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Paul Glaister

Throughout my career | have been very fortunate to be able to work on many interesting problems in
mathematics, some of which have appeared in the public domain in the fopmldications(438 at the
time of writing!) in journals eté.

The three main areas of study | have pursued are:

a numerical analysis and computational fluid dynamics, including the development and anglysis o
numerical schemes for the solution of problems arising in applied mathematics;

b mathematics and science education, at both school and university, and the agatigetsity
interface;

¢ teaching and learning, primarily in higher education.

If there is any irpact of this work it is, in part, indicated by the numbers of citations of my work by other
authors, referencing and using this work, e.g.@mogle Scholdt have been cited326 times and on
Mendeley there have been 168 downloads of a subset of my publications which are in the
ScienceDireétdatabase and made available throughopud

The impact of work in areas (b) and (c) is mainly through a national and international audience of

mathematics and science education practitioners in schools, colleges and universities, using my work for

enhancement, enrichment and hopefully enjoyment.
In the categories in (a) authors of the 12 most recent papers citing my work have been working on:

1 sea wave energy using an oscillating water column as an alternative, renewable energy source,
which is sustainable and with no impact on environmental pollution;

1 afinite volume scheme for the solution of a mdtmponent gas flow model in a pipe on nyat
topography;

1 development of an in vitro methodology capable of use in commercial testing laboratories for
measuring the human ingestion bioaccessibility of polyaromatic hydrocarbons (PAHS) in soill;

1 an explicit homogeneous conservative quasbustic schem for the numerical solution of one
dimensional shallowvater equations with an uneven bottom

1 monotone, seconerder accurate numerical scheme is presented for solving the differential form
of the adjoint shallowwater equations in generalized twadimensimal coordinates;

9 air-water interactions within storm water systems during rapid inflow conditions;

9 verification, validation and uncertainty quantification in therafigidraulics analysis;

9 implicit secondorder accurate spatial scheme for steastate thermd-hydraulic simulations of the
two-phase twofluid sixequation model for use in the nuclear energy industry;

1 le Chatelier's Principle applied to model Strong Afiong Base titrations;

9 continuous adjoint method for steadstate two-phase flow simulatios:

9 compressible flow at high pressure with a linear equation of state;

1 http://centaur.reading.ac.uk/view/creators/90000233.html
2 https://scholar.google.co.uk/citations?user=qV1BwWAEAAAAJ&hl=en
3 https://www.mendeley.com/profiles/paglaister/stats/
4 https://www.sciencedirect.com/search?authors=glaister%20p&show=25&sortBy=relevance
55 https://www.scopus.com/authid/detail.uri?authorld=7003342589
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1 coexistence of two important communication techniques, swthogonal multiple access (NOMA
a key enabling technology in negéneration wireless networks due to its superior spectral
efficiency) and mobile edge computing (MEC).

some of which refer to work | did more than 30 years ago!

Of all the areas | have worked on, though, some of the most enjoyable and memorable pursuits have been
when posing, and exploring, a variety of matheroalt problems that lend themselves to relatively

elementary mathematics and which are accessible to students in schools and colleges. Having said that, |
discovered recently that the one at the very bottom of the list above on wireless technology uses some
results | have included later and whiahe accessible to (mainly) A level students, although there are a
couple which are very relevant for Core Maths students. The last problem is the most challenging of them
all ¢ you have been warned!

| have decideda put this document together to share some of this miscellany of problems, all taken from
category (b) above, including some of the findings in them. This is also an apology, and all in the spirit of the
infamous and prestigious mathematicians and collabors G H Hard¥andJ E Littlewoof but at a

somewhat moranodestlevel!

| believe all the ideas are accessible to manyymiersity students, in contrast to many of my other
publications that are most definitely not, although clearly some researchers have made good use of those
too!

| hope you and your students enjoy exjiiay at least some of the ideas here.

For further details about my background and interests please segabgite?, bio® and C\*°.

6 https://www.amazon.co.uk/MathematiciaApology-G-H-Hardy/dp/1466402695
7 https://www.amazon.co.uk/Littlewooddiscellany-JohnLittlewood/dp/052133702X
8 https://www.paulglaister.org/
9 https://www.paulglaister.org/aboebio/
10 http://www.personal.reading.ac.uk/~smsglais/CV_Paul_Glaister.htm
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An alternative projectile problem

Consider a cylindrical vessel which is filled to a helghf hole is drilled in the vessel so the water spurts
out, as sown.

Assuming the height of the water is kept fixed (by having a source flowing into it), determine:
1 the equation for the path of water (the trajectory);

1 the distance from the base of the vessel where the water lands, and the height of the hole for
which this distance is greatest;

1 the distance travelled by the water (the length of the trajectory), and the height of hole for which
this distance is greatest; and

f 0KS WSy@St21I5Q 2F Fff &dzOK {GNJF 2SO02NR Sohigeto A K2 ¢
gSi> APS (GKS WOANBS 2F alFSieqQo

LG A& LIRaaraofsS (2 gAldySaa GKAA Ay LINI OdAdvericale K2f
position.
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Note that the direction of the initial velocity of the water asléaves the vessel wille horizontal. The
magnitude of the velocitythe speedA &8 RSGSNXAYSR o0& ¢2NAOStffAQa (GKS?
be determined by conservation of energy of a drop of water falling freely under gravity from rest at the
surface of the watem the vessel.

How do the results above change if air resistance is taken into account?
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Arithmetic progressions in number sequences

Noting that:

4+5 46 Z 8+
9+10 ¥1 32 13 14 1

What other instances are there of these relationships?

In general we have that:

(n-1° «(n »* D+ ((n+1} {n 1 -
=(n 1 W (h - n B -+ (h & 2n-2),mn 2,3,.

What about sums of squares?

We have

100+1F% #1Z7 423 14
22 +227 +23 P4 28 28 2F

In general we have that:

(@n-)(n -))° @20 DO -1+ (HZ Do Hn X+ -
(@ DM BH f (@ D 1) A P+t ( (@ D@ 1) n P- on+23

For example withn =2 and n =5 we have

F+4 H and 36°+37 438 B89 40 43 42 43+ 4
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Cake cutting
Where should | cut a circular cake so that each piece is of equal size?

Here is what it would like for 8 pieces of cake in the shape of a cylinder:

AT TN

o8 L : : J

L I _ L H N
-1 -08 06 -04 02 0 02 04 06 08 1

and counting the squares.

Work out where the cake needs to be cut when more than two pieces of equal.siz®lume of cake) are
required.
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Candle divisions

An Advent candle has divisions marked for each day in the lead up to Christmas and ideaiyn(pssu
constant rate of burning of the wax by volume) we would want the candle burning for the same length of
time each day until the next division is reached.

The divisions will be equalgpaced if the candle is cylindrical, as shown:

EXTITIZIITIZITTIZEITETIRTTEA

but some candleare more interesting in shape, so where should the divisions be placed if the candle is a
truncated squarebased orcircle-based(i.e a conepyramid shown on the lek
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Ormaybe curved in shape, saythe form of a logarithmic/exponential functioshown on the right?

Page7 of 110
Version 15 dated July3 2018



Card shuffling for beginners

If you take a standard pack of 52 cards, ordered as follows:

2 3 45 6 7 8 9 10 JQKA2 3 456 7 8 9 10J QKA 2 3 456 7 8 9 10 J Q KA 23 456 7 89 10J Q KA

and place them in 4 piles, as shown:

> RO b 0o~ b wN
> RO b 0o~ abhwN
> RO uBbo0wo~NooswN
>PRXOcBbo0oo~NoaswN

GKSY 'y W2dzi NAFFES aKdZFFetSQ (11548 GKS (2L OFNR ¥
left hand pile, continuing in the same wantil all 52 cards have been colledtdf you place the again in
4 piles then this is what you will get:

2 5 8 J
2 5 8 Q
2 5 9 Q
2 6 9 Q
3 6 9 Q
3 6 9 K
3 6 10 K
3 7 10 K
4 7 10 K
4 7 10 A
4 7 J A
4 8 J A
5 8 J A

Further outriffle shuffles continue in the same way.
How many out riffle shuffles are needed before the pack is restored to its original order?

LY WAY NRFFES akKdzZFTFESQ Gl 1 S arighiteléfitingt@at,)and théhRacktdol2 ¥ S|
the right hand pile, continuing in the same way until all 52 cards have been collected.

How many in riffle shuffles are needed before the pack is restored to its original order?

What happens with 13 piles of 4 cards (so each pile starts off with the same denomiasisbiown below:

Page8 of 110
Version 15 dated July3 2018



2 3 4 5 6 7 8 9 10 J Q K A
2 3 4 5 6 7 8 9 10 J Q K A
2 3 4 5 6 7 8 9 10 J Q K A
2 3 4 5 6 7 8 9 10 J Q K A

How many out and in riffle shuffles are needed before the pack is restorisl original order?
What about 2 piles of 26 cards, or 26 piles of 2 cards, and so on?
What about packs of different numbers of cards?

There is some very interesting mathematics associated with this problem. Students could also investigate
this by usiig technology to exploréurther.

For the examples quoted above the numbers of riffle shuffles required to restore the pack to its original
order are shown:

n piles | of mcards | out riffle shuffles | in riffle shuffles
4 13 4 26
13 4 4 13
2 26 8 52
26 2 8 52

The pairings of results for out riffle shuffles is no coincidence and is related to the following:
What do you notice in the following tables?

k 1| 2|3|4|5s5|6]7|8]|9]10]11]12
2mod5) | 2 | 4| 3| 1| 2|4|3|1]2]4
Fmod5) | 3 | 4|2 |1|3|4|2]|1]|3]|4

k 1| 2|3]4|5]|6|7]|8]9]10]11]12
2mod9) | 2 | 4| 8|7 |5|1]|2|a|s8]|7
Smod9) | 5| 7| 8| 4| 2|1]|5]|7]s

The general result i{sk: n‘t 1 mod (nm -1} {:k: M  1'mod (hm :}). The least number of out riffle
shuffles to restore a pack afm cards placed im piles each ofmn cards to its original order is the least

value ofk for which n“* 1mod (hm -1). [Note 4 13* mod 5.]

One interesting example is witB4 cards where:2"' =3" =" 6" 8% 122 1mod 2 andllis

the least integer for which each of these occur. Thus the least number of out riffle shuffles to restore a pack

of 24 to its original order sing 2, 3,4, 6,8, 1. piles each ofl2,8, 6,4, 3,. cards, respectively, ik1,

regardless of the division. This would be a good starting point for investigating this problem using, say, just:
A 2 3 4 5 6 A 2 3 4 5 6 A 2 3 4 5 6 A 2 3 4 5 6
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Centres of mass

Consider the centre of mass of objects comprising a truncated hollow cone with a base but open at the top
and made of uniform material.

Suppose the radius of the base is fixed, with a value,afay, and the heighty, is also fixed, how does the
height of the centre of mass vary with the radil®, of the (open) top?

| 2R { B

The figure shows the graph of the height of the cemifenass above the basg§j(R), as a function oR in
the caser =1,h =0 3, showing how this varies, and that there could be three such objects with the same
location of centre of mass.

0.075 T

0.07F .

0.065 - / 1

€
I= -
0.06F-- ----- ,// \\ -
/ \\ /
/ N /
/ N s
0.055F  / a
//
/
/
0.05 1 1 1 | I
0 02 0.4 0.6 0.8 1
R
The figue:
[ + i + - = -

shows one example of this, corresponding to the solid line in the figure above.

Another example, corresponding to the dotted line in the figure above, is shown:
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If we increase the height to, sayh =0 &, then this situation dogg Qi 2 OOdzNE o6dzi 6 S
two oblique points of inflexion:
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018 / =
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014 B

o1 i

Now consider the alternative problem where the radius of the base is again fixedl,=shyand instead of
h being fixed it is the (ant) height,| , that is fixed, say =1.

How does the height of the centre of mass vary with the radRispf the (open) top in this case?

The figure shows the variation in the lowat of the centre of mass:

Show that the maximum height can be found from the solution of a cubic equation which has one and only
one real root in the intervaR1 (0, 2).
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A collapsing arctan series?
Here is an example of a serieswhiRl2 Say Qi X 2y GKS FFO0S 2F AdGX I LILISI N

.1 21 1 1 1 1 1
tan =+ tan*’= +tan*— #an— tad—= tah— tah— - tﬁ&i
3 7 13 21 31 43 57 a; Ean #7

Using appropriate technology multiply the partial sums:
tan‘ll, tan‘11+ tan'l—l, tan'11+ tan'lg +tan}'—12 X
3 7 3 7 13

by 4 to see if you can guess what the sum is.

/Iy @2dz LINPG@S @2dzNJ 3dzSaa dzaAy3d GKS woOztflLlAdaAy3d as
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Dynamical earrings 24 carat mathematics

The earring shown is formed of a circular disk with a hole cut out. Have you ever observed e&githgs li
oscillating when worn? The frequency of oscillation will depend on the position of the centre of mass.

!

0

. . : a .. N
Determine the location of the centre of mass of the earring shown, and work out the4b¢am’)the radii

when the cente of mass is at thedgeof the cut out disk, which is the case for the earring shown below:

(The solution isg =1(1 «/5) ¢ 613, the Golden Ratio!).
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Equicentric patterns

With two concentric circles shown, what is the locus of all points thaeguidistant from these?

Clearly the solution is a further concentric circle, as shown:

What is the locus of all points equidistant from the two concentric (same centre) squares shown?

This time the solution is less obvious.

We say that the locushown, comprising four line segments and four arcs of circles, is equicentric (equal
distanceand same centrgto the two squares.
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What is the curve that is equicentric to the new locus and the original squares?

With the arcs of circles shown this suggettie problem of determining the curve that is equicentri¢he
circle and square that are concentric:

For the left hand pair, successive equicentric curves are shown

What are the equations of these curves?

Returning to concentric circles:

what happens to the equicentric cureghe middlesized circle; when the circles are no longer concentric
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(9

What is the shape of the equicentric curve

I ?

What happens when the circles are separated so the smaller one is no longer inside the larger one

(o

What is the equation of the new equicentric curve?

What about when the circles intersect

(D
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What is the equicentric curve this time

Is this the complete picture for this case?
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Fermi estimation and Brexit
This is particularly relevant to Core Maths

CSN¥YA SadGAYlFdGSa 2N WolOl 2F Iy Sy@gSt21L5Q OFf OdzA F i
accuracy of statements which are made in the press. These calculations can often save time and money for
both individuals and for companies (see b}, example).

The concept and use of Fermi estimation has increased in popularity in a very significant way in Post 16

mathematics in England through the introduction of the new Core Maths qualifications, all of which feature
Fermi estimation.

An example \were, arguably, the stakes could not be higher can be found in the archives of the Treasury
Select Committee from 23 May 2018.

Appearing before the Committee to give evidence were the Chief Executive & Permanent Secretary, Jon
Thompson, and the Deputy Chigxecutive & Second Permanent Secretary, Jim Harra, at HM Revenue and
Customs (HMRC).

¢CKS &ddzo2SOi 2F (GKS dKENIAYWSyIONE2 WSG aMRyl B Ay aK A LI
and concerned the two options for a customs plan after Brexi¥ () E A Y dzY ¥ I GOl fAfGS R ARWIQE
TIHOOAOK aSS1a (2 dzasS GSOKy 2 fCedzai 20v2a LA 2NIR/ SENBKK ANBQ  od:
Britain would remain part of the EU customs area and collect tariffs on behalf of the EU.

The senior civil servantitlined the relative likely costs of these alternative options which could form an
ideal starter to a lesson on Fermi estimation. The relevant extract from the session can be accessed via the
links in [2].

References

1. Fermi estimates, STEM Learnimgps://www.stem.org.uk/resources/elibrary/resource/36077/fermi
estimates(accessed May 26 2018).

2. The UK's economic relationship with the European Union, Treaslegt 8&mmmittee, May 23 2018,
https://goo.gl/d9E1dChbr https://t.co/AUMyCIRVQWHhttps:/parliamentlive.tv/event/index/066a04fe
51d7-4dcta9c320849bad75eBor https://parliamentlive.tv/event/index/066a04fes1d7-4dcta9c3
2084%ad75e8?in=14:54:50&0ut=14:59:(Start Time: 14:54:50; End Time 14:59:05) or
https://tinyurl.com/ybkd46ve(audio clip) ohttps://tinyurl.com/y9jfe4eo(video clipaccessed May 26
2018).
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Fibonacci and Fermat meet Pell and Pythagoras
The series

t+t> € +, 1-t 4
n
is a positive integer whenevdr= 1 for some positive integen, e.g.
n
2 3 2 3
O ) NSRS o B
. t
since the sum is—.
1-t

But what about if we multiply the terms in the series by the Fibonacci nunibé&r®,3,5,8,.., i.e.

Ft+Ft® #1° + ?

t
Here we need to show that the sum W and then seek values df for which this is a positive

integer (Note that the series only converges fog(\/g 1) K %€\/_5 1))

Along the way you will use the Pythagorean tripf@é- ?, 2mn mi +1 , wherem> n 21 are positive
integers.

You will also need to consider solutions of the Ferall equationx®- 5y* =4 for positive integers

X,y . For this try the first few valuey =1,2.... to see which ones give a solution Whe.'ﬁey2 +4is a
perfect square.

You should find that the first three solutions are

R (8) Fi() + 104

What do you notice?

In general the only solutions to the posed problem are

Fl( FZi)+F2( 2 )2 +F3(%)3 + FFFu 1 1&.

Fais Faa

(Note that the results here are related to the result that a positive inte@es a Fibonacci number if and
only if either5n + 4 or 5n° - 4 is a perfect square.)
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Fibonacci, Freddie and Fermat the frog

Freddie the frog is heading towards his pond and travielsnetre on his first jump but only half this

distance on his second, and so oaq,that in all subsequent jumps he travels a distance which is one half
that of his previous jump. This means that the total distance he travels is

S=1 4 % .41

2 4 8

Freddie likes to experiment with other jumps, and by multiplying each of higidhudl jumps byl, 2,3,...
he notices that he travels twice the distance, since

P=13 % 231 8 .2 32

1314132413 =2|D+ 141
1314232413 3+7 =2fPr1+147 (

When Fibonacci passes by he asks what would happen if instead he multiplied each of the individual steps
by hisnumbers:1,1,2,3,5,8,13 21,7 .

So what is the distance he travels? This is the same as the last case since
T:%Fl '%Fz %"Fs o 2

o)
SRR, AR, ¢ 26 14 ) 414 P 438

With the tribonaccisequence, namely,1,1,3,5,9,17,31,? , we get
1G+iG #G, + 3@ 44 ) 8

What about jumping forwards and backwards? This time

U=k 3k # sk, -+

als

and

V=F $2F, 43F, 14F, -
as well, i.e.

F.- 12F, +13F,- 14F,+? =FK-1F +iF-iF +?
What about

HereW =10 and thus
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oD +1F, 43R +2 Q3R +12F, +13R, 42 2ol 14222440 34

Then Fermat turns up and asks them to try:

Where does this get them?

(Nowhere!)
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Forget series (sums), try products with technology

Technologyis good for experimenting with finite series (or sums). Common examples being the arthmeti
progression

1+2 8 + n whose sumis $n(n+1) ,
the geometric progression
1+2 + + M whosesumis 2"-1 .

Sums of squares, cubes, alternating series, etc. Even Fibonacci numberd bgflag, = F, , +, where
F =F, 4, i.e.thesequencdl, 2,3,5,8,..,) can also be found

P+22 F + n% ingn L(2n 1)
P+2 2 + n¥ irE(nh 1Y

Even Fibonacci numbers defined By,, = F,, 4., whereF, =F, 4, i.e. the sequencd,1,2,3,5,8,..
can also be investigated (the sum of each is not given as that is your challenge to find them!

F+F, +- R

F+F + Hy

F,+F, +- R

2n
F-F, + FD)¥'F,
F-F + GDY'F, |
FF,+FF, + R, F,
FF,+FF, + R, F,
F+F, +- Py

You can also try the same with the Lucas numbers which are like the Fibonacci numbers but sthr8with
L..=L,, &, where L =1L, =3, i.e. the sequencel,3,4,7,11,18,.. In this case also try the
product:

LL,-L,

n

The extension to infinite series, and their possible convergence, by looking liihef a finite series can
also be profitably explored using a spreadsheet or similar technology.

Examples here could be the geometric progression
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1+— % + ?1? which converges t® asn- =

NIl

2

1+i2 -Ii -+ —12+ which converges téa— asn- o
2 F n 6
1 1 1 2

1- = += - (4*=  which converges td— asn- o
2 F () n? J 12
11 n1 1 .

1- = + - ()"~ = which convergestdn2 asn- @
2 3 n

1- 1 -& (+1)”'-1—:L which converges té[Z asn- o
3 5 -1 4

or the divergenceof the harmonic series

1+ £ +
3

1 1 1

n
where for any given positive numbex there is a value oh for which this sum is larger thax.
For a finite series one looks at a selection of valuesnoffor an infinite series one lookat the
corresponding finite series and continues to add more terms, hopefully getting closer to a fixed traue
limit.

There are also many opportunities to experiment with finite and infipiteducts(one of which we have
mentioned abovelL,L,---L,,).

Starting with

a, 1 g a1l 013 ol
.- 1a ce 1A
27 im lop e

. : . 1 . . .
what do you notice asn increases? This converges tze as n- ®© . Can you prove this? It is quite

AUNIAIKIFT2NPIOBR2FIKS2VRABFNBAERYY Aad ljdA 0SS dza ST dz
been proved.

Now try:
3, 1 g al 618 &, 6 1
- = 1A pr
% 3 81835_2 o7 gel 0+ 17

Can you guess what this converges taas @ ?
The answer ié%, but how could we @ve this?
To explore this we first note that:
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1 3 1 a1 014 16 a 0
27 0 lipl@e
A, 1 8 4l ¥ e 13 16 & g0
= - I vee = 12 1 Pre *
#7 0% hhwiwr | &
&, (I/2F 6 a2y @& 16481
:@ OloE o = 0]_ SRXLRP
& 1 T2 %el 7 &
so if we could calculate
(1/2) glél/ 2f
12 (5] 2
Q -~ C
then the result above would tell us wh & iz SL?%— 18—53~- is.
o = C +7(;

Define

ax

4 x* 0
f)=ad 7 dlagm -
¢ ¥ =g

we see that f (1/2) is the product we would need to be able to determine the product we are seeking.
(Note too that f (1) containsof one of theproductterms in(*)).

a
Try estimating the productf (1/2)= 331 (]’/12) (1/2 i -+ using your échnology. (If the value d%
¢ - ¢
above is correct then you should find théit(1/2) = E )
p
So what mightf (x) represent?
First we note thatf(-1) =f (1) £( 2r f@) --- =C, so f(X) has zeros at all the integers except

X =0. What familiar function has this property?

The first one that springs to mind isin(px) which has roots atx=0, %, 2,... Conversely, since
sin(px) has zeros ak =0, °1, 2,.. itis reasonable to assume that

X X
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sin(px)= Ax
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where Ais to be found.

It is clear that the right hand side is zero at the same values a6 sin(px). To determineA we could
substitute in a particular value of . SettingX =0 is not very helpful; however,
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and hence

sin(px) _ °_0”é 6é _O”é’l
e FR 1 - s T

The limit on the left hand side is readily found

lim

sin(px):p”m sin( ) :@m sin(y) g=,t1 .

x- 0 X x- 0 px g - y -
from the wellknown resultlirrg)w =1, and thusA=pand so
Y y
a x* 0 ax? 0a, X 0,ax _06xad , X0 & sin@dy
=g damp g ole ot 0ET 0
giving f(X) = M
PX
(Note fram the diagram:
P with PQ the arc of a circle of radius subtending an angl®y (radians) at
the centre, O, and P_Q the line segment frm P to Q, then clearly
o Y Ilmp—Q—l however, PQ= 2y and PQ= 2sin§ ), so IimZSI—n(y):l,
Yy y- OPQ y- 0 2y
i.e. lim sinfy) =1)
-0y
Q
a, x> 0 ,ax
| am sure that the npresentation for Sin(px)= ,0(351 016?2_ -« will not be familiar students;
g -—

however, the fact that the right hand side has the same zero&raeox) should convince them. Indeed, in
contrast to the usual Taylor/Maclaurin series expansion

X’ (R

sin(px)= X 3 o

the product should appeal for this very reason. A graph of the partial products of

pxaé 01_ 332— -soon verifies the result.

. . . . L1 .
The relation with the previous products is now apparent. Witk > we oltain
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.ap 0
~ o ~ sin o
O QR Gy 2 2
? T ¢ : pe o "
gﬁ Q
so from (*)
&, 1 g &l 0_312 p.
% F 818%_ —Zp 4

as indicated before (Note that this is the wglly 2 6y 2 | f £t AaQa LINRRdzOG F2NJ

p=4 % 016%"' 18}%1 10 a 238:32 al. . Use this result tofind successive

approxmaﬂons bp )

We can also independently obtain our first result since

. sin(px) 2, 1 g al
I =p24d — &
<11 X "% 5 o

3 1 §atl ol sinpx) Ly Sinle@ 2) g sin@z
¢ 2 = a? - 0 z 2 po z

1 sm(oz) i sinfy) 1 13 1
2Z n pz 2y 0 y 2

NI

. N : . 1.
There is one further approximation fg? obtained by settingx = 2 ie.

o singg 8
a4 (1/4) @ (1/?)2 g —ca = 4
4
o)
4 &4 1 g4l 0l4 ., 16 4 1 g al 03a57 41 13
— . 15 1 = _ e
J2p %4&852 O 8%%12 %ﬁz 944 8gg 12 12
and hence
p=t A 489,102,120
2 35 7 9 11 13
Now have a look at
a 2° o az 022
I 1
gé F 913"5_2 7T
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. 1. , : ,
using technology and also prove that whose valu% isThe corresponding functicio be considered here
iS

2 g ax? oxa
dar loge

9(¥) =

vO?B_\QJo
|—\|><

. : aox .
A similar analysis to that above shows thg({x) = Cosgep? ,i.e.
¢

by noticing thatg(X) has zeros ax =1, 3,5,...

. g(x ) a 2° 0 az 022 1

Determinelim == . What does it tell you?-- — § 1g e =),
M oy dm taEt

Show that

& 3 03a%¥ 0

d g daE oy

a 4° 0§ a4 03

T

;’%_i 815‘1 (018 393

T I&® W B
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Fraction fireworks

Noticing tha g—;: 0 © (90 8%, what other values satisy similar relationshipm =0D @ m)for
n
n>m?

Other ones arei =0 O (30 5), 9 0D (@5 9), and3—2 =0 D (80 32)(these 4 are the only
10 15 40
solutions).

What about solutions om =0 Gl @ m)for n>m? This time there are 7 solutions.
n

What about solutions om =0 O (M n)for m> n? This time there are 9 unique solutions, 8 of which
n

200dzNJ Ay %%iﬂl- QA (48 B85 ard %93:@ O (89 14). (The odd one out is

3—8:01")(:40 20> gKAOK Aada AdGa w2y Q LI ANIDO
One interesting example %=1—:i 41 610G16 01=(12 1.

Moving to the case— =0 @L ({ n)for m> n, one similaly interesting solution is
n

10201_ 101 401 6 0D1030 061 (@02¢;L 1Cs KA OK A& G(GKS

101 101

SEQQY LI S | 02¢
inserted between everynoch SN2 RA3IA G PRI §gRIGRSYRERSEYWE LRAYGOD

Further generalisations?
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A genealised algebraic identity bites Pythagoras

The identity
(@°- b%)* f2abh® & b’
can be used to generate Pythagorean triples that are integer solutions of
X +y =
e.g.witha=2,b Awe haveF +4 5
What about solutions of the thredimensional version:
X +y 7 & ?
| SNBE ¢S wWaLRiQ O6HUY
(ala+)’ {ha #)° (&)’ (& b+ap

e.g.witha=2,b A we have2’°+3 46> Z, and more generally witth =1 and a = n, for some
integer n:

n?+(n 4)° (n 1¥ (1:n -rf)z

e.g. withn=3 we have¥ + 4 42 %3, which will be familiar as it combiné&s + 4 =5’and
52 +12 =A%,
For another example taka=3,b =2 giving6® +10* 5 9.
What about a fowdimensional version?
CKA&a GAYS 4SS WwWalLkRdQ o6F3IFAYHO GKIFGY

(la+b +d)° (ha b B ([ca b19° ¢ ab bc ¢& (% *bZc ab be e,
e.g.witha=3,b 2,¢c iwehave6’+1F¥ H1Z7 18 25 andwitha=3,b =2 ¢ 1we have
22+ 4 5 & R

The n- dimensional version is easy now!
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Generalising Alexander's angles

In the rightangled triangles shown the ratio of two sidestwo of the angles is the same value:

450
3°
1
2
90° 450
1
a9C° 60°
1
45 1 60 2

Are there any other righingled triangles for which this happens?

What about more general triangles?

61°

49 %

Inthe 49 - 61 -70 triangle shown we hav BC _sinl CAB

Qa
e =

AB sinl BCA

, and with these angles we therefore

haveﬁ =3 70 o 2851 Howeverﬂ 0 1 PU4E, so that to within approximatel23 10*, we have
AB sin49 49

sin70 _ 61 o
sin4d9 49’

BC _i CAB
AB 1 BCA

If we make very small adjustments to tH& and 61 angles this expression becomes exact.

For some other examples consider tB& - 50 -100, 10 - 34 -136 and 50 - 58 -72 triangles.
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Handling data projectors

COSR ¢gAlUK (g2 dloftSa 2F RIFEGE NBfFIRONSEY QLIRA AKX fy
two different models of data projector, abewn:

Table 1 Projector A Table 2 Projector B

Screen size  Projector-screen  Screen size  Projector-screen
in metres  distance in metres  in metres distance in metres

1.0 1.2- 1.4 0.8 1.2- 1.5
2.0 2.3- 2.8 1.0 1.6- 2.0
2.5 2.9~ 3.6 1.5 24- 2.9
3.8 4.4- 5.4 2.0 3.3- 3.9
5.1 5.9- 7.2 2.5 4.1- 4.9
6.3 7.3- 9.0 3.0 4.9- 5.9
7.5 8.8-10.7 3.8 6.1~ 7.3

4.6 7.3- 8.8

5.1 8.1- 9.8

6.1 9.8-11.7

how do you set about the task of deciding which of these will give the range of screen sizes for your
NEIljdZA NBYSyiia sRONBENS RUNMEEFOS2RRdz KI S Aa FTAESR:Z
be used in where the distances aP€25 m and 4 m, and possibly with upper and lower constraints?

A couple of simple graphs come to the rescue:

()

q
%)
q
E|

1§ E ng i =
E 7% E 7 E
10f s 0% P E
g . E e _E SRS E
£ 9¢ 5 E £ 9¢ // s/ B
€ .F & 3 £ $° E
£ 8f & E £ of S A E
o _E 3 a / /F/ E
5 ¢ E g7 r o E
g of C;// I v %
s _E / 3 < E A E
2 5p Ce ] E . 3
5 F o E % 55 u,//"' £ E
5 4F }L'/S 3 & af v 3
R 0/ ) g Lk Sy E
S 3F / 2 3E 5V B
g “F <] g 3t X/ :
25 ///P = ,\E v//*/ 3
F P Fa X B
1E 7 E z
E 3 1E E
(]S TRTE TN TR T R RTRIT TR TANIRAR T IRTRANTRTNINATRTRIT TR TRTIRRITNURNURTRTININ S L =
U 1 2 3 4 5 G 7 8 Gh‘HIIIHA‘HHHII']II[IIIII!I[[']HIlIHII!IIIIIIllIHI‘llll\HIHHIlIIIH[r
screen size (diameter) in metres 0 ! 2 3, 4 5 6 7 8
screen size (diameter) in metres
Fig. 1 Graphs of data for Projector A Fig. 2 Graphs of data for Projector B
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Intersecting chords

Students who have been exposed to some Euclidean geometry can be showndienfpliiagram

AB.BC _BP (CDy _ CP.DF

and asked to deduce——— 5 .
CD.AD DP (AB) AP.BP

Along the way they will need to use similar triangles to deduce, for exar@plze,:%a=ﬂ3 leading to

0KS WAYyGSNESOGAP.BP=BRRINEEN isivErdeMlihplysics when determining the
61 @St Syaidk 2 7F f AIKIDG dza A yHap://wbnvSéhdoblyy€rd.co.ukide Y63 a
19/Wave%20propdies/Interference/text/Newton's _rings/index.htmffor example.)
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The result

tan' 1+ tan® 2+tat 3 @

is weltknown, but what other integerd¢a < €is

Inverse tan land

tan'a+ tan’b +tan‘c & ?

(There are none prove it.)

What abaut integer values ofa, b, c, dwherel¢a < & dfor which

tan'a+ tan'b +tanc +#an'd ko

for some positive integek ?
(There are none prove it.)

What about:

tanta+ tan’b +tan‘c +artd

tane o=

There are shutions, and all solutions where values are less than or equaltare shown in the table:

al|bjlc|d]e
1|2 |4 (23|30
1|2 |5]13|21
1|2 |7 |8 |18
1|3 |47 |13
1|3|5|7 |8

and the value ok is 2, so for the last solution in the table we have

tan' 1+ tan® 3+tant 5 +ta” 7 +ah 8 p;

We also see from the table that some solutioravé values in common, so for example from the first two

rows we have that

tan® 4+ tan* 23+taf 30 =tah 5 #an 13 +an

Notice that all the solutions in the table start with The first question that arises is whether there are
solutions withoutl as a member? For example, is there one starting \&ithls the last one as given in the

GFofS GKS WavftSado 2yS Ay

and,ify 2 02 6KI @

What about

Aa

iKS

asSyasS UKIG GKS a&d:

0KS WiIFINBSAlQ 2yS> YR gKAOK 2yS
the values are consecutive, or just even, or just odd, or members okwealin sequences, such as
squares, Fibonacci numbers, and so on?

tan'*a+ tan’b +tan*c +and

(No solutiong; prove it.)
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This begs the questions as to whether any ofélken numbered angle caseas a solution, and also
whether allodd numbered angle casafvays have at least one solution.

What about
tan'a+ tan'b +tan'c +#and #ade tanf tahg kb ?

There are solutions, and those for which the values are less than or eqd8l aoe shown in the table:

albjc|d|e|f]|9
1|2 |7 |18]|21]23]|30
1|2 |12]13]17|18]|21
1 /3|5 |7 |21]|23]30
1|3 |5 |12]13|17|21
13 |7 |8 |12|17]18
1|4 |5 |7 |8 [23]30
1|4 |5 |8 |12]13]|17
2|34 |5 |7 |8 |13

and the value ok is 3. We now also see that there is a solution (the last one in the table) wherrot a
member, for which we have

tan' 2+ tan® 3+tam 4 +an” 5 4ah” 7 #An” 8 tan 13

As an aside we also see from the solutions in rows 1 @hdt3he following must be true:
tan' 2+ tan* 18=tarf 3 +taf

and from rows 6 and 7 that:
tan' 7+ tan® 23+tart 30 =tah 12 +#an 13 +an

What about the eight angle case?

For the nine angle case here are two of the solutions:

tan'1+ tan® 5+tan 7 +tan” 8 +#ah 12 +tan 13 thn 17 fan 18 ‘@l 4o
tan' 2 + tan' 3+tan 4 +tan” 7 #ah 8 #dn” 12 thn 13 tan 17 Y@ Up

from which we also sethat
tan' 2 + tan® 3+tat 4 =tah 1 +#ah 5 #dn

Solutions okven numbered casesuld be formed if there are two solutions of the corresponding case
with half as many angles which hawevalues in common. For example, if we can find two such solutions
of the five angé casewe can add these to form a solution of tten angle casevhere the sum will bedp .

Unfortunately none of those ithe first tablehave this property. Similar remarks apply to the second table
above in respect of theeven agle caseandfourteen angle casaunfortunately.

This latter remark provokes one final question : are there instances of two solutions in any case which have
novalues in common?

Page350f 110
Version 15 dated July3 2018



Logarithmic series

From

In(l+x) =x X 1% .-, 1 x 1
we find (withx=1x= -}):

1-1 4 - M2 and 14 %—2—12(")—3 ;}n-OInZ :
and since

1
+5

Nl

N,

Ny
.j.
H

we find

o

Are there other series for which this holds, i.e.

1 1 1 1 =1 _F) 1p1..¢
-% .-.)(_2 ?+§+...) +121 = > _3+_..(_

N[~

(&,-a 48 -)(h b+ h+)+ah=3h +gh -+ 2

Other interesting series one can find just from the above expansion are

2(%('% 32104 ;}---)o--- 2

2(%@2}? 3108 ;33,)0 I3
Also we have

1@ 9 #{209) w(FegP s
and more generally

132 3 -+ 31)+_;(§% ¥o) ...+_g)+_31(§§1 ?14,...('3_31) + N + n 42
With n=4 we therefore have

16+ 4@ H HF 49 A EE (59 )

and generally (witn=2", N =,2,..):

1 5 )i (F 307 - B) HFF 40
“N(@D (r2)olH 4w 12
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Mathematician versus machine

Given the function

f(x)=

1+ X2

how would you evaluatef ”(0) and f ™ (1), the nth derivative of f (x) evaluated atx=0 and x=1,
respectively, for any natural numbér?

There is a great temptatioto use a computer algebra system (CAS), for example in Mtiab
commands:

>>Syms X
>>vpa(subs(diff(x/(1+x*x),3),X,1))

will evaluate f (1), but what about larger values of, say10,100,..? What aboutn =10°? Try it! If it

manages to do this, what patterns do you spot fb” (0) and f (1) ? What does your CAS give for a
generaln, if anything?

Mathematics toil KS NI a O0dzS X

XNBFNNF y3IS i KIS xS INGaaddifereftiaiz 2 2 times, from which you can show
that

@+x) FO(x) 2nxfY(® #n -"2(3 07n 2

¢23SGKSNI g4 lKFR)FONE Y= DBy 423 % Q) ( this expressiosan then
be used to generate the following

f#0)=0,f*P0) =( (X Hk O04.

4k + 2)!

22k+2

f(4k+1)(1) 0, f %2 @ = 1j< }(

« (4k+3)! 4k)!

f ()= () e 0@ (:1)5(2“1 k 04%,..

which can also be proved using mathematical induction

How is your CAS getting on with its calculation?
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Mathematics for the bath

How long does it take fahe last half of a bath to empty compared with the first half?

%

/i water y

\

t,-t,
e with y(0) = h, y(t,.) =43 h and y(t,) =0, whatis ht o

1h

C2NAOSEfAQE (GKS2NBY o002y at& Riling rdelg yhdel gFavit$ fyos KeBt &t the 2 NJ |
surface of the bath water determines the speed of that drop of water as it leaves the bath through the
plughole) predicts this ratio ak++/2, i.e. it takes arounc2C# times as long for the last half to empty
compared with the first half. Thus the last half takes ab@0€6 of the total time for the bath to empty. Is

this borne out in practice?
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Maths woodwork it out

Given the rectangular pee of wood shown:

B

| wish to cut out four identical trapezia as follows:

4 W P

- X >

to construct the truncated pyramid shown, open at the top and bottom, in such a way that the dimensions

of the upper opening, a square of sidg&, arefixed, and the area of the lower opening (a square of side
to be determined) is the maximum possible.

How do | achieve this?
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Maximum length and area of flight

If a ball is thrown with the same speédl at varying angleg) the trajectory is that of a parabola, as shown

18
16
14
12 — —

y o1 o ——
s o ~—~

-
as
04
0z
0 s ; 5 5 B
5 5 5 7

“az X

-04

which is of the form

y = xtang &fq X

using the horizontal and vertical displacement expressions
x(t)=Utcosg , yt) Utsing gt

where g is the constant acceleration due to gravity ahdenotes the time after release.
- 2
¢CKS WK2NRT2ydlrft NI R/téJ—ssmz;a wiyich s $heritikesball y6 leveRwithdtie point it
g

was thrown from, ocerring whent = —sing, and the horizontal range attains its maximum value (over
g

2

all g) of Rnax:U— for g=45.
g

- . u? . U . o
The ball reaches its highest pointat=3 R and y=h =2—3|an whent =—sing, and h attains its
g g

. u? , . —
maximum value (over aff) of 2a for g =90, i.e. vertical projection.
g

¢CKS PEATFEAIKGQ Aa K2g f2y3a (KS otl-:f%isiniyl-ahoswsalé@ Fddr
g

attains its maximum value (over &) (of valuet =—) for g =90, i.e.the ball that is thrown vertically
g

is in the air for the longest time.

Here are two slightly more challenging problems.

1. Thelength of the arc of a trajectory (from the point of projection to attaining the horizontal range) is
given by
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Nl

rog; G

o

o

sin2g

é y 25
s(9) = % 0 ¢ X
¢

X

O

where the equation for the trajectory(X) is given above.

We find that

2

s(g :UE(sin g+cos ginh' (tan ))

a graph of which is shown:

90° 6

indicating that there is an angle of projection for which the distance travelled by the bailhath

2
maximum value (over alj). Show that this maximum value is approximat%— attained forg °© 56
g
and the time of flight is approxmatelg—.
g

[A standard prblem in projectiles is to determine the angles of projection for which the ball passes

g(l+tarfg)
2LJ2

through a given point. If this point has coordinat@X,Y) then Y = Xtang X?, from

which there are either two, one or zero possibleybes of projection, depending on whethéKX,Y) is
2LJ 2
0SYSFiKXE 2y> 2NJ 062 WS—H—%S* < LIWadesfdrh the gaph aBoveTftatl & ¢

there are also either two, one, or zero angles of projection for which thigdaaels a given distancs.]

2. Theareaswept out by the arc of a trajectory (from the point of projection to attaining the horizontal
range) is given by

u?
N—Squ
Ag)=ff Y dx

where the equation for the trajectory(X) is again given above.

We find that

4

A(Q) = iuz sin® qos
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4

for ¢ =60 . The time of flight in this case+s£.
g

(Note that this is exactly 3 times the area swept out by a ball thrown at an angle=d0 ', and the time

which attains a maximum value (over gl) of

2

of flight is+/3 times s times as long.)

What are the corresponding results when theseain air resistance proportional {speed) for n>0,
e.g. a linear i =1) and a quadraticri = 2) law of resistance?

Consider now the more general problem of projectionampinclined plane as shown.

2.5

QX Y)

2 KFG A& GKS O2NNBaLRyRAYy3I SELINBaaArAzy T2Wa,igsS wt Sy
and what are the maximum values of these overaa® (Hint the maximum areswept out occurs when

tan‘l( 2tanb+./ 3+tah 4).

Further, the figure below

shows the distance travelled as a function of angle of projection for different angles of slope.

We see that for some angles of slope there are either three, two one or zglesaaf projection for which
the distance travelled, , is a given value.

We also see that there are some angles of slope for which the maximum distance travelled is greater than

, one angle of slope forhich the maximum distance travelled is and which is achieved for two
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