Dr Peter K. Sweby
Associate Professor
Room 301
Department of Mathematics
University of Reading
Telephone: +44 (0)118 378 8675
Fax: +44 (0)118 931 3423
email: P.K.Sweby@reading.ac.uk


Main Research Interests

Numerical solution of hyperbolic conservation laws

Total variation diminishing (TVD) schemes

Grid generation and adaptation

Dynamics of discretisations

Mathematical Biology
Recent & Current Research Students
 Paul Burton 199497
Convergence of Flux Limiter Schemes for Hyperbolic Conservation Laws with Source
Terms  Joel Goodwin 199497
Developing a Practical Approach to Water Wave Scattering Problems 
Thomas Johnson 19961999
Algorithms for water quality modelling in urban drainage systems

Justin Hudson 19982001
Numerical techniques for morphodynamics modelling of coastal regions 
Joanne Morgan 19982002
Numerical methods for traffic flow

Ken Blake 19982001
Contour zoning
 David Bailey 20012005
A Ghost Fluid Finite Volume Continuous Rezone/Remap Eulerian Method for
TimeDependent Compressible Euler Flows
 Paul Jelfs 20012005
A Cproperty Satisfying RKDG Scheme with Application to the
Morphodynamics Equations
 Jenny Morrell 20032007
A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian method
for the numerical solution of the Euler equations.
 Sarah Cole 20092013 (with Mike Baines)
Truncation Error estimates for Mesh Refinement in Lagrangian Hydrocodes
 Bonhi Bhattacharya 20062010 (with Marcus Tindall, Kim Jackson, AnneMarie Minihane)
Lipoproteins, diet and genotype: Mathematical models of the interaction of
lipoproteins with hepatocytes
 Fran Pool 2011 (with Marcus Tindall)
 Niall Arthur 2012 (with Mike Baines & Tristan Pryer)
 Josie Dodd 2013 (with Marcus Tindall)
Recent & Key Publications
 J.M. Morrell, P.K. Sweby, A. Barlow J. (2007) "A cell by cell anisotropic
adaptive mesh ALE scheme for the numerical solution of the Euler equations"
J. Comput Phys. 226 pp11521180
 J. Hudson and P.K. Sweby (2005) "A highresolution scheme for the
equations governing 2D bedload sediment transport." Internat. J. Numer.
Methods Fluids 47 pp10851091
 D.A. Bailey, P.K. Sweby, P. Glaister (2005) "A ghost fluid, moving
finite volume plus continuous remap method for compressible Euler flow."
Internat. J. Numer. Methods Fluids 47 pp833840.
 J. Hudson and P.K. Sweby (2003), "Formulations for Numerically
Approximating Hyperbolic Systems Governing Sediment Transport", Journal of
Scientific Computing, 19, pp225252
 T. C. Johnson, M. J. Baines, P. K. Sweby (2002), "A box scheme for
transcritical flow", International Journal for Numerical Methods in
Engineering, 55, pp 895912
 Lu, Y. G. and Sweby, P. K. and Chen, K., (1999), "The rate of convergence of the viscosity method for a nonlinear hyperbolic system", Nonlinear AnalysisTheory Methods & Applications, 38, pp435445
 Yee, H. C. and Torczynski, J. R. and Morton, S. A. and Visbal, M. R. and Sweby, P. K. (1999), "On spurious behavior of CFD simulations", Int. J. For Numer. Methods in Fluids, 30, pp675711
 Yee, H. C. and Sweby, P. K. (1998), "Aspects of numerical uncertainties in time marching to steadystate numerical solutions", AIAA J., 36, pp712724
 Yee, H. C. and Sweby, P. K. (1997), "On spurious behavior of superstable implicit methods", Int. J. Computational Fluid Dynamics, 8, p265
 Sweby, P. K. and Yee, H. C. (1996), "On the dynamics of some discretisations of convection diffusion equations", Zeitschrift fur Angewandte Mathematik und Mechanik, 76, pp553554
 Yee, H. C. and Sweby, P. K. (1995), "Dynamicalapproach study of spurious steadystate numerical solutions of nonlinear differentialequations .2. Global asymptoticbehavior of time discretizations.", Int. J. Computational Fluid Dynamics, 4, p219
 Yee, H. C. and Sweby, P. K. (1994), "Global asymptoticbehavior of iterative implicit schemes.", Int. J. Bifurcation and Chaos, 4, pp15791611
 Chen, K. and Baines, M. J. and Sweby, P. K. (1993), "On an adaptive timestepping strategy for solving nonlinear diffusionequations.", J. Comput. Phys., 105, pp324332
 Griffiths, D. F. and Sweby, P. K. and Yee, H. C. (1992), "On spurious asymptotic numericalsolutions of explicit RungeKutta methods.", IMA J. Numer. Anal., 12, pp319338
 Yee, H. C. and Sweby, P. K. and Griffiths, D. F. (1991), "Dynamic approach study of spurious steadystate numerical solutions of nonlinear differentialequations .1. The dynamics of time discretization and its implications for algorithm development in computational fluiddynamics.", J. Comput. Phys., 97, pp249310
 Morton, K. W. and Sweby, P. K. (1987), "A comparison of flux limited differencemethods and characteristic Galerkin methods for shock modeling.", J. Comput. Phys., 73, pp203230
 Morton, K. W. and Sweby, P. K. (1985), "A comparison of finitedifference and characteristic Galerkin methods for shock modeling.", Lecture Notes Phys., 218, pp412416
 Sweby, P. K (1984), "Highresolution schemes using flux limiters for hyperbolic conservationlaws.", Siam J. Numer. Analysis , 21, pp9951011
 Sweby, P. K. and Baines, M. J. (1984), "On convergence of Roe's scheme for the general nonlinear scalar waveequation.", J. Comput. Phys., 56, pp135148
