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Abstract


The k-fold Hall number of a graph G, 
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, is the minimum positive integer m(k such that if L is any list assignment with |L(v)|(m for every v(V(G) then there is a k-fold list coloring of G whenever G and L satisfy Hall’s condition (a natural necessary condition).  In this paper, it is determined that 
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 for all cycles.  In particular, we show that there is equality on the right when n is odd and conjecture that there is equality on the left when n is even.

1. Introduction

A vertex list assignment, or a color supply, for a graph G=(V,E) is an assignment of finite subsets, or lists, of a set of colors C to the vertices of G. A color demand for V is a function that assigns a positive integer to each vertex, indicating the number of colors required to color each vertex.  Let L be a color supply and w be a color demand for G.  We say that G is (L,w)-colorable if for each 
[image: image3.wmf]V

v

Î

 there exists a set ((v)(L(v) such that |((v)|=w(v) and ((u)(((v) = ( whenever uv is an edge in G.  Often to emphasize when w is a constant function, w(k, we say that G is (L,k)-colorable or that G has a k-fold list coloring.

Certainly, a graph G has an (L,w)-coloring if the color supply at each vertex is sufficiently large.  For w(k, the k-fold choice number, 
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, is the minimum cardinality of the supplies guaranteeing the existence of a k-fold list coloring (or an 

(L,k)-coloring).  A related parameter, 
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, the k-fold chromatic number of G, is defined as the k-fold choice number with the additional restriction that all supply lists are identical.  Evidently 
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.  Besides the consideration of list lengths, there is a natural supply\demand type necessary condition for the existence of an (L,w)-coloring.

  Given a list assignment L and X(V, let 
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, let G(x,L) denote the subgraph of G induced by {v(V(G):
[image: image10.wmf])

(

v

L

x

Î

}; the subgraph of G induced by those vertices whose lists contain color x.  Because no color may appear at both ends of an edge, the maximum number of times each color x can be used in an (L,w)-coloring of H a subgraph of G is ((H(x,L)), where ( denotes the vertex independence number of a graph.  Therefore, a necessary condition for the existence of an (L,w)-coloring is: 
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(*)

This leads us to the next definition.


We say that a graph G, with color supply L and color demand w, satisfy Hall’s condition if and only if the inequality (*) is true for every induced subgraph H of G [1,8,9].  Often to emphasize that w(k, we say that G, L with k satisfy Hall’s condition and note that the right hand side of (*) is k|V(H)|.


For w(k, the k-fold Hall number of G, 
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, is the smallest integer m(k such that there is a (L,k)-coloring of G whenever G, L with k satisfy Hall’s condition and 

|L(v)| (m for every v(V.  The k-fold Hall number has its origins in the little known extensions of Hall’s marriage theorem [5] done independently by Halmos and Vaughan [6] and Rado [11].  Their result can be stated: If G is a clique then for any L and w, Hall’s condition is sufficient for the existence of an (L,w)-coloring.  When w(k, with our terminology, their result implies 
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 are possible [3,7].  It does not appear easy to determine the k-fold Hall number of a graph.  The case of trees is settled in [2]; 
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For a cycle of order n, 
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 [10].  Our objective is to determine the k-fold Hall number of a cycle, 
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.   Gutner and Tarsi [4] established 
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 and using measure theory Slivnik [13] determined that 
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.  As a corollary of our results we obtain combinatorial proofs of these values.

Our main results can be summarized as 
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, with equality on the right when n is odd and we conjecture equality on the left when n is even.  The value of 
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 is undetermined for all but a few small values for k!  However, there is evidence that 
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 and the lower bounding argument appears tight, so we conjecture that 
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2. Results and Methods


Since 
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 for all k.  As one of the main results of this note we completely determine the k-fold Hall number of odd cycles.  

Theorem 1. For each pair of integers m>1 and k>0, 
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To prove that 
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, we shall show the existence of an algorithm which uses priority of colors (good/bad) and the following generalization of Halmos and Vaughan’s result.  

Path Theorem [1]. For any path P with color demand w and color supply L, P is (L,w)-colorable if and only if P, L, and w satisfy Hall’s condition.


Specifically, we show in Lemma 6 that when all of the color supply sets have at least 2k colors and 
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 derived from L by removing these k colors from the supplies of the neighbors of v, satisfy Hall’s condition.  Then by the path Theorem 
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,k)-coloring which is easily extended to an (L,k)-coloring of 
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 by using the original k colors at v.  Since there is an algorithm for coloring a path in [1], there is an algorithm to color a cycle.


For any graph G, in order to show that 
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 fails for even cycles.  In fact it appears that 
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 whenever k(2m-1.  For instance, we can show that 
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Apparently, the k-fold Hall number has the unusual attribute of being more difficult for even cycles, than for odd cycles.  The case of 
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Theorem 2.  For each fixed k>0 
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 for all integers m>0.

The best bound we obtain is Theorem 3.

Theorem 3. For integers k(1 and m(2, 
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Combining Theorem2, Theorem 3 and Lemma 6 we get the following result.

Corollary 4. For integers m(2 and k satisfying, 1(k<2m-1, 
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The smallest unresolved cases are 
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Conjecture. For integers k>0 and m(2, 
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Although our efforts do not resolve the whole Hall cycle story, they do bear a short combinatorial proof of the values of the k-fold choice number of cycles.  Lemma 6 and Stahl’s results provide proofs to the results of both Gutner and Tarsi, and Slivnik. 

Corollary 5. For integers k>0 and m>1 
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Various relationships between k-fold coloring parameters are studied in [3], one of interest here is that 
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There is an open problem in [3] that our results bear on: does 
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3. Proofs


Given a vertex v of a cycle G and a color x(L(v), we say that x is bad at v if and only if no maximum independent set of G(x,L) contains v.  For each vertex v(V(G) we partition its supply, L(v), as follows:


B(v)={ x(L(v): x is bad at v}


O(v)={ x(L(v): G(x,L) is a path of odd order}\B(v)


E(v)=L(v)\(B(v)(O(v)).

Note that if G(x,L) is simply a vertex v then x(O(v).  If G(x,L) is the whole cycle then x(E(v).  Throughout, we assume that the vertices of 
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 in clockwise order.  The heavy lifting done in proving Theorem 1 is done via the next lemma.

Lemma 6.  For integers k>0 and n>2, 
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Proof.  To simplify notation, suppose that 
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Let 
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We shall show that G-
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In order to show that every induced subgraph satisfies inequality (*), we begin with a ‘near’ (L,k)-coloring, (, as follows: for 0(j(2m-2, 
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