Dr Peter K. Sweby
Associate Professor
Room 301
Department of Mathematics
University of Reading
Telephone: +44 (0)118 378 8675
Fax: +44 (0)118 931 3423
email: P.K.Sweby@reading.ac.uk
|
|
Main Research Interests
-
Numerical solution of hyperbolic conservation laws
-
Total variation diminishing (TVD) schemes
-
Grid generation and adaptation
-
Dynamics of discretisations
-
Mathematical Biology
Recent & Current Research Students
- Paul Burton 1994-97
Convergence of Flux Limiter Schemes for Hyperbolic Conservation Laws with Source
Terms- Joel Goodwin 1994-97
Developing a Practical Approach to Water Wave Scattering Problems -
Thomas Johnson 1996-1999
Algorithms for water quality modelling in urban drainage systems
-
Justin Hudson 1998-2001
Numerical techniques for morphodynamics modelling of coastal regions -
Joanne Morgan 1998-2002
Numerical methods for traffic flow
-
Ken Blake 1998-2001
Contour zoning
- David Bailey 2001-2005
A Ghost Fluid Finite Volume Continuous Rezone/Remap Eulerian Method for
Time-Dependent Compressible Euler Flows
- Paul Jelfs 2001-2005
A C-property Satisfying RKDG Scheme with Application to the
Morphodynamics Equations
- Jenny Morrell 2003-2007
A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian method
for the numerical solution of the Euler equations.
- Sarah Cole 2009-2013 (with Mike Baines)
Truncation Error estimates for Mesh Refinement in Lagrangian Hydrocodes
- Bonhi Bhattacharya 2006-2010 (with Marcus Tindall, Kim Jackson, Anne-Marie Minihane)
Lipoproteins, diet and genotype: Mathematical models of the interaction of
lipoproteins with hepatocytes
- Fran Pool 2011- (with Marcus Tindall)
- Niall Arthur 2012- (with Mike Baines & Tristan Pryer)
- Josie Dodd 2013- (with Marcus Tindall)
Recent & Key Publications
- J.M. Morrell, P.K. Sweby, A. Barlow J. (2007) "A cell by cell anisotropic
adaptive mesh ALE scheme for the numerical solution of the Euler equations"
J. Comput Phys. 226 pp1152-1180
- J. Hudson and P.K. Sweby (2005) "A high-resolution scheme for the
equations governing 2D bed-load sediment transport." Internat. J. Numer.
Methods Fluids 47 pp1085--1091
- D.A. Bailey, P.K. Sweby, P. Glaister (2005) "A ghost fluid, moving
finite volume plus continuous remap method for compressible Euler flow."
Internat. J. Numer. Methods Fluids 47 pp833--840.
- J. Hudson and P.K. Sweby (2003), "Formulations for Numerically
Approximating Hyperbolic Systems Governing Sediment Transport", Journal of
Scientific Computing, 19, pp225-252
- T. C. Johnson, M. J. Baines, P. K. Sweby (2002), "A box scheme for
transcritical flow", International Journal for Numerical Methods in
Engineering, 55, pp 895-912
- Lu, Y. G. and Sweby, P. K. and Chen, K., (1999), "The rate of convergence of the viscosity method for a nonlinear hyperbolic system", Nonlinear Analysis-Theory Methods & Applications, 38, pp435-445
- Yee, H. C. and Torczynski, J. R. and Morton, S. A. and Visbal, M. R. and Sweby, P. K. (1999), "On spurious behavior of CFD simulations", Int. J. For Numer. Methods in Fluids, 30, pp675-711
- Yee, H. C. and Sweby, P. K. (1998), "Aspects of numerical uncertainties in time marching to steady-state numerical solutions", AIAA J., 36, pp712-724
- Yee, H. C. and Sweby, P. K. (1997), "On spurious behavior of super-stable implicit methods", Int. J. Computational Fluid Dynamics, 8, p265
- Sweby, P. K. and Yee, H. C. (1996), "On the dynamics of some discretisations of convection- diffusion equations", Zeitschrift fur Angewandte Mathematik und Mechanik, 76, pp553-554
- Yee, H. C. and Sweby, P. K. (1995), "Dynamical-approach study of spurious steady-state numerical- solutions of nonlinear differential-equations .2. Global asymptotic-behavior of time discretizations.", Int. J. Computational Fluid Dynamics, 4, p219
- Yee, H. C. and Sweby, P. K. (1994), "Global asymptotic-behavior of iterative implicit schemes.", Int. J. Bifurcation and Chaos, 4, pp1579-1611
- Chen, K. and Baines, M. J. and Sweby, P. K. (1993), "On an adaptive time-stepping strategy for solving nonlinear diffusion-equations.", J. Comput. Phys., 105, pp324-332
- Griffiths, D. F. and Sweby, P. K. and Yee, H. C. (1992), "On spurious asymptotic numerical-solutions of explicit Runge-Kutta methods.", IMA J. Numer. Anal., 12, pp319-338
- Yee, H. C. and Sweby, P. K. and Griffiths, D. F. (1991), "Dynamic approach study of spurious steady-state numerical- solutions of nonlinear differential-equations .1. The dynamics of time discretization and its implications for algorithm development in computational fluid-dynamics.", J. Comput. Phys., 97, pp249-310
- Morton, K. W. and Sweby, P. K. (1987), "A comparison of flux limited difference-methods and characteristic Galerkin methods for shock modeling.", J. Comput. Phys., 73, pp203-230
- Morton, K. W. and Sweby, P. K. (1985), "A comparison of finite-difference and characteristic Galerkin methods for shock modeling.", Lecture Notes Phys., 218, pp412-416
- Sweby, P. K (1984), "High-resolution schemes using flux limiters for hyperbolic conservation-laws.", Siam J. Numer. Analysis , 21, pp995-1011
- Sweby, P. K. and Baines, M. J. (1984), "On convergence of Roe's scheme for the general non-linear scalar wave-equation.", J. Comput. Phys., 56, pp135-148
|