

In the reference stimulus, the displacement of the 
center dot was T, and in the signal stimulus, the 
displacement of the center dot was T + δS. Because the 
test dot was in the center of mass, the test dot moved with 
the average speed in the reference condition, on which 
basis the signal could be discriminated from the reference 
stimulus. 

In the plane conditions, the displacements were 
unaltered. In the cloud condition, the positions and 
displacements were initially chosen in the same way. 
However, the displacements were assigned to different 
dots (i.e., the displacements were interchanged, such that 

Figure 1.  Flow
(velocities); the
with constant v
consistent with
rotating cloud 
plane condition cloud condition

 

 fields of the stimuli used in the plane condition and in the cloud condition. The arrows indicate the displacements 
 dots indicate the average position. Between the first and last frame of the stimulus sequence, the dots were displaced 
elocity. The set of speeds and positions is the same in both conditions. In the plane condition, the velocities are 
 a rotating plane; in the cloud condition, the speeds are assigned to different dots, and the stimulus is perceived as a 
of dots.  
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Figure 2. Example stimulus movies for a deformation Def of 0.5, a translation T of 0.75 and a speed difference δT of 0.4. Figure a) 
shows the reference plane stimulus, b) the signal plane stimulus, c) the reference cloud stimulus, and d) the signal cloud stimulus. 

 

Figure 2 shows example stimuli of a reference plane 
stimulus (a), a signal plane stimulus (b), a reference cloud 
stimulus (c), and a signal cloud stimulus (d), for which T = 
0.75, ϕ  = 45, Def = 0.5, δT = 0.4. Note that in each trial 
each sequence was shown only once. 

the displacement of dot 1 was assigned to dot 6 and the 
displacement of dot 6 was assigned to dot 1). This 
ensured that the positions and the displacements were the 
same in both conditions. 

In the standard setting, the direction ϕ  was chosen 
randomly. A ϕ  of 0 leads to a horizontal compression 
(horizontally tilted plane), while a ϕ  of 90 deg leads to a 
horizontal shearing motion (a vertically tilted plane). In 
the standard setting, the overall displacement T was 
randomly chosen between 0.47 and 1.42 deg 
(corresponding to mean speeds between 1.42 and 4.27 
deg/s). Each stimulus sequence consisted of 25 frames 
and lasted 0.33 s.  

Procedure 
A two interval forced choice (2IFC) design with an 

adaptive staircase method with a maximum likelihood 
procedure (Snoeren & Puts, 1997; Watson & Pelli, 1983) 
was used to determine the threshold displacement δT at 
which the subject could discriminate the signal stimuli 
from the reference stimuli with 81% probability.  At any 
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Experiment 1: Standard 
Conditions 

given trial, the absolute value of the offset displacement 
δT was set to the maximum likelihood estimation of the 
threshold and its sign was chosen randomly. At the start 
of each staircase, δT was set to twice the estimated 
threshold level. The subject was seated in a dimly lit room 
at 70 cm from the screen with the left eye covered and the 
right eye aligned with the center of the screen, with 
his/her head on a chin rest. At each trial, a reference 
stimulus and a signal stimulus were shown in random 
order separated by a blank interval (showing a black 
screen) that lasted 0.4 s. After this, the subject indicated 
which of the two stimuli represented the reference 
stimulus by pressing the left or right mouse button. In the 
plane condition, the reference stimulus was defined by 
the fact that the test dot moved with the local speed of 
the plane, as well as with the average speed of the 
surrounding dots. In the cloud condition, the reference 
stimulus was defined by the fact that the test dot moved 
with the average speed of the surrounding dots. Feedback 
was provided in the form of a tone that sounded after a 
wrong answer was given. This ensured that subjects were 
using a (near) optimal strategy in each condition. In each 
session, thresholds were determined for several 
conditions simultaneously in which the conditions were 
randomly interleaved. In each condition, a threshold was 
calculated after 80 trials. The thresholds presented are the 
geometric averages (average on a logarithmic scale) of the 
thresholds obtained in five or more sessions. Errors 
correspond to SEM of these values. We also present the 
geometric average of the thresholds of the three subjects 
(labelled as “Average”). In the latter case, the error 
estimates presented in the figures correspond to the 
square root of the sum of squared (individual) errors.   

Experiment 1a: The Test Dot in the 
Center 

In the first experiment, thresholds were compared for 
the cloud and the plane conditions. Thresholds were 
measured for deformations of 0, 0.1, 0.2, 0.4, and 0.8 
(corresponding to a width in the speed distribution of 0, 
0.5, 1.0, 2.0, and 4.0 deg/s). Thresholds for the plane and 
cloud conditions were measured in separate sessions. 
Within each session, thresholds were obtained for all 
deformations by interleaving the staircase procedures.  

Results 
Figure 3 shows the thresholds as a function of the 

deformation for both conditions for all subjects. 
Thresholds increase with increasing magnitudes of 
deformation. For larger deformations the thresholds 
increase approximately in proportion to the amount of 
deformation (i.e., a slope of one in Figure 3).  

Thresholds for the cloud condition are much higher 
than for the plane condition. For a deformation of 0.8, 
the thresholds are on average 2.1 times higher for the 
cloud condition than for the plane condition. These 
factors are 1.5 (MH), 3.3 (JR), and 1.8 (ES) for the 
individual subjects. All subjects show the same trends, 
although the absolute levels differ considerably 
(thresholds of JR and ES are about twice as high as the 
thresholds of MH). 

The magnitude of thresholds obtained in the cloud 
condition is surprisingly high. In fact, these thresholds 
approach the largest relative speeds in the distribution 
(dotted line in Figure 3). This means that subjects can 
only reliably indicate in which of the two stimuli the test 
dot moves with the average speed when the speed in the 
signal stimulus approaches the fastest speed or slowest 
speed in the distribution (i.e., when the speed of the test 
dot is at the edge of the distribution of speeds).  

The thresholds and radii are reported in 
dimensionless units, in which 1 unit equals 100 pixels 
(the inner radius of the stimulus in the standard setting), 
1.9 deg, or a speed of 5.7 deg/s (in case of the 
thresholds). This would especially make sense if 
performance would be scale independent (i.e., 
independent of the viewing distance). This assumption 
seems reasonable, considering that scale independence 
holds for many tasks, including visual acuity, contrast 
sensitivity, speed discrimination thresholds, magnitude 
of the motion after effect, receptive field size, etc. (see, 
e.g., Johnston & Wright, 1985). We discuss this issue 
further in the “Results” section of Experiment 2a. 
Regardless of whether performance is scale independent, 
the thresholds can be transformed into whatever units 
are preferred.  

That such large differences exist between the cloud 
conditions and the plane conditions may come as a 
surprise, because both stimuli contain a similar set of 
speeds and locations. Indeed, as will be shown later, these 
results are difficult to reconcile with a model in which the 
speed information of all dots is optimally combined. 
Instead, the results of Experiment 2 and the modelling 
exercise will show that these results are consistent with 
the idea that the visual system focuses on the most 
relevant pieces of information in the stimulus.  

The deformation broadens the width of the speed 
distribution (in the standard setting the width [SD] equals 
about 5 times the deformation in deg/s; i.e., for 
deformation of 1, the width equals 5 deg/s). The speeds 
are not normally distributed. The shapes of the 
distributions used in the various experiments are shown 
in Figure 6. 

For a deformation of zero, the thresholds obtained in 
the plane and the cloud conditions are about the same. 
This is to be expected because the stimuli are the same: all 
dots move with the same speed. The fact that thresholds 
are somewhat higher (for MH and ES, but not for JR) in 
the cloud condition suggests that subjects use a somewhat 
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 are plotted on the left (in the otherwise logarithmic plots).  
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 answers over those trials in which the 

dots moved with a given mean speed. We calculated the 
fraction correct for low (1.4 to 2.4 deg/s), medium (2.4 to 
3.3 deg/s), and high mean speeds (3.3 to 4.3 deg/s). The 
fractions correct are plotted in Figure 4. For subjects JR 
and ES, performance on trials in which the mean speed 
was low was somewhat better than on trials in which the 
mean speed was high. Subject MH, on the other hand, 
shows no effect of mean speed. The corresponding d' 
values decrease by 15% (JR), 0% (MH), 17% (ES), and 
10% (on average). The stimulus duration was relatively 
short (333 ms) and the speed direction was randomized. 
The fact that performance was somewhat worse for faster 
mean speeds is predictable given that higher retinal 
velocities are associated with higher speed discrimination 
thresholds (e.g., de Bruyn & Orban, 1988). It is likely that 
the mean velocity is not fully nulled by eye movements, 
given that tracking accuracy deteriorates with increasing 
speed (Collewijn & Tamminga, 1984). Still, the effect is 
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Figure 4. The fraction correct of all answers given in the standard conditions with the mean speed falling within a certain range for the 
three subjects and the average over all subjects. The fractions correct were calculated separately for slow mean speeds (1.4 to 2.4 
deg/s), medium speeds (2.4 to 3.3 deg/s), and high mean speeds (3.3 to 4.3 deg/s).  

relatively small given that the mean speed in the category 
with the highest speeds is twice as high as the mean speed 
of the category with the lowest speeds. The thresholds are 
certainly not proportional to the mean speed. The effect 
of mean speed is small relative to the influence of the 
deformation. In summary, performance appears to be 
largely determined by relative rather than absolute speed. 

Experiment 1b: The Test Dot Outside 
the Center  

To make the test dot in the reference stimulus move 
with the average speed and with the local speed of the 
plane (in the plane condition), the dot was put in the 
center of the stimulus in the standard settings. This may 
represent a special case. In this experiment, we tested the 
importance of having the test dot in the center of mass. 
For this purpose, we obtained thresholds for stimuli in 
which the test dot was outside the annulus, at 300 pixels 
to the right of the center of the screen (5.7 deg, x=3 in 
dimensionless units). As before, in the cloud condition, 
the test dot moved with the average speed of the other 
dots in the reference stimulus. In this setting, two 
different types of plane conditions were run. In the first 
condition, the signal stimulus was defined by the fact that 
the test dot moved with the average speed of the other 
dots. Of course, this speed differed considerably from the 
local speed of the plane. Data for this condition are 
shown as closed squares in Figure 5 (“planeOutAv”). In 
another condition, the subjects had to choose the 
stimulus in which the test dot moved with the local speed 
of the plane (i.e., as if the dot was on the plane 
containing the other dots). Data for this condition are 
shown as closed red triangles in Figure 5 (“planeOutJP,” 
in which JP stands for “judge plane”). To facilitate 

comparison, the data of Figure 3 (Experiment 1a) is 
replotted alongside the data of Experiment 1b in Figure 
5. 

Results 
First, notice that the thresholds obtained in the 

conditions with the test dot outside the annulus (open 
blue squares in Figure 5, “cloudOut”) are higher than 
those with the test-dot in the center (open blue circles in 
Figure 5, “cloud”). The thresholds are on average 1.6 
times higher. This shows that not only the distribution of 
speeds, but also the spatial distribution is important, even 
though, in principle, the locations can be discarded when 
estimating average speed.  

Second, notice that the thresholds for estimating 
average speed are even higher when the stimulus depicts a 
rotating plane (closed squares in Figure 5, “planeOutAv”). 
The thresholds are on average 2.1 times higher than the 
thresholds obtained in the standard cloud condition 
(open blue circles in Figure 5, “cloud”). Subjects might in 
this case confuse the average speed and the local speed of 
the plane. Alternatively, subjects may base their estimate 
of the average speed on part of the stimulus. This would 
not impair performance much in the cloud condition, 
because each part contains a representative sample of the 
speed distribution, whereas this is not the case for the 
plane condition.  

Thirdly, thresholds for judging the local speed of the 
plane are higher with the test dot outside the center 
(closed red triangles in Figure 5, “planeOutJP”) than with 
the test dot in the center (closed red circles in Figure 5, 
“plane”). They differ on average by a factor 2.7. This is to 
be expected because it involves extrapolation that is 
generally less robust than interpolation.  

 



Hogervorst, Glennerster, & Eagle 471 

Experimen
Used?  

Figure 5. The thres
along with standard
the stimulus had to
represented a rotat
of the plane at the 
the largest or small
deformation of zero

 

We wished to
configuration of d
advantage. One p
more useful infor
these dots are eas
whether the judgm
and, if so, which 
thresholds for stim
particular parts of

 

Deformation

Average

1

T
hr

es
ho

ld

MH JR

ES

plane
cloud

planeOutAv
cloudOut
planeOutJP

standard conditions

test dotoutside

10.10.0 10.10.0

1

0.1

0.1

 

hold displacement as a function of deformation for the conditions in which the dot was placed outside the annulus, 
 conditions for the three subjects and the (geometric) average. Condition "planeOutAv" refers to a condition in which 
 be chosen in which the dot moved with the average speed (of the dots in the annulus), while the stimulus 
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t 2: Which Dots are Experiment 2a: Which Eccentricities 
Contribute Most? 

In this experiment, we varied the inner and outer 
radii of the annulus. The deformation was chosen around 
0.4, and it took a random value between 0.3 and 0.5. The 
deformation value was jittered to obtain a similar level of 
uncertainty about the deformation as in Experiment 1, in 
which the conditions with different deformations were 
mixed. Experiment 1 showed that the threshold varies 
approximately linearly with deformation (especially for 
small deviations from the average). Therefore it can be 
assumed that the threshold obtained in this mixed 
condition is close to the threshold for a deformation of 
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0.4. In each session, thresholds were measured in 5 
conditions, for which the inner and outer radii 
(rmin, rmax) differed. These were respectively (1, 1.5), (1, 
2), (1, 3), (2, 3) and (2.5, 3), in which 1 unit corresponds 
to 1.9 deg, and in which (1, 2) resembled the standard 
setting. Note that for the first 3 conditions, the inner 
radius is the same, whereas for the last 3 conditions, the 
outer radius is the same. In all conditions, the dot density 
was kept constant and was the same as in the standard 
setting.  

The speed distributions and spatial distributions are 
schematically shown in Figure 6. The speed and spatial 
distributions are similar. This is because the fraction of 
dots with a certain relative speed is proportional to the 
cross-section at a certain x-value. To keep the dot density 
constant, the number of dots N in the annulus was 20, 
49, 132, 82, and 45 for conditions 1 to 5. 

In the plane condition, the speed distribution is 
linked to the spatial distribution. In the cloud condition, 
the speed distribution and spatial distribution can be 
decoupled. We tested the effect of each in turn. Thus, in 
one set of sessions, the speed distribution was the same as 
in the standard setting, while the spatial distribution was 
varied, in the same way as in the plane conditions used in 
this experiment (i.e., the annuli shown in Figure 6). Data 
for this condition are shown as open diamonds in Figure 
7 (“cloudpos”). In another set of sessions, the spatial 
distribution was the same as in the standard setting (i.e., 
with rmin = 1, rmax = 2), while the speed distribution was 
varied, that is the same as in the plane conditions used in 
this experiment (i.e., the lines shown in Figure 6). Data 
for this condition are shown as open blue squares in 
Figure 7 (“cloudspeed”). In this condition, the number of 
dots was kept constant at N = 49. 

Results 
Figure 7 shows the thresholds for the 5 annuli shown 

in Figure 6, for the plane condition, and the two types of 

cloud condition described above. In the plane condition 
(closed red circles in Figure 7, “plane”), performance does 
not improve when the outer radius is increased while the 
inner radius is held constant (first 3 annuli). When the 
inner radius is increased, thresholds rise (last 3 annuli). 
This shows that subjects rely largely on the dots closest to 
the test dot. Performance does not improve when the 
plane is extended outwards. This confirms that subjects 
are probably using the dots closest to the test dot to carry 
out the task.  

In the cloud condition, when the speed distribution 
was held constant and only the spatial distribution was 
varied (open diamonds in Figure 7, “cloudpos”) 
thresholds are (on average) constant, for all the annuli we 
tested. This is in agreement with the idea that, in 
principle, only the speed distribution is important to 
solve the task. Moving the surrounding dots to a 
somewhat larger eccentricity does not influence the 
thresholds. In the cloud condition, when the spatial 
distribution was held constant and the speed distribution 
was varied (open blue squares in Figure 7, “cloudspeed”), 
thresholds gradually increase going from left to right in 
Figure 7. The threshold increases when the outer radius is 
increased (first 3 annuli) as well as when the inner radius 
is increased (last 3 annuli). This suggests that judgments 
are not based on a particular (fixed) subset of dots.  

In the plane conditions, the average thresholds are 
47% higher in the 2→3 conditions than in the 1→1.5 
conditions. On the basis of scale independent 
performance, one might have expected the thresholds to 
be twice as large. That this was not found is probably 
because the stimuli in the two conditions are not fully 
scaled versions of each other (varying in dot size, speeds, 
and the number of dots). In particular, the fact that the 
number of dots in the 2→3 annulus conditions was 
much higher than in the 1→1.5 annulus conditions may 
have played a role (82 vs. 20 dots, respectively). This 

1.0->1.5

p(
∆

S
)

∆S

Speed-distribution

1.0->2.0
(standard)

1.0->3.0 2.0->3.0 2.5->3.0
 

Figure 6. A schematic drawing of the distributions of locations and speeds used in Experiment 2a. The gray annuli represent the 
distributions of locations. The white line drawings show what the relative speed distributions look like. The location and speed 
distributions are similar. In the plane conditions, these distributions are linked. In the cloud conditions, these can be varied 
independently. In one set of conditions, "cloudpos," the speed distribution was held constant while the position distribution was varied, 
while in "cloudspeed," the position distribution was held constant and the distribution of speeds was varied.  
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Figure 7. The thresholds for the various distributions of speeds and locations sketched in Figure 6 for the 3 conditions. Plotted are the 
data of the three subjects and their (geometric) average. 
hypothesis fits with the findings of Experiment 3 that 
show that performance improves (by a small amount) as 
the number of dots is increased. This (small) 
improvement may account for the fact that the thresholds 
in the 2→3 conditions are not twice the thresholds in the 
1→1.5 conditions.  

Results 
Figure 8 shows the thresholds for various 

combinations of deformation directions and segment 
types, along with the thresholds obtained in Experiment 1 
for a deformation of 0.4 (i.e., with the full annulus visible 
and the deformation direction chosen at random). The 
thresholds for the conditions with (ϕ, α)  = (0, 90) and 
(90,0) are about the same as those obtained in the 
standard settings, suggesting that these segments contain 
sufficient information to carry out the task as well as in 
the standard condition. The thresholds for the conditions 
with (ϕ, α)  = (0, 0) and (90, 90), on the other hand, are 
significantly higher. The average data on the right show 
that performance in these conditions is equally poor in 
these two conditions (green columns). The stimuli in 
conditions (0, 90) and (90, 0) (i.e., data shown by the red 
columns) contain dots that move with the lowest relative 
speeds, whereas the stimuli in conditions (0, 0) and (90, 
90), shown by the green columns, contain dots moving 
with high speeds. This suggests that in the plane 
condition, performance is determined mainly by those 
dots that have the smallest relative speeds. Performance 
does not improve when other dots are shown as well. 

Experiment 2b: Which Segments 
Contribute Most (Only Planar 
Conditions)? 

Experiment 2a showed that in the plane condition, 
subjects base their judgments primarily on the dots that 
are closest to the test dot. In this experiment, we 
investigated whether this could be narrowed down 
further. We obtained thresholds in the plane condition 
only for stimuli containing dots in certain segments. As in 
Experiment 2a, the deformation was chosen randomly 
between 0.3 and 0.5. The direction of the deformation 
ϕ (see Equation 1) was either approximately 0 or 90 deg 
(i.e., it was either at a random angle between –10 and +10 
deg, or between 80 and 100 deg). (A direction of 0 deg 
leads to a horizontal compression, while a direction of 90 
deg leads to a horizontal shear transformation). To 
produce the stimuli, we generated a set of locations and 
speeds as in Experiment 1a (standard settings). Then a 
subset of the dots was shown whose locations fell within a 
certain segment of the annulus. The segments in which 
the dots were shown were either around an angle α of 0 
and 180 deg, or around 90 and 270 deg, and were 45 deg 
wide. A total of 4 conditions were used varying in ϕ and 
α: (ϕ, α) = (0, 90), (90, 0), (0, 0), and (90, 90), 
schematically depicted in the top of Figure 8.  

The combined results from Experiment 2a and 2b 
indicate that in the plane condition, judgments are 
mainly based on the dots closest to the test dot moving 
with the slowest (relative) speeds. Although, in principle, 
it would be possible to improve performance by using 
more dots, the visual system appears to be incapable of 
this. Instead, it focuses on the best pieces of information. 
Assuming that the uncertainty in the speed measurements 
increases with increasing relative speed, it is best to use 
the dots with the smallest relative speeds. Also, because in 
general it cannot be assumed that the stimulus underlies a  
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perfect plane, it makes sense to use the dots closest to the 
test dot to infer the local speed of the plane.  

In the cloud condition, judgments are largely based 
on the speed distribution and are largely (but not fully) 
independent of the spatial distribution. Judgments appear 
not to be based on any particular subset of dots (see 
“cloudpos” results in Figure 7). This might be because for 
estimation of the average speed all dots are equally 
informative.  

Experiment 3: Effect of the 
Number of Dots  

Models in which the noise on the different speed 
samples is independent from one another predict a 
decrease in the threshold with an increase in the number 
of dots. As will be shown later, a model that combines 
such measurements optimally predicts that thresholds 
decrease with an increase in the number of dots, 
proportional to 1/√N  (sometimes referred to as 
probability summation). 

In Experiment 3, we varied the number of dots. As in 
the original Experiment (1a), the test dot was in the 
center of mass in the plane condition. In the cloud 
condition, we did not apply this constraint to allow for 
situations in which, apart from the test dot, the stimulus 
contained only one other dot (such a constraint would 
make the task fairly trivial when N = 2, because then the 
task would amount to determining whether all 3 dots are 

part of the same line). A control experiment showed that 
the use of this constraint did not change the thresholds 
for a number of dots larger than 2 (note that the test dot 
is close to the center even when this constraint is not 
applied). 

Thresholds were obtained in 3 conditions. In a plane 
condition and a cloud condition, the deformation was 
chosen around 0.4, randomly between 0.2 and 0.6. In a 
third condition, there was no deformation (the stimulus 
showed a translating set of dots).  

In the plane condition, thresholds were measured for 
N  = 3, 6, 12, and 49 dots. In the cloud condition, 
deformation thresholds were obtained for N  = 2, 3, 4, 8, 
16, and 49 dots. In the condition without deformation, 
thresholds were obtained for N  = 1, 2, 3, 4, 8, 16, and 49 
dots. 

Results 
Figure 9 shows the thresholds as a function of the 

number of dots for the 3 conditions. The solid line has a 
slope of  – 0.5 and indicates the decrease with an 
increase in the number of dots (N) predicted by 
probability summation (~1/√N). The highest thresholds 
were obtained in the cloud condition. Remarkably, 
performance did not improve when the number of dots 
increased from 2 to 49 dots.  One might suppose that 
such poor performance arises from using a limited 
number of randomly chosen dots. However, the fact that 
thresholds remain constant is incompatible with such a 
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Figure 8. The thresholds obtained in Experiment 2b in which only those dots of the plane stimuli were shown that fell within certain 
radial segments. Thresholds are shown for the various combinations of segments and deformation directions, schematically outlined at 
the top of the figure (for details, see text), along with the thresholds obtained in Experiment 1 for a deformation of 0.4. 
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Figure 9. The thresholds as a function of the number of dots for the cloud condition without deformation, and for a plane and a cloud 
condition with a deformation around 0.4 (ranging from 0.2 to 0.6). The solid line has a slope of -0.5 and indicates the decrease with N 
predicted by probability summation. 

strategy. With an increase in the number of dots, the 
average of the subset of dots would be more and more 
dissimilar from the real average, which would lead to an 
increase in the threshold. 

In the plane condition, thresholds were somewhat 
lower than in the cloud condition (in agreement with 
previous results). The threshold shows a small decrease 
with an increase in the number of dots, although not as 
fast as predicted by probability summation (slopes of –
0.25 (JR), –0.19 (MH), –0.48 (ES), and –0.28 [Average]). 
On average the threshold decreases only by some 40% 
when the number of dots is increased from 3 to 49. This 
slight improvement is likely because with an increase in 
the number of dots, the chance increases that dots fall 
within the “more useful” regions, as indicated by the 
results from Experiment 2 (which showed a threshold 
difference of a factor of 2 between the “better” and the 
“less informative” segments: see Figure 8). Thresholds 
were lowest for the uniformly translating dots (consistent 
with the results of Experiment 1a). Here, there was a 
small but consistent improvement as the number of dots 

was increased, although the slope is much shallower than 
the value of –0.5 predicted by probability summation 
(slopes of –0.15 [JR], –0.08 [MH], –0.17 [ES], and –0.13 
[Average]). Werkhoven and Koenderink (1991) found 
that thresholds for discriminating 2D rotation initially 
decrease with 1/√N when the number of dots increased 
from 1 to 8, but level off for higher numbers of dots. 
Here, there is no evidence that the slope is initially –0.5 
or that the slope changes with an increase in the number 
of points.  

Control Experiment: Speeds or 
Change in Spatial 
Configuration? 

It could be argued that instead of using relative 
speeds to solve the task, the subjects based their 
judgments on changes in spatial configuration over time. 
For example, with the planar displays it would have been 
possible to perform the task by determining whether the 
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Figure 10. Movies of (plane) stimuli used in the control experiment showing  a (signal) stimulus (a) containing dots with a limited 
lifetime (of 6 frames), and  a stimulus containing dots (b) with unlimited lifetime (similar to the ones used in the main experiments).  

 
affine shape has changed over time without necessarily 
measuring the speeds. Recent work by Lappin and his 
colleagues (e.g., Lappin, Donnelly & Kojima, 2001; 
Lappin & Craft, 2000) has shown that human observers 
are quite sensitive to such changes. The human visual 
system appears especially sensitive to certain differences 
in shape, such as convexity/concavity, parallelism, and 
co-linearity (Wagemans, Van Gool, Lamote, & Foster, 
2000). It may well be the case that the subjects used such 
properties to perform the task in the plane conditions. 
In the cloud conditions, these alternative strategies 
would not work. This might be the reason why 
performance was so much worse in the cloud conditions 
than in the plane conditions. To test whether changes in 
shape rather than speeds were used by the subjects, we 
performed an experiment in which dots with a limited 
lifetime were used. Only stimuli of the plane condition 
type were used.  

Method 
The experiments were run on a PC using images 

containing Gaussian blobs (width of 1.3 pixels) to achieve 
subpixel accuracy, shown with a refresh-rate of 60 Hz. The 
stimuli were the same as those used in the standard 
condition: the inner and outer radius were 100 and 200 
pixels, respectively, and the viewing distance was such  
(70 cm) that these amounted to the same visual angle 
as in the main experiments (100 pixels = 1.9 deg). As in 
the main experiments, each stimulus lasted 333 ms 
(i.e., each stimulus consisted of 20 frames). The 
deformation was randomly chosen between 0.4 and 

0.6. A method of constant stimuli was used to obtain 
the thresholds. Thresholds were obtained in two 
conditions: (1) “unlimited lifetime” stimuli: similar to 
the stimuli that were used in the main experiments, 
and (2) “limited lifetime” stimuli in each dot was 
visible for a maximum of 6 frames (100 ms). In the 
latter condition, the dots had a lifetime of 6 frames. 
The initial lifetime was randomly chosen between 1 
and 6 frames to make the dots disappear at random 
phases. When a dot disappeared, a new average 
location (the location in the middle frame) was chosen 
and a displacement was derived (using Equation 5). 
The average locations and displacements were used to 
calculate the position of the dot in each frame. Figure 
10 shows examples of both types of stimuli. In each 
session one of the two conditions were probed and five 
stimulus levels were shown with 10 stimuli per level. 
Measurements were obtained from subjects ES and MH 
in three sessions for each condition (the two 
conditions were alternated).  

Results 
Figure 11 shows the results of this control 

experiment.  The thresholds are expressed as a proportion 
of the deformation. Also shown are the thresholds 
obtained in Experiment 1 in the (standard) plane and the 
cloud conditions, expressed in the same units. The 
thresholds in the “limited lifetime” condition are the same 
as the thresholds obtained in the “unlimited lifetime” 
condition. These in turn are the same as the thresholds 
obtained in the standard plane condition (Experiment 1) 
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using a somewhat different experimental set up. The 
thresholds obtained in the standard cloud condition 
(Experiment 1, for a deformation of 0.4) are about twice as 
large as the thresholds obtained in the plane conditions, 
reconfirming our main result that performance is much 
worse in the cloud condition than in the plane condition.  

These results show that subjects’ judgments are 
mainly based on speed (and position) measurements 
rather than on changes in the (affine) spatial structure.  

Modelling: Optimal Combination 
of Speed Measurements 

In this section, we set out the theoretical limits on 
performance for the cloud and plane conditions. We 
show how uncertainty in the individual speed 
measurements would limit performance in both 
conditions. The analysis shows that this limitation on its 
own cannot explain the difference in performance found 
in the two conditions. However, together with the idea 
that in the plane conditions the visual system focuses on 
the more informative dots, the difference in performance 
can be explained. 

Our model is an “ideal observer” model that makes 
no assumptions about the underlying physiology.  It 
calculates the predictions of an ideal signal combination 
rule. Its failures are evidence of neural constraints that 
prevent the human observer from making optimal use of 
the available information. This is a rather different 
exercise from generating a physiologically inspired model 
of motion detection as, for example, Yuille, Grzywacz, 

Watamaniuk and McKee have done (e.g., Yuille and 
Grzywacz, 1988; Grzywacz and Yuille, 1991; Grzywacz, 
Watamaniuk, & McKee, 1995). Their model uses 
assumptions about the coherence of motion within a 
region to help solve the correspondence and aperture 
problems. It also incorporates physiologically plausible 
components such as Gabor filters in the motion detection 
stage. We have taken a different approach and simply 
considered the theoretical limits on performance in the 
two conditions we examined, imposed by (i) noise in 
measuring speeds of individual dots and (ii) the spatial 
layout of the dots (plane or cloud). 

We assume that performance in our experiments 
depends on the estimation of two properties: (1) average 
speed and (2) the local speed of the plane. We assume 
that in the cloud condition, the task is based on 
estimation of the average speed. Although in principle it 
is also possible to use the average speed in the plane 
condition, it is more likely that subjects in that case use 
an estimate of the local speed of the plane. In the 
reference stimulus, the central dot moves with a speed at 
which it is perceived to lie in a plane formed by the 
surrounding dots.  

We show here the accuracy with which these two 
properties can be derived when the speeds are available to 
the system with limited accuracy. We assume that  

1) uncertainty in the measurements of the positions of 
the dots is negligible relative to the uncertainty in the 
speed measurements,  

2) noise on every speed measurement is drawn from a 
Gaussian probability distribution,  

3) and noise in the speed measurements are 
independent from each other.   

Figure 11  
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The measurements consist of the positions and 

speeds (x,y,S)i of all points i  = 1…N. The speeds Si  are 
measured with uncertainty σi (which may differ from dot 
to dot). 

The best estimate of the average speed Sm is simply 
equal to the average of the speeds (i.e., the mean): Sm = 
ΣSi /N. This leads to an uncertainty in the average speed 
estimation of σm given by: , or written 
differently: 

σm
2 = σ i

2∑ / N 2

σm = σ 2 / N , (2) 

that is,  the uncertainty in the average speed estimate is 
equal to the square root of the average squared sigma 
divided by the square root of the number of 
measurements (the bracket < > indicates the average).  

When estimating the local speed of the plane, we first 
have to estimate what the plane looks like. The best 
estimate of the plane follows from a least squares fit to 
the data points (the whole procedure is similar to fitting a 
line to a 2D data set). The best estimate of the local speed 
of the plane at the test location t is obtained by fitting a 
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plane S = ax + by + t through the points (x,y,S)i. Given 
that the noise is drawn from a Gaussian distribution, the 
optimal way to do this is by minimizing χ2 given by  

σi =k ∆Si + c , (5) 

χ 2 =
Si − t − a xi − b yi

σ i

 
  

 
  ∑

2

. (3) 

in which k accounts for a proportional increase of the 
noise with speed, ∆Si is the relative speed of the dot, and 
c is a plateau level of σi as ∆Si becomes small. Up to high 
speeds (64 deg/s), thresholds for speed discrimination (de 
Bruyn & Orban, 1988) can be modelled by a similar 
expression (see Hogervorst & Eagle, 1998). Setting the partial derivatives to t, a and b to zero leads to 

a set of linear equations (e.g., see Press, Flannery, 
Teukolsky, & Vetterling, 1996) that can easily be solved 
(see “Appendix”). The equation describing the 
uncertainty in the estimate of t, σt is rather complex. In 
the model simulations, the exact equations are used. To 
give some intuitive idea, we also derived an 
approximation for the case that the test dot lies is the 
center of mass. In that case it is in close approximation 
equal to (see “Appendix”): 

Model and Data Compared 

σ t = 1 / 1 /σ 2 / N . (4) 

The results of the experiments are compared here 
with the predictions of the model. The model predictions 
are based on (Monte Carlo) simulations: each is an 
average over 30 sample stimuli. Each time, a sample set of 
positions and speeds is calculated. For each of these sets, 
the model comes up with a prediction of the threshold. 
The final prediction is the geometric average over all 30 
sample stimuli.   

This model — in which the (independent) speed 
measurements are optimally combined — gives the 
following (general) predictions: 

Experiment 1: Standard Conditions 
That the thresholds in the cloud condition are much 

higher than in the plane condition cannot be explained 
with a model in which the magnitude of the noise on 
each speed measurement is the same [prediction (a) from 
the previous section]. However, because we assume that 
the noise increases with increasing speeds, the noise 
differs from dot to dot and this may explain the 
difference in thresholds between the two conditions 
[prediction (c)]. 

a. If the noise on all measurements is equal, the 
uncertainty in the average speed and the local planar 
speed estimate is the same (Equations 4 and 2, 
respectively).   

b. The predicted thresholds decrease with increasing 
numbers of dots (with one over the square root of N: 
~1/√N). This follows from the assumption that the 
speed measurements are independent and that all 
measurements are taken into account. This is 
sometimes referred to as probability summation. 

Figure 12 shows the average threshold data along 
with the predictions of several versions of the model. The 
assumption that the noise in the speed measurements 
increases with increasing speed (approaches Weber 
behaviour) predicts the observed increase in thresholds 
with increasing deformation in both conditions.  

c. If the noise in the speeds differs from dot to dot, 
better performance is predicted for estimating the 
local planar speed than for estimating the average 
speed. For example, suppose that the sigma for 
individual dots (σi)    spans the range σo – ∆/2 to σo + 
∆/2, where σo is the average value and ∆ the range. In 
that case, the uncertainty in the average speed 
estimate, σm, becomes larger than the average σo: 
σm

2 = σ 0
2 + ∆2 12  (using Equation 2) whereas the 

uncertainty in the local speed estimate, σt, becomes 
smaller than the average σo: σ t

2 = σ0
2 − ∆2 4  (using 

Equation 4).  

Standard experiment (1a): cloud condition  
In practice, we can obtain an estimate of the Weber 

fraction for estimating the average speed by finding those 
values of k and c for which the property σm √N, the 
uncertainty in the average speed times √N, equals the 
thresholds obtained in the cloud condition (using 
Equation 5). This leads to very high values of k: 31% 
(MH), 94% (JR), 70% (ES), and 58% (Average), with 
values for the c of 0.04 (MH), 0.09 (JR), 0.13 (ES), and 
0.08 (Average). The average threshold data is plotted in 
Figure 12 along with the fitted line (“cloudAll”). The 
parameter k can be compared directly with Weber 
fractions for speed discrimination, which are in the order 
of 5% to 8% (McKee, 1981; de Bruyn & Orban, 1988). 
Note that we use the factor √N to compare the threshold 
obtained in this experiment with thresholds for speed 
discrimination with the same number of dots (because no 
effect of number of dots was found here or in the 
experiments of de Bruyn & Orban, discussed with 

 

Quantitative Predictions 
In order to make quantitative predictions, extra 

assumptions will be used. We will assume that the system 
makes independent measurements of the relative speeds 
of the dots (relative to that of the test dot). The results 
show that performance is more dependent on relative 
speed than on absolute speed (see Experiment 1 and 
Figure 4). We will further assume that the width of the 
noise distribution, σi, increases with increasing (relative) 
speed and has the following form: 

 



Hogervorst, Glennerster, & Eagle 479 

Experiment 3 “Results” below). Comparing the fitted k 
values with Weber fractions for speed discrimination (of 
uniformly translating textures) shows that performance 
for estimating the average speed is remarkably poor. This 
means that subjects are poor at judging the average speed 
of a cloud of dots when it is also rotating (a possible 3D 
interpretation of the stimulus): the rotation interferes 
with the estimation of the average speed. The deforming 
cloud data relate to the results from Watamaniuk and 
Duchon (1992), who performed experiments in which 
subjects had to discriminate the average speed of two sets 
of dots whose speed distributions were equal in width. 
They obtained thresholds for Gaussian speed 
distributions with moderate widths (up to 22% of the 
mean speed), and found that thresholds were unaffected by 
the width of the distribution.  

The speed distributions of the stimuli from the 
standard cloud conditions with a deformation of 0.1 have 
a similar width (e.g., for medium overall speeds the width 
is 23%). For this magnitude of deformation, the 
thresholds are significantly higher than for zero 
deformation. To compare performance levels one might 
calculate thresholds as a fraction of the speed of the 
reference stimulus. In the study by Watamaniuk and 
Duchon, Weber fractions were around 8%. In a 
condition that is comparable to a stimulus used by 
Watamaniuk and Duchon (1992) (cloud condition with 

deformation of 0.1), Weber fractions expressed in this 
way are about 13% for the fastest stimulus speed. Note 
however, that subjects were allowed to track the stimulus. 
Therefore, this is not a very meaningful number. Figure 4 
shows, for example, that thresholds change very little with 
overall speed, whereas they change radically with stimulus 
deformation (Figure 12).  

However, their and our experiments differ in many 
ways. In their experiment, subjects had to compare the 
average speed of two successively shown speed 
distributions with the same width. In our experiments, 
the speed of one dot had to be compared with the average 
of a number of dots moving with different speeds. Also, 
subjects had to compare the speeds of two elements (the 
target dot and the cloud dots) that were visible at the 
same time. Another difference is that, in Watamaniuk 
and Duchon's experiments, the dots moved within a 
stationary aperture, with continuous replacement of dots, 
whereas in our experiment, the outline of the group of 
dots moved. Finally, in our experiments, subjects were 
free to track the test dot. This meant that in our 
experiments there were two (retinal) motion directions, 
whereas there was only one in the experiments of 
Watamaniuk and Duchon. The different motion 
directions might inhibit each other leading to different 
speed processing in the two cases.  

Standard experiment (1a): plane condition Standard experiment (1a): plane condition 
We used the same noise model to predict the 

thresholds in the plane condition (k = 0.58, c = 0.08). 
This prediction is also plotted in Figure 12 (“planeAll”). 
This model does not predict the thresholds obtained in 
the plane condition very well. Although the model 
predicts the thresholds to be somewhat lower than in the 
cloud condition [consistent with prediction (c) from the 
previous section], the observed difference is much larger. 
This model takes all speed measurements into account. 
However, Experiments 2 and 3 indicate that in the plane 
condition, performance is determined primarily by the 
dots in the slow segments close to the test dot. We 
therefore calculated the predictions of the model in 
which only the dots in the slow segments were taken into 
account. The same noise model was used, but only dots in 
segments within +/- 45 deg from the deformation 
direction were taken into account (“planeSeg”, see top in 
Figure 8). Although the fit is not perfect, this model 
predicts the data fairly well (especially for large amounts 
of deformation). The main point is that the difference in 
thresholds between the plane and the cloud conditions 
can be accounted for by using only a subsection of the 
dots (“the best ones”) in the plane condition, and using 
all dots in the cloud condition.  

We used the same noise model to predict the 
thresholds in the plane condition (k = 0.58, c = 0.08). 
This prediction is also plotted in Figure 12 (“planeAll”). 
This model does not predict the thresholds obtained in 
the plane condition very well. Although the model 
predicts the thresholds to be somewhat lower than in the 
cloud condition [consistent with prediction (c) from the 
previous section], the observed difference is much larger. 
This model takes all speed measurements into account. 
However, Experiments 2 and 3 indicate that in the plane 
condition, performance is determined primarily by the 
dots in the slow segments close to the test dot. We 
therefore calculated the predictions of the model in 
which only the dots in the slow segments were taken into 
account. The same noise model was used, but only dots in 
segments within +/- 45 deg from the deformation 
direction were taken into account (“planeSeg”, see top in 
Figure 8). Although the fit is not perfect, this model 
predicts the data fairly well (especially for large amounts 
of deformation). The main point is that the difference in 
thresholds between the plane and the cloud conditions 
can be accounted for by using only a subsection of the 
dots (“the best ones”) in the plane condition, and using 
all dots in the cloud condition.  
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considerably higher when the test dot was outside the 
annulus (see Figure 12).  

When the dots depict a plane and the task is to 
estimate the average speed, the thresholds are even 
higher. This indicates that it is not fully correct to discard 
the positions in the model. In the condition in which the 
local speed of the plane has to be judged, the observed 
thresholds are lower than predicted by the model. In this 
case, it is not obvious which subset of dots should be used 
for the judgment. We therefore used a model in which all 
dots were used. (If a subset of dots can be found that is 
relatively more informative than others, and only this 
subset is used by the model, the predictions will be lower).  

Experiment 2: Which Dots Are Used? 
Figure 13 replots the average threshold data from 

Experiment 2a (different annuli) along with the model 
predictions. In the cloud condition, all dots were taken 
into account and in the plane condition only the dots 
within certain (slow) segments were taken into account.  

In the cloud conditions with varying speed 
distribution (“cloudspeed”), the predictions are somewhat 
too low (by 33% on average). This occurs because of the 
way the model curve is fixed at one point. In this case, the 
model threshold for the 1→2 condition was taken as 
equal to the model threshold for the 1→2 condition in 
Experiment 1a, with a deformation of 0.4. Although this 
value is a good fit to the empirical data for that 
Experiment 1a, it is not a good predictor of the threshold 
in this Experiment 2a: thresholds for this condition are 
34% higher in Experiment 2a (accounting almost exactly 

for the discrepancy of data and model in Figure 13). It is 
not clear why the threshold levels turn out to be different. 
One difference is that here the deformation ranges from 
0.3 to 0.5, whereas in Experiment 1a, it was fixed at 0.4. 
Although this is taken into account by the model, it does 
not predict a difference in thresholds. The difference may 
be due to increased uncertainty in the subject’s 
expectation. The important thing is that the model gives a 
good qualitative prediction of the pattern of results: the 
measured and predicted thresholds rise with a similar 
slope going from left to right in Figure 13.  

In the plane conditions, the model “planeSeg” takes 
only dots in certain (slow) segments into consideration. 
These are the segments shown to be most useful to 
subjects in Experiment 2b (Figure 8). The predictions are 
shown in Figure 13. This model predicts a gradual 
increase in thresholds going from left to right in Figure 
13. The empirical data, however, show that the thresholds 
are independent of the outer radius. This indicates that 
the judgments are not based only on the dots in certain 
segments, but also (primarily) on those dots that are close 
to the center dot. When the inner radius is increased, the 
thresholds rise. This is in accordance with a model that is 
based on the slowest dots, closest to the center dot 
(indicated by model “plane” in Figure 13). 

We have assumed in our model that the shape of the 
surface is known (a plane). An alternative explanation for 
the importance of the dots closest to the test dot is that, 
in general, surfaces tend to vary spatially. Therefore, in 
principle, it makes sense to restrict the interpolation to a 
region around the test location. However, our modelling 
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Figure 13. The average thresholds from Experiment 2a along with the model predictions. The left panel shows results for the plane 
condtion. The center panel shows results for the  “cloudspeed” condition in which the speed distribution was the same as in the plane 
conditions. The right panel shows results for the “cloudpos” condition, in which the distribution of locations was the same as in the plane 
condition. In the cloud conditions, the model takes all dots into account ("cloudAll"), whereas in the plane conditions, only certain 
segments (containing the slowest dots) are taken into account ("planeSeg"). Model “plane” takes into account only dots that lie within 
certain segments and that are close to the test dot (see text). 
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there is an increase in the chance of finding a slow dot 
close to the test dot (see Experiment 2). In the cloud 
condition, only a small (but statistically significant) 
decrease was found in the zero deformation condition. In 
the model described here, we have assumed that the 
thresholds are independent of the number of dots. This 
assumption is in accordance with the results of de Bruyn 
and Orban (1988), who found that thresholds for speed 
discrimination were not higher when one rather than 
many dots were used. Such a lack of improvement with 
an increase in the number of dots was also incorporated 
into the model used by Hogervorst and Eagle (1998, 
2000) and Eagle and Hogervorst (1999) that was 
successful in explaining performance in structure-from-
motion experiments.  
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Our results show that subjects are relatively good at 

estimating the local speed of a plane and relatively poor at 
estimating the average speed of a set of dots. This was 
shown in Experiment 1, where two types of stimuli were 
compared: dots had the same distributions of speeds and 
locations in each case but the speeds were assigned to 
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gure 14 replots the average threshold data from 
iment 2b (in which only certain segments of the 
were shown) along with predictions from the model 
 all the available dots). In agreement with the 
, the model predicts the thresholds to be higher in 
nditions in which only fast dots are shown (in the 
ion of the deformation). This is because the 
tainty in the speed estimate increases with 
sing speed. Even the threshold levels are predicted 
well. 

eriment 3: Effect of the Number of 
 

he one aspect of the model that completely fails to 
nt for the data is the lack of variation in threshold 
 number of dots in the stimulus is varied. The 
l predicts that the thresholds should decrease with 
uare root of the number of dots, N. The results of 
iment 3 show that this is not the case. In the plane 
tion with nonzero deformation, there is a small 
se in threshold. However, this decrease can be 
ned because with an increase in the number of dots, 

different dots. The results show that the difference in 
performance in the two conditions probably stems from 
the fact that for estimation of the average speed all dots 
have to be taken into account, whereas for estimating the 
local speed of a plane, it is possible to restrict 
consideration to a limited number of dots. In the latter 
case, given certain simple assumptions, some dots supply 
better speed information than others (those dots with the 
slowest relative speed, closest to the test dot). Our results 
suggest that the visual system is able to focus on this 
information. 

The model we propose succeeds in accounting for a 
number of important aspects of the data. This model 
takes into account only slow dots close to the test dot 
when estimating planar speed (“planeSeg” in Figure 12) 
and takes all the dots into account when estimating 
average speed (“cloudAll”). Both model and data show: 

• better performance for judgments of the local speed 
of a plane than for the average speed of a set of 
unstructured dots (see Figure 12); 

• a rise in thresholds with increasing deformation (see 
Figure 12); 

• a similar pattern of thresholds when parts of the 
stimulus are removed (see Figure 13 and Figure 14). 

Not only is the pattern of thresholds captured well, 
the model even gives very reasonable quantitative 
predictions. There are only two free parameters in the 
model, factor k that accounts for a proportional increase 
of the noise with speed and the plateau level c for speed 
discrimination thresholds (see “Model” section), which 
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were derived from the data in Experiment 1 and used for 
all the modelling. 

There are also notable aspects of the data for which 
we have no explanation. Most strikingly, our results show 
that performance varies very little with the number of 
dots in the stimulus, despite the extra information these 
dots carry. We therefore used a model in which this lack 
of improvement is (somewhat artificially) taken into 
account (the predicted threshold is taken to be the 
threshold of the optimal combination model multiplied 
by the square root of the number of dots in the stimulus). 
Strictly speaking, this means that the noise in the speed 
measurements is no longer independent (the noise is 
correlated), or that the speeds are no longer combined 
optimally.  

Another perplexing aspect of the data is that the noise 
level required to explain performance here is so high. 
Factor k (Equation 5), equal to 58% for the average subject, 
can be compared directly with Weber fractions for speed 
discrimination, which are around 5% (for medium speeds). 
This means that much higher noise levels have to be 
assumed to account for our results than for thresholds for 
speed discrimination. A similar model used by Hogervorst 
and Eagle (1998, 2000) was successful in modelling 
structure-from-motion thresholds and biases in perceived 
depth. They used estimates of the noise that were directly 
derived from human velocity and acceleration thresholds 
for uniform moving patterns (for small viewing angles, the 
noise was equal to these estimates, and for large viewing 
angles, the noise was twice as much). In our model, the 
noise is more than 10 times as high (for the average 
subject). One difference between our model and their 
model is that we use relative speeds as input, whereas 
Hogervorst and Eagle use speeds expressed in screen 
coordinates. The results show that this is more appropriate 
in our case (see Figure 4). Still, in the studies by Hogervorst 
and Eagle, the hinged planes rotated around their hinge, 
and the hinge did not show any additional translation. 
Whether absolute speeds, retinal speeds, or relative speeds 
(and relative to which reference) are more appropriate as 
input in structure-from-motion algorithms needs to be 
determined in future studies. The fact remains that the 
noise levels required to explain the results here are much 
higher than the noise levels required to explain the results 
in the studies by Hogervorst and Eagle and basic motion 
discrimination thresholds (using uniformly moving 
patterns). The reason for this is unclear.  

Our model uses the assumption that (independent) 
noise in the speed measurements limits performance. 
However, there is a large amount of evidence (e.g., Legge 
& Campbell, 1981; McKee, Welch, Taylor, & Bowne, 
1990) showing that motion thresholds are much lower 
with than without a reference frame, indicating that the 
assumption of independent speed measurements does not 
hold. For instance, the fact that thresholds for two dots 
moving in anti-phase are about twice as small as 
thresholds for two dots moving in phase (e.g., Hogervorst, 

Kappers & Koenderink, 1995; Hogervorst, 1996; Lappin 
et al., 2000) shows that human judgments of velocity 
fields (including structure-from-motion fields) are not 
derived from independent velocity measurements of the 
image features. Also our finding that performance 
improves little with an increase in the number of dots 
indicates that the assumption of independent speed 
measurements is too simple. It has been suggested that 
human estimates of structure-from-motion and ego 
motion are based more directly on the structure of the 
velocity field (e.g., optic flow), using higher order 
derivatives of the velocity field rather than the zero-order 
component. Such models appear to give a more realistic 
description of human velocity processing.  

It is possible that other models of pooling motion 
signals, such as the motion coherence model of Grzywacz 
and colleagues (e.g., Yuille and Grzywacz, 1988; Grzywacz 
& Yuille, 1991; Grzywacz, Watamaniuk, & McKee, 
1995), would also predict a difference in performance 
between cloud and plane conditions. For example, the 
model of Grzywacz et al. (1995) seeks (in general) to 
assign a single motion vector to each image location by 
using neighbouring regions. The model is likely to fare 
better with a spatially coherent pattern such as a plane 
than it would with a stimulus in which very different 
motion speeds and directions are present within the 
neighbourhood of each point, such as in the cloud 
condition. Our model does not rule out the possibility 
that other factors, such as those considered by Grzywacz 
et al. (1995) , are important. Rather, we have provided a 
quantitative account setting out the limits of performance 
that would be expected given noise in speed estimates and 
use of different subsets of dots. Our model is more like 
an “ideal observer” model that analyzes what information 
is available to perform the task at hand, and indicates 
what limits visual processing. The advantage of this ideal 
observer approach is that failures of the model provide 
evidence of neural constraints that prevent the human 
observer from making optimal use of the available 
information. 

Our model allows for quantitative predictions for the 
kinds of stimuli used in structure-from-motion and ego-
motion tasks. Similar models have been successful in 
predicting human performance in a range of structure-
from-motion and ego-motion tasks (e.g., Koenderink & 
van Doorn, 1987; Werkhoven & van Veen, 1995; 
Hogervorst & Eagle, 1998, 2000). This type of model 
consists of two stages: in the first stage, the noise is 
specified, and in the second stage, an optimal observer 
model is used to solve the task using the measurements. 
In the latter stage, assumptions or prior information may 
be used, although in our model no priors are used 
(equivalent to using flat priors). 

The results show that deformations have a very 
deleterious effect on thresholds. Suggestions that the 
visual system's sensitivity to spatial structure is unaffected 
by affine distortions (e.g., Lappin & Craft, 2000) are not 
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compatible with this strong effect of deformation. By 
comparison, changes in translation speed had little effect 
on thresholds. 

In summary, the processing capacity of the visual 
system appears to be limited. In some situations, such as 
when estimating the local speed of the plane, we suggest 
that the task is solved by focusing on the best pieces of 
information. In other situations, such as when estimating 
average speed, such a strategy is not possible and 
attention has to be paid to all pieces of information.  
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Appendix This is analogous to the derivation for fitting a line in 2D: 
y = a x + t, described in Numerical Recipes (Press et al., 
1996). In the 2D case, the variance in the t is given by:  Given the measured z values in a number of points 

(x,y,z)i. for i = 1..N and given that these measurements 
are taken from their real values with noise added from 
Gaussian distributions with widths σi, the object is to 
find a plane z = t+ax+by that best represents the data. 
This is done by minimizing function χ2 given by: 
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when Σx= 0, in which the bracket < >  stands for the 
average. Therefore, when the tilt is well defined and 
Σx= 0, the uncertainty in the local speed of the plane 
reduces to (A5). When one fits a plane z = t to the data in 
a similar way as described above, one obtains: 

Ideally, the deviations from the plane are weighted by 
the inverse of the width σi. However, other weightings are 
also possible; for example, the weight could be made to 
vary with the distance from the origin to make it more 
local (as in splines). Minimization amounts to setting the 
partial derivatives to zero: t =

zi σ i
2∑

1 σ i
2∑

, (A6) 
∂χ 2 /∂a = ∂χ 2 /∂b = ∂χ 2 /∂t = 0 , 

in which case the variance in t is described exactly (i.e., 
not an approximation) by (A5). This is a weighted average 
of all measurements, in which the weight is inversely 
related to the uncertainty in the measurement. When 
taking a normal average m = Σzi/N, the variance is simply 

leading to the following set of linear equations: 
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 σm
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To appreciate what these equations mean, one could use 
the analogy of a number of resistances with magnitudes 
equal to . The total resistance corresponds to the 
variance in the speed estimate of the test dot. The 
variance in the local planar speed resembles a situation in 
which the resistances are in parallel, whereas the variance 
in the average speed estimation resembles a situation in 
which the N resistances are in series (actually, N of these 
series should be placed in parallel to account for the 
division by N). While the variance in the average speed 
estimate is determined equally by all variances, the 
variance in the local speed of the plane is determined 
largely by the smallest variance (the smallest resistance). 

σ i
2The solution is written as 

(a, b, t ) = M • (Σ zx , Σ zy , Σ z )  , 

in which M is the inverse of the matrix displayed above. 
The task set in our experiment requires deduction of t.  
The best estimate of t follows from the solution of the 
matrix equation in which the measurements of zi are 
used: . The noise in these 
measurements propagate into the noise on the estimate of 
t, σt, in the following way: 

t = m31Σ zx + m32Σ zy + m33 Σ z
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