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A mathematician’s miscellany, and an apology 

Paul Glaister 

Throughout my career I have been very fortunate to be able to work on many interesting problems in 

mathematics, some of which have appeared in the public domain in the form of publications (455 at the 

time of writing!) in journals etc.1 

The three main areas of study I have pursued are: 

a numerical analysis and computational fluid dynamics, including the development and analysis of 

numerical schemes for the solution of problems arising in applied mathematics; 

b mathematics and science education, at both school and university, and the school-university 

interface; 

c teaching and learning, primarily in higher education. 

If there is any impact of this work it is, in part, indicated by the numbers of citations of my work by other 

authors, referencing and using this work, e.g. on Google Scholar2 I have been cited 1364 times and on 

Mendeley3 there have been 18959 downloads of a subset of my publications which are in the 

ScienceDirect4 database and made available through Scopus5. 

The impact of work in areas (b) and (c) is mainly through a national and international audience of 

mathematics and science education practitioners in schools, colleges and universities, using my work for 

enhancement, enrichment and hopefully enjoyment. 

In the categories in (a) authors of the 12 most recent papers citing my work have been working on: 

• sea wave energy using an oscillating water column as an alternative, renewable energy source, 

which is sustainable and with no impact on environmental pollution; 

• a finite volume scheme for the solution of a multi-component gas flow model in a pipe on non-flat 

topography; 

• development of an in vitro methodology capable of use in commercial testing laboratories for 

measuring the human ingestion bio accessibility of polyaromatic hydrocarbons (PAHs) in soil; 

• an explicit homogeneous conservative quasi-acoustic scheme for the numerical solution of one-

dimensional shallow-water equations with an uneven bottom 

• monotone, second-order accurate numerical scheme is presented for solving the differential form 

of the adjoint shallow-water equations in generalized two-dimensional coordinates; 

• air-water interactions within storm water systems during rapid inflow conditions; 

• verification, validation and uncertainty quantification in thermal-hydraulics analysis; 

• implicit second-order accurate spatial scheme for steady-state thermal-hydraulic simulations of the 

two-phase two-fluid six-equation model for use in the nuclear energy industry; 

• le Châtelier's Principle applied to model Strong Acid-Strong Base titrations; 

• continuous adjoint method for steady-state two-phase flow simulations; 

• compressible flow at high pressure with a linear equation of state; 

 
1 http://centaur.reading.ac.uk/view/creators/90000233.html 
2 https://scholar.google.com/citations?hl=en&user=vm3zUvUAAAAJ 
3 https://www.mendeley.com/profiles/paul-glaister/stats/ 
4 https://www.sciencedirect.com/search?authors=glaister%20p&show=25&sortBy=relevance 
55 https://www.scopus.com/authid/detail.uri?authorId=7003342589 

http://centaur.reading.ac.uk/view/creators/90000233.html
https://scholar.google.com/citations?hl=en&user=vm3zUvUAAAAJ
https://www.mendeley.com/profiles/paul-glaister/stats/
https://www.sciencedirect.com/search?authors=glaister%20p&show=25&sortBy=relevance
https://www.scopus.com/authid/detail.uri?authorId=7003342589
http://centaur.reading.ac.uk/view/creators/90000233.html
https://scholar.google.com/citations?hl=en&user=vm3zUvUAAAAJ
https://www.mendeley.com/profiles/paul-glaister/stats/
https://www.sciencedirect.com/search?authors=glaister%20p&show=25&sortBy=relevance
https://www.scopus.com/authid/detail.uri?authorId=7003342589
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• coexistence of two important communication techniques, non-orthogonal multiple access (NOMA - 

a key enabling technology in next-generation wireless networks due to its superior spectral 

efficiency) and mobile edge computing (MEC). 

some of which refer to work I did more than 30 years ago! 

Of all the areas I have worked on, though, some of the most enjoyable and memorable pursuits have been 

when posing, and exploring, a variety of mathematical problems that lend themselves to relatively 

elementary mathematics and which are accessible to students in schools and colleges. Having said that, I 

discovered recently that the one at the very bottom of the list above on wireless technology uses some 

results I have included later and which are accessible to (mainly) A level students, although there are a 

couple which are very relevant for Core Maths students. The last problem is the most challenging of them 

all – you have been warned! 

I have decided to put this document together to share some of this miscellany of problems, all taken from 

category (b) above, including some of the findings in them. This is also an apology, and all in the spirit of the 

infamous and prestigious mathematicians and collaborators G H Hardy6 and J E Littlewood7, but at a 

somewhat more modest level! 

I believe all the ideas are accessible to many pre-university students, in contrast to many of my other 

publications that are most definitely not, although clearly some researchers have made good use of those 

too! 

I hope you and your students enjoy exploring at least some of the ideas here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For further details about my background and interests please see my website8, bio9 and CV10. 

 
6 https://www.amazon.co.uk/Mathematicians-Apology-G-H-Hardy/dp/1466402695 
7 https://www.amazon.co.uk/Littlewoods-Miscellany-John-Littlewood/dp/052133702X 
8 https://www.paulglaister.org/ 
9 https://www.paulglaister.org/about-bio/ 
10 http://www.personal.reading.ac.uk/~smsglais/CV_Paul_Glaister.htm 

https://www.amazon.co.uk/Mathematicians-Apology-G-H-Hardy/dp/1466402695
https://www.amazon.co.uk/Littlewoods-Miscellany-John-Littlewood/dp/052133702X
https://www.paulglaister.org/
https://www.paulglaister.org/about-bio/
http://www.personal.reading.ac.uk/~smsglais/CV_Paul_Glaister.htm
https://www.amazon.co.uk/Mathematicians-Apology-G-H-Hardy/dp/1466402695
https://www.amazon.co.uk/Littlewoods-Miscellany-John-Littlewood/dp/052133702X
https://www.paulglaister.org/
https://www.paulglaister.org/about-bio/
http://www.personal.reading.ac.uk/~smsglais/CV_Paul_Glaister.htm
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An alternative projectile problem 

Consider a cylindrical vessel which is filled to a height h . A hole is drilled in the vessel so the water spurts 
out, as shown. 

 

Assuming the height of the water is kept fixed (by having a source flowing into it), determine: 

• the equation for the path of water (the trajectory); 

• the distance from the base of the vessel where the water lands, and the height of the hole for 
which this distance is greatest; 

• the distance travelled by the water (the length of the trajectory), and the height of hole for which 
this distance is greatest; and 

• the ‘envelope’ of all such trajectories (shown in the figure), where points ‘above’ this will not get 
wet, i.e the ‘curve of safety’. 

 

It is possible to witness this in practice by holding an ‘oscillating water sprinkler (shown below) in a vertical 
position. 
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Note that the direction of the initial velocity of the water as it leaves the vessel will be horizontal. The 
magnitude of the velocity - the speed - is determined by Toricelli’s theorem which says that this speed will 
be determined by conservation of energy of a drop of water falling freely under gravity from rest at the 
surface of the water in the vessel. 

How do the results above change if air resistance is taken into account? 
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Arithmetic progressions in number sequences 

Noting that: 

4 5 6 7 8

9 10 11 12 13 14 15

+ + = +

+ + + = + +
 . 

What other instances are there of these relationships? 

In general we have that: 

2 2 2

2 2 2

( 1) (( 1) 1) (( 1) ( 1))

(( 1) ) (( 1) 1) (( 1) 2 2) , 2,3,

n n n n

n n n n n n n

− + − + + + − + −

= − + + − + + + + − + − =
 . 

What about sums of squares? 

We have 

2 2 2 2 2

2 2 2 2 2 2 2

10 11 12 13 14

21 22 23 24 25 26 27

+ + = +

+ + + = + +
 . 

In general we have that: 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

(2 1)( 1) (2 1)( 1) 1 (2 1)( 1) 1

(2 1)( 1) (2 1)( 1) 1 (2 1)( 1) 2 2 , 2,3,

n n n n n n n

n n n n n n n n n n

− − + − − + + + − − + −

= − − + + − − + + + + − − + − =
. 

For example with 2n =  and 5n =  we have 

2 2 23 4 5+ =  and 2 2 2 2 2 2 2 2 236 37 38 39 40 41 42 43 44+ + + + = + + +  . 
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Cake cutting 

Where should I cut a circular cake so that each piece is of equal size? 

Here is what it would like for 8 pieces of cake in the shape of a cylinder: 

 

which can easily be verified with the addition of a grid: 

 

and counting the squares. 

Work out where the cake needs to be cut when more than two pieces of equal size (i.e. volume of cake) are 
required. 
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Candle divisions 

An Advent candle has divisions marked for each day in the lead up to Christmas and ideally (assuming a 
constant rate of burning of the wax by volume) we would want the candle burning for the same length of 
time each day until the next division is reached. 

The divisions will be equally-spaced if the candle is cylindrical, as shown: 

 

but some candles are more interesting in shape, so where should the divisions be placed if the candle is a 
truncated square-based or circle-based (i.e a cone) pyramid shown on the left? 

       

Or maybe curved in shape, say in the form of a logarithmic/exponential function shown on the right? 



Page 8 of 110 

Dated November 11 2020 

Card shuffling for beginners 

If you take a standard pack of 52 cards, ordered as follows: 

2    3    4    5    6    7    8    9    10    J    Q   K    A   2    3   4   5    6    7    8    9   10    J    Q   K   A   2♥3♥4♥5♥6♥7♥8♥9♥10♥J♥Q♥K♥A♥2♦3♦4♦5♦6♦7♦8♦9♦10♦J♦Q♦K♦A♦ 

and place them in 4 piles, as shown: 

2♠ 2♣ 2♥ 2♦ 

3♠ 3♣ 3♥ 3♦ 

4♠ 4♣ 4♥ 4♦ 

5♠ 5♣ 5♥ 5♦ 

6♠ 6♣ 6♥ 6♦ 

7♠ 7♣ 7♥ 7♦ 

8♠ 8♣ 8♥ 8♦ 

9♠ 9♣ 9♥ 9♦ 

10♠ 10♣ 10♥ 10♦ 

J♠ J♣ J♥ J♦ 

Q♠ Q♣ Q♥ Q♦ 

K♠ K♣ K♥ K♦ 

A♠ A♣ A♥ A♦ 
 

then an ‘out riffle shuffle’ takes the top card from each pile, working from left to right, and then back to the 

left hand pile, continuing in the same way until all 52 cards have been collected. If you place them again in 

4 piles then this is what you will get: 

2♠ 5♣ 8♥ J♦ 

2♣ 5♥ 8♦ Q♠ 

2♥ 5♦ 9♠ Q♣ 

2♦ 6♠ 9♣ Q♥ 

3♠ 6♣ 9♥ Q♦ 

3♣ 6♥ 9♦ K♠ 

3♥ 6♦ 10♠ K♣ 

3♦ 7♠ 10♣ K♥ 

4♠ 7♣ 10♥ K♦ 

4♣ 7♥ 10♦ A♠ 

4♥ 7♦ J♠ A♣ 

4♦ 8♠ J♣ A♥ 

5♠ 8♣ J♥ A♦ 
 

Further out riffle shuffles continue in the same way. 

How many out riffle shuffles are needed before the pack is restored to its original order? 

An ‘in riffle shuffle’ takes the top card from each pile, working from right to left instead, and then back to 

the right hand pile, continuing in the same way until all 52 cards have been collected. 

How many in riffle shuffles are needed before the pack is restored to its original order? 

What happens with 13 piles of 4 cards (so each pile starts off with the same denomination as shown below: 
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2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠ 

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣ 

2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥ 

2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ A♦ 
 

How many out and in riffle shuffles are needed before the pack is restored to its original order? 

What about 2 piles of 26 cards, or 26 piles of 2 cards, and so on? 

What about packs of different numbers of cards? 

There is some very interesting mathematics associated with this problem. Students could also investigate 

this by using technology to explore further. 

For the examples quoted above the numbers of riffle shuffles required to restore the pack to its original 

order are shown: 

n piles of m cards out riffle shuffles in riffle shuffles 

4 13 4 26 

13 4 4 13 

2 26 8 52 

26 2 8 52 

 

The pairings of results for out riffle shuffles is no coincidence and is related to the following: 

What do you notice in the following tables? 

k 1 2 3 4 5 6 7 8 9 10 11 12 

2k (mod 5) 2 4 3 1 2 4 3 1 2 4 3 1 

3k (mod 5) 3 4 2 1 3 4 2 1 3 4 2 1 
 

k 1 2 3 4 5 6 7 8 9 10 11 12 

2k (mod 9) 2 4 8 7 5 1 2 4 8 7 5 1 

5k (mod 9) 5 7 8 4 2 1 5 7 8 4 2 1 
 

The general result is    : 1mod ( 1) : 1mod ( 1)k kk n nm k m nm − =  − . The least number of out riffle 

shuffles to restore a pack of nm  cards placed in n  piles each of m  cards to its original order is the least 

value of k  for which 1mod ( 1)kn nm − . [Note 13 44 13 mod 51 .] 

One interesting example is with 24  cards where: 11 11 11 11 11 112 3 4 6 8 12 1mod 23= = = = = = , and 11 is 

the least integer for which each of these occur. Thus the least number of out riffle shuffles to restore a pack 

of 24  to its original order using 2,3,4,6,8,12  piles each of 12,8,6,4,3,2  cards, respectively, is 11, 

regardless of the division. This would be a good starting point for investigating this problem using, say, just: 

A   2   3   4   5   6       A   2   3   4   5   6       A♥2♥3♥4♥5♥6♥   A♦2♦3♦4♦5♦6♦ 
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Centres of mass 

Consider the centre of mass of objects comprising a truncated hollow cone with a base but open at the top 
and made of uniform material. 

Suppose the radius of the base is fixed, with a value of r , say, and the height, h , is also fixed, how does the 

height of the centre of mass vary with the radius, R , of the (open) top? 

 

The figure shows the graph of the height of the centre of mass above the base, ( )y R , as a function of R  in 

the case 1, 0 3r h= =  , showing how this varies, and that there could be three such objects with the same 

location of centre of mass. 

 

The figure: 

 

shows one example of this, corresponding to the solid line in the figure above. 

Another example, corresponding to the dotted line in the figure above, is shown: 
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If we increase the height to, say, 0 5h =  , then this situation doesn’t occur, but we see that the graph has 

two oblique points of inflexion: 

 

Now consider the alternative problem where the radius of the base is again fixed, say 1r = , and instead of 

h  being fixed it is the (slant) height, l , that is fixed, say 1l = . 

How does the height of the centre of mass vary with the radius, R , of the (open) top in this case? 

The figure shows the variation in the location of the centre of mass: 

 

Show that the maximum height can be found from the solution of a cubic equation which has one and only 

one real root in the interval (0,2)R . 
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A collapsing arctan series? 

Here is an example of a series which doesn’t, on the face of it, appear to be one which ‘collapses’: 

1 1 1 1 1 1 1 1

2
1

1 1 1 1 1 1 1 1
tan tan tan tan tan tan tan tan

3 7 13 21 31 43 57 1n n n


− − − − − − − −

=

 
+ + + + + + + =  

+ + 
  . 

Using appropriate technology multiply the partial sums: 

1 1
tan

3

− , 1 11 1
tan tan

3 7

− −+ , 1 1 11 1 1
tan tan tan

3 7 13

− − −+ + , … 

by 4  to see if you can guess what the sum is. 

Can you prove your guess using the ‘collapsing series’ idea? 
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Dynamical earrings - 24 carat mathematics 

The earring shown is formed of a circular disk with a hole cut out. Have you ever observed earrings like this 
oscillating when worn? The frequency of oscillation will depend on the position of the centre of mass. 

 

Determine the location of the centre of mass of the earring shown, and work out the ratio 
a

b
 of the radii 

when the centre of mass is at the edge of the cut out disk, which is the case for the earring shown below: 

 

(The solution is 1
2
(1 5) 1 618

a

b
= +   , the Golden Ratio!). 
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Equicentric patterns 

With two concentric circles shown, what is the locus of all points that are equidistant from these? 

 

Clearly the solution is a further concentric circle, as shown: 

 

What is the locus of all points equidistant from the two concentric (same centre) squares shown? 

 

This time the solution is less obvious. 

 

We say that the locus shown, comprising four line segments and four arcs of circles, is equicentric (equal 
distance and same centre) to the two squares. 
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What is the curve that is equicentric to the new locus and the original squares? 

With the arcs of circles shown this suggests the problem of determining the curve that is equicentric to the 
circle and square that are concentric: 

 

 

 

 

 

 

 

For the left hand pair, successive equicentric curves are shown 

 

What are the equations of these curves? 

Returning to concentric circles: 

 

what happens to the equicentric curve – the middle-sized circle – when the circles are no longer concentric: 
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? 

What is the shape of the equicentric curve: 

? 

What happens when the circles are separated so the smaller one is no longer inside the larger one: 

? 

What is the equation of the new equicentric curve? 

What about when the circles intersect 

? 
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What is the equicentric curve this time: 

? 

Is this the complete picture for this case? 
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Fermi estimation and Brexit 

This is particularly relevant to Core Maths. 

Fermi estimates or ‘back of an envelope’ calculations are often used to test quickly and informally the 
accuracy of statements which are made in the press. These calculations can often save time and money for 
both individuals and for companies (see [1], for example). 

The concept and use of Fermi estimation has increased in popularity in a very significant way in Post 16 

mathematics in England through the introduction of the new Core Maths qualifications, all of which feature 

Fermi estimation. 

An example where, arguably, the stakes could not be higher can be found in the archives of the Treasury 

Select Committee from 23 May 2018. 

Appearing before the Committee to give evidence were the Chief Executive & Permanent Secretary, Jon 

Thompson, and the Deputy Chief Executive & Second Permanent Secretary, Jim Harra, at HM Revenue and 

Customs (HMRC). 

The subject of the parliamentary session was ‘The UK's economic relationship with the European Union’ 

and concerned the two options for a customs plan after Brexit: (i) ‘maximum facilitation’ (so-called ‘max 

fac’ which seeks to use technology to avoid a hard border) and (ii) ‘customs partnership’ under which 

Britain would remain part of the EU customs area and collect tariffs on behalf of the EU. 

The senior civil servants outlined the relative likely costs of these alternative options which could form an 

ideal starter to a lesson on Fermi estimation. The relevant extract from the session can be accessed via the 

links in [2]. 

References 

1. Fermi estimates, STEM Learning, https://www.stem.org.uk/resources/elibrary/resource/36077/fermi-

estimates (accessed May 26 2018). 

2. The UK's economic relationship with the European Union, Treasury Select Committee, May 23 2018, 

https://goo.gl/d9E1dC/ or https://t.co/AUMyCfRVQW/ https://parliamentlive.tv/event/index/066a04fe-

51d7-4dcf-a9c3-20849bad75e8/ or https://parliamentlive.tv/event/index/066a04fe-51d7-4dcf-a9c3-

20849bad75e8?in=14:54:50&out=14:59:05 (Start Time: 14:54:50; End Time 14:59:05) or 

https://tinyurl.com/ybkd46ve (audio clip) or https://tinyurl.com/y9jfe4eo (video clip) (accessed May 26 

2018). 
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https://parliamentlive.tv/event/index/066a04fe-51d7-4dcf-a9c3-20849bad75e8?in=14:54:50&out=14:59:05
https://tinyurl.com/ybkd46ve
https://tinyurl.com/y9jfe4eo
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Fibonacci and Fermat meet Pell and Pythagoras 

The series 

2 3 , 1 1t t t t+ + + −    

is a positive integer whenever 
1

n
t

n
=

+
 for some positive integer n , e.g. 

( ) ( )
2 3

1 1 1
2 2 2

1+ + + =    and ( ) ( )
2 3

2 2 2
3 3 3

2+ + + =  

since the sum is 
1

t

t−
. 

But what about if we multiply the terms in the series by the Fibonacci numbers 1,1,2,3,5,8, , i.e. 

2 3

1 2 2Ft F t F t+ + +   ? 

Here we need to show that the sum is 
21

t

t t− −
 and then seek values of t  for which this is a positive 

integer (Note that the series only converges for 1 1
2 2
( 5 1) ( 5 1)t− −   − .) 

Along the way you will use the Pythagorean triples 2 2 2 2, 2 ,m n mn m n− + , where 1m n   are positive 

integers. 

You will also need to consider solutions of the Fermat-Pell equation 2 25 4x y− =  for positive integers 

,x y . For this try the first few values 1,2,y =  to see which ones give a solution where 25 4y +  is a 

perfect square. 

You should find that the first three solutions are 

( ) ( )
2 3

1 1 1
1 2 32 2 2

2F F F+ + + =  

( ) ( )
2 3

3 3 3
1 2 35 5 5

15F F F+ + + =  

( ) ( )
2 3

8 8 8
1 2 313 13 13

104F F F+ + + =  . 

What do you notice? 

In general the only solutions to the posed problem are 

( ) ( ) ( )2 2 2

2 1 2 1 2 1

2 3

1 2 3 2 2 1 , 1,2,i i i

i i i

F F F

i iF F F
F F F F F i

+ + + ++ + + = =  

(Note that the results here are related to the result that a positive integer n  is a Fibonacci number if and 

only if either 
25 4n +  or 

25 4n −  is a perfect square.) 
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Fibonacci, Freddie and Fermat the frog 

Freddie the frog is heading towards his pond and travels 1
2

 metre on his first jump but only half this 

distance on his second, and so on, so that in all subsequent jumps he travels a distance which is one half 
that of his previous jump. This means that the total distance he travels is 

1 1 1
2 4 8

1S = + + + =  . 

Freddie likes to experiment with other jumps, and by multiplying each of his individual jumps by 1 2 3, , ,...  

he notices that he travels twice the distance, since 

1 1 1
2 4 8

1 2 3 2P =  +  +  + =  

i.e. 

1
2

1
4

1
8

1
2

1
4

1
8

1 2 3 2 +  +  + = + + + b g  . 

When Fibonacci passes by he asks what would happen if instead he multiplied each of the individual steps 
by his numbers: 1 1 2 3 5 8 13 21, , , , , , , ,. 

So what is the distance he travels? This is the same as the last case since 

1 1 1
1 2 32 4 8

2T F F F= + + + =  

so 

( )1 1 1 1 1 1 1 1 1
1 2 32 4 8 2 4 8 2 4 8

2 1 2 3F F F+ + + = + + + =  +  +  +  . 

With the tribonacci sequence, namely 1 1 1 3 5 9 17 31, , , , , , , ,, we get 

( )1 1 1 1 1 1
1 2 32 4 8 2 4 8

3 3G G G+ + + = + + + =  . 

What about jumping forwards and backwards? This time 

1 1 1 4
1 2 3 42 4 8 5

U F F F F= − + − + =  

and 

1 1 1
1 2 3 42 4 8

2 3 4V F F F F= − + − +  

as well, i.e. 

F F F F F F F F1
1
2 2

1
4 3

1
8 4 1

1
2 2

1
4 3

1
8 42 3 4− + − + = − + − +   . 

What about 

W F F F= + + +1
2 1

1
4 2

1
8 32 3    ? 

Here 10W =  and thus 
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5 2 3 5 1 2 31
2 1

1
4 2

1
8 3

1
2 1

1
4 2

1
8 3

1
2

1
4

1
8

F F F F F F+ + + = + + + =  +  +  +  b g b g  . 

Then Fermat turns up and asks them to try: 

F F F2
1
2 3

1
4 42 3− + −   . 

Where does this get them? 

(Nowhere!) 
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Forget series (sums), try products with technology 

Technology is good for experimenting with finite series (or sums). Common examples being the arithmetic 
progression 

1 2 3 n+ + + +  whose sum is 1
2

( 1)n n+  , 

the geometric progression 

2 11 2 2 2n−+ + + +  whose sum is 2 1n −  . 

Sums of squares, cubes, alternating series, etc. Even Fibonacci numbers defined by 
2 1n n nF F F+ += + , where 

1 2 1F F= = , i.e. the sequence 1,1,2,3,5,8, ,) can also be found 

2 2 2 2 1
6

1 2 3 ( 1)(2 1)n n n n+ + + + = + +  

3 3 3 3 2 21
4

1 2 3 ( 1)n n n+ + + + = +  . 

Even Fibonacci numbers defined by 
2 1n n nF F F+ += + , where 

1 2 1F F= = , i.e. the sequence 1,1,2,3,5,8,  

can also be investigated (the sum of each is not given as that is your challenge to find them! 

1 2 nF F F+ + +  

1 3 2 1nF F F −+ + +  

2 4 2nF F F+ + +  

1

1 2 ( 1)n

nF F F−− + + −  

1

1 3 2 1( 1)n

nF F F−

−− + + −  

1 2 3 4 2 1 2n nF F F F F F−+ + +  

1 2 3 4 2 2 1n nF F F F F F ++ + +  

3 6 3nF F F+ + +  

You can also try the same with the Lucas numbers which are like the Fibonacci numbers but start with 1,3 : 

2 1n n nL L L+ += + , where 1 21, 3L L= = , i.e. the sequence 1,3, 4,7,11,18, . In this case also try the 

product: 

2 4 2nL L L  . 

The extension to infinite series, and their possible convergence, by looking at the limit of a finite series can 
also be profitably explored using a spreadsheet or similar technology. 

Examples here could be the geometric progression 
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2

1 1 1
1

2 2 2n
+ + + +  which converges to 2  as n →  

2 2 2

1 1 1
1

2 3 n
+ + + +  which converges to 

2

6


 as n →  

1

2 2 2

1 1 1
1 ( 1)

2 3

n

n

−− + − + −  which converges to 
2

12


 as n →  

11 1 1
1 ( 1)

2 3

n

n

−− + − + −  which converges to ln 2  as n →  

11 1 1
1 ( 1)

3 5 2 1

n

n

−− + − + −
−

 which converges to 
4


 as n →  

or the divergence of the harmonic series 

1 1 1
1

2 3 n
+ + + +  

where for any given positive number x  there is a value of n  for which this sum is larger than x . 

For a finite series one looks at a selection of values of n ; for an infinite series one looks at the 

corresponding finite series and continues to add more terms, hopefully getting closer to a fixed value - the 
limit. 

There are also many opportunities to experiment with finite and infinite products (one of which we have 

mentioned above: 
2 4 2nL L L ). 

Starting with 

2 2 2 2

1 1 1 1
1 1 1 1

2 3 4 n

     
− − − −     

     
 

what do you notice as n  increases? This converges to 
1

2
 as n → . Can you prove this? It is quite 

straightforward (the ‘difference of two squares’ is quite useful here.) We will assume that this result has 
been proved. 

Now try: 

2 2 2 2

1 1 1 1
1 1 1 1

3 5 7 (2 1)n

    
− − − −    

+     
 

Can you guess what this converges to as n → ? 

The answer is 
4


, but how could we prove this? 

To explore this we first note that: 
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2 2 2 2

2 2 2 2

2 2

2 2 2 2

1 1 1 1 1
1 1 1 1

2 2 3 4 5

1 1 1 1
1 1 1 1

2 4 3 5

(1 2) (1 2) 1 1
1 1 1 1

1 2 3 5

    
= − − − −    
    

        
= − − − −        

        

       
= − − − −       

      

    (*) 

so if we could calculate 

2 2

2 2

(1 2) (1 2)
1 1

1 2

  
− −  

  
 

then the result above would tell us what 
2 2 2

1 1 1
1 1 1

3 5 7

   
− − −   

   
 is. 

Define 

2 2

2 2
( ) 1 1

1 2

x x
f x

  
= − −  
  

 

we see that (1 2)f  is the product we would need to be able to determine the product we are seeking. 

(Note too that (1)f  contains of one of the product terms in (*)). 

Try estimating the product 
2 2

2 2

(1 2) (1 2)
(1 2) 1 1

1 2
f

  
= − −  
  

 using your technology. (If the value of 
4


 

above is correct then you should find that 
2

(1 2)f


= .) 

So what might ( )f x  represent? 

First we note that ( 1) (1) ( 2) (2) 0f f f f− = = − = = = , so ( )f x  has zeros at all the integers except 

0x = . What familiar function has this property? 

The first one that springs to mind is sin( )x  which has roots at 0, 1, 2,x =   . Conversely, since 

sin( )x  has zeros at 0, 1, 2,x =    it is reasonable to assume that 

sin( ) 1 1 1 1
1 1 2 2

x x x x
x Ax

    
= − + − +    

    
 

where A is to be found. 

It is clear that the right hand side is zero at the same values of x  as sin( )x . To determine A  we could 

substitute in a particular value of x . Setting 0x =  is not very helpful; however, 

sin( )
1 1 1 1

1 1 2 2

x x x x x
A

x

     
= − + − +    

    
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and hence 

0

sin( ) 0 0 0 0
lim 1 1 1 1

1 1 2 2x

x
A A

x



→

    
= − + − + =    

    
 . 

The limit on the left hand side is readily found 

0 0 0

sin( ) sin( ) sin( )
lim lim lim 1
x x y

x x y

x x y

 
   

→ → →

 
= = =  = 

 
 

from the well-known result 
0

sin( )
lim 1
y

y

y→
= , and thus A = and so 

2 2

2 2

sin( )
( ) 1 1 1 1 1 1

1 2 1 1 2 2

x x x x x x x
f x

x





       
= − − = − + − + =       

      
 

giving 
sin( )

( )
x

f x
x




= . 

(Note from the diagram: 

with PQ  the arc of a circle of radius 1 subtending an angle 2y  (radians) at 

the centre, O , and PQ  the line segment from P  to Q , then clearly 

0

PQ
lim 1

PQy→
= ; however, PQ 2y=  and PQ 2sin( )y= , so 

0

2sin( )
lim 1

2y

y

y→
= , 

i.e. 
0

sin( )
lim 1
y

y

y→
= .) 

 

I am sure that the representation for 
2 2

2 2
sin( ) 1 1

1 2

x x
x x 

  
= − −  

  
 will not be familiar students; 

however, the fact that the right hand side has the same zeros as sin( )x  should convince them. Indeed, in 

contrast to the usual Taylor/Maclaurin series expansion 

3 5( ) ( )
sin( )

3! 5!

x x
x x

 
 = − + −  

the product should appeal for this very reason. A graph of the partial products of 
2 2

2 2
1 1

1 2

x x
x
  
− −  

  
soon verifies the result. 

The relation with the previous products is now apparent. With 
1

2
x =  we obtain 
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2 2

2 2

sin
(1 2) (1 2) 22

1 1 (1 2)
11 2

2

f






 
     − − = = =  
   
 
 

 

so from (*) 

2 2

1 1 1 2
1 1

3 5 2 4





  
− − = =  

  
 

as indicated before. (Note that this is the well-known Wallis’s product for successive approximations of: 

1 1 1 1 2 4 3 7
4 1 1 1 1 4

3 3 5 5 3 3 5 5


    
=  − + − + =        

    
. Use this result to find successive 

approximations of  .) 

We can also independently obtain our first result since 

2 21

sin( ) 1 1
lim 2 1 1

1 2 3x

x

x




→

  
= − −  

−   
 

( )
2 2 1 0 0

0 0

sin (1 )1 1 1 sin( ) 1 1 sin( )
1 1 lim lim lim

2 3 2 1 2 2

1 sin( ) 1 sin( ) 1 1
lim lim 1

2 2 2 2

x z y

z y

zx z

x z z

z y

z y

 

  





→ → →

→ →

−  
− − = = =  

−  

= = =  =

 . 

There is one further approximation for   obtained by setting 
1

4
x = , i.e.  

2 2

2 2

sin
(1 4) (1 4) 44

1 1
11 2 2

4





 
     − − = =  

  
 

so 

4 1 1 1 1 1 1 3 5 7 9 11 13
1 1 1 1 1 1

4 4 8 8 12 12 4 4 8 8 12 122

      
= − + − + − + =           
      

 

and hence 

4 4 4 8 9 12 12

3 5 7 9 11 132
 = =       . 

Now have a look at 

2 2 2

2 2 2

2 2 2
1 1 1

3 5 7

   
− − −   

   
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using technology and also prove that whose value is 
1

3
. The corresponding function to be considered here 

is 

2 2 2

2 2 2
( ) 1 1 1

1 3 5

x x x
g x

   
= − − −   
   

 . 

A similar analysis to that above shows that ( ) cos
2

x
g x

 
=  

 
, i.e. 

2 2 2

2 2 2
( ) cos 1 1 1

2 1 3 5

x x x x
g x

     
= = − − −    

     
 

by noticing that ( )g x  has zeros at 1,3,5,x = . 

Determine 
1

( )
lim

1x

g x

x→ −
. What does it tell you? (

2 2 2

2 2 2

2 2 2 1
1 1 1

3 5 7 3

   
− − − =   

   
). 

Show that 

2 2

2 2

3 3 3
1 1

5 7 32

  
− − =  

  
 

2 2

2 2

4 4 3
1 1

5 7 35

  
− − =  

  
 

2 2 2

1 1 1 3 3
1 1 1

3 6 9 2

   
− − − =   

   
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Fraction fireworks 

Noticing that 
81

0 1 (90 81)
90

=   − , what other values satisfy a similar relationship 0 1 ( )
m

n m
n
=   −  for 

n m ? 

Other ones are 
5

0 1 (10 5)
10

=   − , 
9

0 1 (15 9)
15

=   − , and 
32

0 1 (40 32)
40

=   −  (these 4 are the only 

solutions). 

What about solutions of 0 01 ( )
m

n m
n
=   −  for n m ? This time there are 7 solutions. 

What about solutions of 0 1 ( )
m

m n
n
=   −  for m n ? This time there are 9 unique solutions, 8 of which 

occur in ‘pairs’, e.g. 
49

0 1 (49 35)
35

=   −  and 
49

0 1 (49 14)
14

=   − . (The odd one out is 

40
0 1 (40 20)

20
=   − , which is its ‘own’ pair.) 

One interesting example is 
2121 11

11 0 1 110 0 1 (121 11)
11 11

= = =   =   − . 

Moving to the case 0 01 ( )
m

m n
n
=   −  for m n , one similarly interesting solution is 

210201 101
101 0 01 1010 0 01 (10201 101)

101 101
= = =   =   −  which is the example above with a ‘ 0 ’ 

inserted between every non-zero digit and between the ‘1’ and the decimal point. 

Further generalisations? 
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A generalised algebraic identity bites Pythagoras 

The identity 

2 2 2 2 2 2 2( ) (2 ) ( )a b ab a b− + = +  

can be used to generate Pythagorean triples that are integer solutions of 

2 2 2x y z+ =  , 

e.g. with 2, 1a b= =  we have 2 2 23 4 5+ = . 

What about solutions of the three-dimensional version: 

2 2 2 2x y z d+ + =  ? 

Here we ‘spot’ (!): 

( ) ( ) ( ) ( )
22 2 2 2 2[ ] [ ]a a b b a b ab a b ab+ + + + = + +  , 

e.g. with 2, 1a b= =  we have 2 2 2 22 3 6 7+ + = , and more generally with 1b =  and a n= , for some 

integer n : 

( ) ( )
222 2 2( 1) [ 1] 1n n n n n n+ + + + = + +  

e.g. with 3n =  we have 2 2 2 23 4 12 13+ + = , which will be familiar as it combines 2 2 23 4 5+ = and 
2 2 25 12 13+ = . 

For another example take 3, 2a b= =  giving 2 2 2 26 10 15 19+ + = . 

What about a four-dimensional version? 

This time we ‘spot’ (again!) that: 

( ) ( ) ( ) ( ) ( )
22 2 2 2 2 2 2[ ] [ ] [ ]a a b c b a b c c a b c ab bc ca a b c ab bc ca+ + + + + + + + + + + = + + + + +  , 

e.g. with 3, 2, 1a b c= = =  we have 2 2 2 2 26 11 12 18 25+ + + = , and with 3, 2, 1a b c= = − =  we have 
2 2 2 2 22 4 5 6 9+ + + = . 

The n − dimensional version is easy now! 



Page 31 of 110 

Dated November 11 2020 

Generalising Alexander's angles 

In the right-angled triangles shown the ratio of two sides to two of the angles is the same value: 

 

 

 

 

 

 

i.e. 
45 1

45 1
=  and 

60 2

30 1
= . 

Are there any other right-angled triangles for which this happens? 

What about more general triangles? 

 

In the 49 61 70− −  triangle shown we have 
BC sin CAB

AB sin BCA


=


, and with these angles we therefore 

have 
BC sin 70

1 2451
AB sin 49

=   . However 
61

1 2449
49

  , so that to within approximately -42 10 , we have 

sin 70 61

sin 49 49
= , i.e. 

BC CAB

AB BCA


=


  . 

If we make very small adjustments to the 49 and 61  angles this expression becomes exact. 

For some other examples consider the 30 50 100− − , 10 34 136− −  and 50 58 72− −  triangles. 

A 

B 

C

\

\

\

\

\

\

\ 

70o 

61
o
 

49
o
 

300 

600 

900 

900 

450 

450 

1 

1 

2 

1 



Page 32 of 110 

Dated November 11 2020 

Handling data projectors 

Faced with two tables of data relating to possible screen sizes for a range of ‘projector-screen’ distances for 

two different models of data projector, as shown: 

 

how do you set about the task of deciding which of these will give the range of screen sizes for your 

requirements when the ‘projector-screen’ distance you have is fixed, e.g. if you have two locations this is to 

be used in where the distances are 2 25 m  and 4 m , and possibly with upper and lower constraints? 

A couple of simple graphs come to the rescue: 
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Intersecting chords 

Students who have been exposed to some Euclidean geometry can be shown the following diagram  

 

and asked to deduce 
2

2

AB.BC BP (CD) CP.DP
= =

CD.AD DP (AB) AP.BP
. 

Along the way they will need to use similar triangles to deduce, for example, 
AP BP AB

= =
DP CP CD

 leading to 

the ‘intersecting chords theorem’ AP.CP=BP.DP , which is very useful in physics when determining the 
wavelength of light using Newton’s rings (see http://www.schoolphysics.co.uk/age16-
19/Wave%20properties/Interference/text/Newton's_rings/index.html, for example.) 

http://www.schoolphysics.co.uk/age16-19/Wave%20properties/Interference/text/Newton's_rings/index.html
http://www.schoolphysics.co.uk/age16-19/Wave%20properties/Interference/text/Newton's_rings/index.html
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Inverse tan land 

The result 

1 1 1tan 1 tan 2 tan 3 − − −+ + =  

is well-known, but what other integers 1 a b c    is 

1 1 1tan tan tana b c − − −+ + =  ? 

(There are none – prove it.) 

What about integer values of , , ,a b c d where 1 a b c d    for which 

1 1 1 1tan tan tan tana b c d k− − − −+ + + =  

for some positive integer k ? 

(There are none – prove it.) 

What about: 

1 1 1 1 1tan tan tan tan tana b c d e k− − − − −+ + + + =  .     

There are solutions, and all solutions where values are less than or equal to 30  are shown in the table: 

a  b  c  d  e  

1 2 4 23 30 

1 2 5 13 21 

1 2 7 8 18 

1 3 4 7 13 

1 3 5 7 8 

and the value of k  is 2 , so for the last solution in the table we have 

1 1 1 1 1tan 1 tan 3 tan 5 tan 7 tan 8 2− − − − −+ + + + =  . 

We also see from the table that some solutions have values in common, so for example from the first two 

rows we have that 

1 1 1 1 1 1tan 4 tan 23 tan 30 tan 5 tan 13 tan 21− − − − − −+ + = + +  

Notice that all the solutions in the table start with 1. The first question that arises is whether there are 

solutions without 1 as a member? For example, is there one starting with 2 ? Is the last one as given in the 

table the ‘smallest’ one in the sense that the sum of the values is least? Are there infinitely many solutions 

and, if not, what is the ‘largest’ one, and which one has the largest first member? Are there solutions where 

the values are consecutive, or just even, or just odd, or members of well-known sequences, such as 

squares, Fibonacci numbers, and so on? 

What about 

1 1 1 1 1 1tan tan tan tan tan tana b c d e f k− − − − − −+ + + + + =  

(No solutions – prove it.) 
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This begs the questions as to whether any of the even numbered angle cases has a solution, and also 

whether all odd numbered angle cases always have at least one solution. 

What about 

1 1 1 1 1 1 1tan tan tan tan tan tan tana b c d e f g k− − − − − − −+ + + + + + =  ? 

There are solutions, and those for which the values are less than or equal to 30  are shown in the table: 

a  b  c  d  e  f  g  

1 2 7 18 21 23 30 

1 2 12 13 17 18 21 

1 3 5 7 21 23 30 

1 3 5 12 13 17 21 

1 3 7 8 12 17 18 

1 4 5 7 8 23 30 

1 4 5 8 12 13 17 

2 3 4 5 7 8 13 

and the value of k  is 3 . We now also see that there is a solution (the last one in the table) where 1 is not a 

member, for which we have 

1 1 1 1 1 1 1tan 2 tan 3 tan 4 tan 5 tan 7 tan 8 tan 13 3− − − − − − −+ + + + + + =  . 

As an aside we also see from the solutions in rows 1 and 3 that the following must be true: 

1 1 1 1tan 2 tan 18 tan 3 tan 5− − − −+ = +  

and from rows 6 and 7 that: 

1 1 1 1 1 1tan 7 tan 23 tan 30 tan 12 tan 13 tan 17− − − − − −+ + = + +  . 

What about the eight angle case? 

For the nine angle case here are two of the solutions: 

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

tan 1 tan 5 tan 7 tan 8 tan 12 tan 13 tan 17 tan 18 tan 21 4

tan 2 tan 3 tan 4 tan 7 tan 8 tan 12 tan 13 tan 17 tan 18 4





− − − − − − − − −

− − − − − − − − −

+ + + + + + + + =

+ + + + + + + + =
 

from which we also see that 

1 1 1 1 1 1tan 2 tan 3 tan 4 tan 1 tan 5 tan 21− − − − − −+ + = + +  . 

Solutions of even numbered cases could be formed if there are two solutions of the corresponding case 

with half as many angles which have no values in common. For example, if we can find two such solutions 

of the five angle case we can add these to form a solution of the ten angle case where the sum will be 4 . 

Unfortunately none of those in the first table have this property. Similar remarks apply to the second table 

above in respect of the seven angle case and fourteen angle case, unfortunately. 

This latter remark provokes one final question : are there instances of two solutions in any case which have 

no values in common? 
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Logarithmic series 

From 

2 31 1
2 3

ln(1 ) , 1 1x x x x x+ = − + − −    

we find (with 1x = 1
2

x = − ): 

1 1
2 3

1 ln 2− + − =  and 2 3

1 1 1 1 1
2 2 32 2

1 ln 2 +  +  =  , 

and since 

2 3

1 1 1
2 2 2

1+ + + =  

we find 

( )( )2 3 2 3

1 1 1 1 1 1 1 1 1 1
2 3 2 2 2 32 2 2 2

1 1− + − + + + =  +  +   . 

Are there other series for which this holds, i.e. 

1 2 3 1 2 3 1 1 2 2 3 3( )( )a a a b b b a b a b a b− + − + + + = + + +  ? 

Other interesting series one can find just from the above expansion are 

( )1 3 5

1 1 1 1 1 1
1 3 53 3 3

2 ln 2 +  +  + =  

( )1 3 5

1 1 1 1 1 1
1 3 52 2 2

2 ln 3 +  +  + =  . 

Also we have 

( ) ( ) ( )2 2 3 3

1 1 1 1 1 1 1 1
2 3 2 32 3 2 3

1 ln 3 + +  + +  + + =   , 

and more generally 

( ) ( ) ( )2 2 2 3 3 3

1 1 1 1 1 1 1 1 1 1 1
2 3 2 32 3 2 3

1 ln , 2
n n n

n n + + + +  + + + +  + + + + =   . 

With 4n =  we therefore have 

( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 3 3 3 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 3 4 2 3 2 2 32 3 4 2 3 4 2 2

1 2 1 + + +  + + +  + + + =  +  +  +  

and generally (with 2 , 1,2,Nn N= = ): 

( ) ( ) ( )

( ) ( ) ( )( )

2 2 2 2 3 3 3 3

2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 3 4 2 32 2 3 4 2 2 3 4 2

1 1 1 1 1
2 2 32 2

1

1 , 1,2,

N N N

N N

 + + + + +  + + + + +  + + + + +

=  +  +  + =
 . 



Page 37 of 110 

Dated November 11 2020 

Mathematician versus machine 

Given the function 

2
( )

1

x
f x

x
=

+
 

how would you evaluate ( ) (0)nf  and ( ) (1)nf , the thn  derivative of ( )f x  evaluated at 0x =  and 1x = , 

respectively, for any natural number n ? 

There is a great temptation to use a computer algebra system (CAS), for example in Matlab® the 

commands: 

>>syms x 

>>vpa(subs(diff(x/(1+x*x),3),x,1)) 

will evaluate (3) (1)f , but what about larger values of n , say 10,100, ? What about 610n = ? Try it! If it 

manages to do this, what patterns do you spot for ( ) (0)nf  and ( ) (1)nf ? What does your CAS give for a 

general n , if anything? 

Mathematics to the rescue… 

…rearrange the expression to 2(1 ) ( )x f x x+ =  and differentiate 2n   times, from which you can show 

that 

2 ( ) ( 1) ( 2)(1 ) ( ) 2 ( ) ( 1) ( ) 0 , 2n n nx f x nxf x n n f x n− −+ + + − =   . 

Together with ‘starting values’: (0) (1) (0) (1)1
2

(0) 0, (0) 1, (1) , (1) 0f f f f= = = = , this expression can then 

be used to generate the following: 

(2 ) (2 1)(0) 0, (0) ( 1) (2 1)!, 0,1,k k kf f k k+= = − + =  

(4 1) (4 2) 1

2 2

(4 3) (4 )

2 2 2 1

(4 2)!
(1) 0, (1) ( 1)

2

(4 3)! (4 )!
(1) ( 1) , (1) ( 1) , 0,1,

2 2

k k k

k

k k k k

k k

k
f f

k k
f f k

+ + +

+

+

+ +

+
= = −

+
= − = − =

 . 

which can also be proved using mathematical induction. 

How is your CAS getting on with its calculation? 
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Mathematics for the bath 

How long does it take for the last half of a bath to empty compared with the first half? 

 

i.e with (0)y h= , 1
2

1
2

( )
h

y t h=  and ( ) 0hy t = , what is 
1
2

1
2

h h

h

t t

t

−
? 

Toricelli’s theorem (conservation of energy for a drop of water falling freely under gravity from rest at the 
surface of the bath water determines the speed of that drop of water as it leaves the bath through the 

plughole) predicts this ratio as 1 2+ , i.e. it takes around 2 4  times as long for the last half to empty 
compared with the first half. Thus the last half takes about 70%  of the total time for the bath to empty. Is 
this borne out in practice? 



Page 39 of 110 

Dated November 11 2020 

Maths woodwork it out 

Given the rectangular piece of wood shown: 

 

I wish to cut out four identical trapezia as follows: 

          

to construct the truncated pyramid shown, open at the top and bottom, in such a way that the dimensions 

of the upper opening, a square of side w , are fixed, and the area of the lower opening (a square of side x , 

to be determined) is the maximum possible. 

How do I achieve this? 
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Maximum length and area of flight 

If a ball is thrown with the same speed U  at varying angles   the trajectory is that of a parabola, as shown 

 

which is of the form 

2
2

2

sec
tan

2

g
y x x

U


= −  

using the horizontal and vertical displacement expressions 

21
2

( ) cos , ( ) sinx t Ut y t Ut gt = = −  

where g  is the constant acceleration due to gravity and t  denotes the time after release. 

The ‘horizontal range’ can be shown to be 
2

sin 2
U

R
g

= , which is when the ball is level with the point it 

was thrown from, occurring when 
2

sin
U

t
g

= , and the horizontal range attains its maximum value (over 

all  ) of 
2

max

U
R

g
=  for 45 = . 

The ball reaches its highest point at 1
2

x R=  and 
2

2sin
2

U
y h

g
= =  when sin

U
t

g
= , and h  attains its 

maximum value (over all  ) of 
2

2

U

g
 for 90 = , i.e. vertical projection. 

The ‘time of flight’ is how long the ball takes to attain its horizontal range, i.e. 
2

sin
U

t
g

= , and this also 

attains its maximum value (over all  ) (of value 
2U

t
g

= ) for 90 = , i.e. the ball that is thrown vertically 

is in the air for the longest time. 

Here are two slightly more challenging problems. 

1. The length of the arc of a trajectory (from the point of projection to attaining the horizontal range) is 

given by 
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1
2 22

sin 2

0
( ) 1

U

g
dy

s dx
dx




  

= +     
  

where the equation for the trajectory ( )y x  is given above. 

We find that 

( )
2

2 1( ) sin cos sinh (tan )
U

s
g

   −= +  

a graph of which is shown: 

 

indicating that there is an angle of projection for which the distance travelled by the ball attains a 

maximum value (over all  ). Show that this maximum value is approximately 
26

5

U

g
 attained for 56   

and the time of flight is approximately 
5

3

U

g
. 

[A standard problem in projectiles is to determine the angles of projection for which the ball passes 

through a given point. If this point has coordinates ( , )X Y  then 
2

2

2

(1 tan )
tan

2

g
Y X X

U




+
= − , from 

which there are either two, one or zero possible angles of projection, depending on whether ( , )X Y  is 

beneath, on, or above the “parabola of safety” 
2 22

2

U U
x y

g g

 
= − 

 
. We see from the graph above that 

there are also either two, one, or zero angles of projection for which the ball travels a given distance s .] 

2. The area swept out by the arc of a trajectory (from the point of projection to attaining the horizontal 

range) is given by 

2

sin 2

0
( )

U

gA y dx


 =   

where the equation for the trajectory ( )y x  is again given above. 

We find that 

4
3

2

2
( ) sin cos

3

U
A

g
  =  
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which attains a maximum value (over all  ) of 
4

2

3

8

U

g
 for 60 = . The time of flight in this case is 

3U

g
. 

(Note that this is exactly 3 times the area swept out by a ball thrown at an angle of 30 = , and the time 

of flight is 3  times s times as long.) 

What are the corresponding results when there is an air resistance proportional to (speed)n  for 0n  , 

e.g. a linear ( 1n = ) and a quadratic ( 2n = ) law of resistance? 

Consider now the more general problem of projection up an inclined plane as shown. 

 

What is the corresponding expression for the ‘length of flight’ and ‘area swept out’ in terms of , , ,U g  , 

and what are the maximum values of these over all  ? (Hint the maximum area swept out occurs when 

( )1 2tan 2 tan 3 tan − + + ). 

Further, the figure below 

 

shows the distance travelled as a function of angle of projection for different angles of slope. 

We see that for some angles of slope there are either three, two one or zero angles of projection for which 

the distance travelled, s , is a given value. 

We also see that there are some angles of slope for which the maximum distance travelled is greater than 
2U

g
, one angle of slope for which the maximum distance travelled is 

2U

g
 and which is achieved for two 
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angles of projection, and other angles of slope where the maximum distance travelled is 
2U

g
 and only 

occurs in the case of vertical projection. 

What are the corresponding results when there is an air resistance proportional to (speed)n  for 0n  , 

e.g. a linear ( 1n = ) and a quadratic ( 2n = ) law of resistance? 
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Mismat(c)hmaking 

Divide a class – even numbers only allowed – into two equal sets, A  and B , and assign each student in set 

A  with one of the n  consecutive integers  1, 2, , n  and assign each student in set B  one of the next n  

consecutive integers, i.e.  1, 2, , 2n n n+ + . Then set them off trying to ‘pair-up’, one from each set, in a 

matching in which each pair doesn’t have anything ‘in common’, i.e. for each pair their numbers, ,m n , 

have no common prime factor (or divisor), i.e. their highest common factor HCF( , ) 1m n = . (We refer to 

numbers with this property as co-prime.) 

Is this always possible regardless of the size of the class? 

One obvious matching worth trying in this case is where the first person in A  is paired with the last person 
in B , the second person in A  paired with the second to last person in B , and so on, giving the pairs 

     1,2 , 2,2 1 , , , 1n n n n− + , which we refer to as the reverse pairing. 

The table below shows the matchings that exist for the first few class sizes. The first row denotes the set A  
and the second row denotes the set B , written so that the pairings are then denoted by the columns. 

For the first case with 2n =  there is only one matching, the reverse one    1, 2 , 4,3 , in which the highest 

common factor in each pair is clearly 1. The only other possible pairing is    1,3 , 2, 4  which is not a 

matching because the second pair have 2 as a common factor.  

For the second case 3n =  there are 3! 6=  possible pairings, but only one of these gives a matching, and 

this is again the reverse pairing. 

For the next case 4n =  there are 4! 24=  possible pairings, only two of which give a matching, and neither 

of these is the reverse pairing        1,8 , 2,7 , 3,6 , 4,5  because the third pair have 3 as a common factor. 

For the final case 5n =  in the last table there are 5! 120=  possible pairings, only 6 of which give a 

matching, but this time the reverse pairing is again a matching. 
 

2n =  
1 2 

4 3 

 

3n =  
1 2 3 

6 5 4 

 

4n =  

1 2 3 4 

6 7 8 5 

    

1 2 3 4 

6 5 8 7 
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5n =  

1 2 3 4 5 

10 9 8 7 6 

     

1 2 3 4 5 

10 7 8 9 6 

     

1 2 3 4 5 

8 9 10 7 6 

     

1 2 3 4 5 

8 7 10 9 6 

     

1 2 3 4 5 

6 9 10 7 8 

     

1 2 3 4 5 

6 7 10 9 8 

Three interesting questions that these results suggest are: 

• For what values of n  is no matching possible? 

• When there is a matching how many matchings are possible in terms of n  (out of a possible !n  
pairings)? 

• For what values of n  are the reverse pairing a matching? 

The table shows the number of matchings for the first few values of n  

 
n  2 3 4 5 6 7 8 9 10 11 

no of 

matchings 
1 1 2 6 12 44 132 504 2016 10368 

The values of 50n   for which the reverse pairing is a matching are as follows:  

2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50  . 

What do you notice about these numbers? Write down the sequence 2 1n+ . What do you notice now? 
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These all have the property that 2 1n+  is prime. So you may ask the question as to why 2 1n+  being prime 

means that all pairs: 

1 2 3 …. …. …. …. n-2 n-1 n 

2n 2n-1 2n-2 …. …. …. …. n+3 n+2 n+1 

are coprime? 

What about if all these pairs are co-prime – does this imply that 2 1n+  is prime? 

(These numbers appear in the following problem: A king invites n couples to sit around a round table with 

2 1n+  seats. For each couple, the king decides a prescribed distance d  between 1 and n  which the two 

spouses have to be seated from each other (distance d  means that they are separated by exactly 1d −  

chairs). There is a solution for every choice of the distances 1, 2, ,d n= if and only if 2n + 1 is a prime 

number.) 

Finally, what about posing the original question for matchings for other integer assignments, for example 

where A  is assigned the integers  1, 2, , n  and B  is assigned any n  consecutive positive integers? 
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Oh no, my series has collapsed 

Faced with the challenge of evaluating 

1

1

( 1)k k



+
  

we could express the left hand side in terms of partial fractions 
1

( 1) 1

A B

k k k k
 +

+ +
, to give 

1, 1A B= = − , so that 

1 1 1

( 1) 1k k k k
= −

+ +
 

and then 

1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1as

( 1) 1 1 2 2 3 3 4 1 1

N N

N
k k k k N N N

= − = − + − + − + + − = − → →
+ + + +

   

with the series ‘collapsing’. 

Alternatively, we could spot that 

1 ( 1) 1 1

( 1) ( 1) 1

k k

k k k k k k

+ −
= = −

+ + +
 

with the same result. 

Can you do the same for 

2

1 1 1 1

1 1 1
, , ,

( 1)( 2) ( 2) ( 1)( 3)( 6) (2 1)(2 1)(2 5)

k k

k k k k k k k k k k k k

   +

+ + + + + + + − −
      ? 

Or more generally other series of the form 
1

( )

( )

f k

g k



  where ( ), ( )f k g k  are polynomials in k  (where 

deg( ( )) deg( ( )) 2g k f k−   for convergence)? 

For the first one we could again use partial fractions to give: 

1 1 1 2 1

( 1)( 2) 2 1 2k k k k k k

 
= − + 

+ + + + 
 

so 
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( )( )

1
2

1 1

1
2

1 1 1 1
2 2 3 1

1
2

1 1 2 1

( 1)( 2) 1 2

1 2 1 1 2 1 1 2 1 1 2 1

1 2 3 2 3 4 3 4 5 4 5 6

1 2 1 1 2 1 1 2 1 1 2 1

3 2 1 2 1 1 1 1 2

1 1 1
1 2 1

2 1 2

1 1 1

2 1 2

N N

N

k k k k k k

N N N N N N N N N N N N

N N

N N

+

= − +
+ + + +

 
− + + − + + − + + − + + 

=  
 + − + + − + + − + + − + 

− − − − − − + + + 

 
= + + + + − + − + 

+ + 

 
= − + 

+ + 

 

1
as

4
N→ →

 

So there is some ‘collapsing’ because of the alternating sums of binomial coefficients (from Pascal’s 

triangle) giving 1 2 1 0− + = . Can you show that 
1

1 1
, 1,2,

( 1)( 2) ( ) !
n

k k k k n nn



= =
+ + +

  in the 

same way? 

Use technology to convince yourself of these results. 

Turning now to the other three examples, the second one is quite easy too but having used partial fractions 
we require a few more terms to spot the pattern: 

1
2

1 1

1
2

1
2

1 1 1

( 2) 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 3 2 4 3 5 4 6 5 7 6 8 7 9

1 1 1 1 1 1 1 1 1 1

4 2 3 1 2 1 1 2

1 1 1 1 3
as

1 2 1 2 4

N N

k k k k

N N N N N N N N N N

N
N N

= −
+ +

 
− + − + − + − + − + − + − + 

=  
 + − + − + − + − + − 

− − − − − − + + 

 
= + − − → → 

+ + 

 

  . 

What about the other two, though, as these have numerators which change, so what approach is needed 
now? 

So long as ( )g k  has zeros that differ by integers then this can be done, i.e. when ( )g k  can be written as 

the product of unique linear factors: 

1 2( ) ( )( ) ( )ng k a k a k a k a= − − −  

where  for all i ja a i j−   . 

We return to the first of the other three examples 
1

1

( 1)( 2)k k k



+ +
  and express: 

1 ( 2)

( 1)( 2) ( 1) ( 1)( 2) ( 1)( 2)

A B A k Bk

k k k k k k k k k k

+ +
 + 

+ + + + + + +
 

i.e. 1 1
2 2
,A B= = − , so that 
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( )

1

1 1
2 2

1

1

1

( 1)( 2)

( 1) ( 1)( 2)

( ) ( 1) (1) ( 1)

N

N

N

k k k

k k k k

G k G k G G N

 
 
 

+ +

= −
+ + +

= − + = − +







 

where 

1
2( )

( 1)
G k

k k
=

+
 

so 

1 1

1 1
lim lim (1) ( 1)

( 1)( 2) ( 1)( 2)

1
(1)

4

N

N N
G G N

k k k k k k

G



→ →
= = − +

+ + + +

= =

   

as before. 

Now use technology to convince yourself this is true. 

For the more complex example 
2

1

1

( 1)( 3)( 6)

k

k k k k

 +

+ + +
  we need a little more ingenuity, namely ‘filling in 

the missing terms’: 

2 21 ( 1)( 2)( 4)( 5)

( 1)( 3)( 6) ( 1)( 2)( 3)( 4)( 5)( 6)

k k k k k

k k k k k k k k k k k

+ + + + +
=

+ + + + + + + + +
 

and then we need to express the numerator: 

2( 1)( 2)( 4)( 5) ( 1) ( 1)( 2) ( 1)( 2)( 3)

( 1)( 2)( 3)( 4)

k k k k A Bk Ck k Dk k k Ek k k k

Fk k k k k

+ + + +  + + + + + + + + + +

+ + + + +
 

for , , , , ,A B C D E F  to be found, which we do by setting the left-hand-side as 
2( ) ( 1)( 2)( 4)( 5)F k k k k k + + + + , and then substituting 0, 1, 2, 3, 4, 5k = − − − − − , or equating like 

powers of k , we get equations for , , , , ,A B C D E F  whose solution is 

40, 16, 4, 2, 1, 1A B C D E F= = = − = − = = , and so 
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( )

2

1

1

1

( 1)( 3)( 6)

( 1) ( 1)( 2) ( 1)( 2)( 3) ( 1)( 2)( 3)( 4)

( 1)( 2)( 3)( 4)( 5)( 6)

( 1)( 2)( 3)( 4)( 5)( 6) ( 1)( 2)( 3)( 4)( 5)( 6)

( 2)( 3

N

N

k

k k k k

A Bk Ck k Dk k k Ek k k k Fk k k k k

k k k k k k k

A B

k k k k k k k k k k k k k

C

k k

+

+ + +

+ + + + + + + + + + + + + + +
=

+ + + + + +

+
+ + + + + + + + + + + +

=

+
+ +





1

1 1
6 6

1 1
5 5

)( 4)( 5)( 6) ( 3)( 4)( 5)( 6) ( 4)( 5)( 6) ( 5)( 6)

( 1)( 2)( 3)( 4)( 5) ( 1)( 2)( 3)( 4)( 5)( 6)

( 1)( 2)( 3)( 4)( 5) ( 2)( 3)( 4)( 5)(

N

D E F

k k k k k k k k k k k k

A A

k k k k k k k k k k k k

B B

k k k k k k k k k

 
 
 
 

+ + + + + + + + + + + + + + + 

−
+ + + + + + + + + + +

+ −
+ + + + + + + + +

=



( )

1 1
4 4

1

1 1
3 3

1 1 1 1
2 2 1 1

1

6)

( 2)( 3)( 4)( 5) ( 3)( 4)( 5)( 6)

( 3)( 4)( 5) ( 4)( 5)( 6)

( 4)( 5) ( 5)( 6) ( 5) ( 6)

( ) ( 1) (1) ( 1)

N

N

k

C C

k k k k k k k k

D D

k k k k k k

E E F F

k k k k k k

G k G k G G N

 
 
 
 
 

+ 
 
+ − 

+ + + + + + + + 
 
+ − 

+ + + + + + 
 

− + −  + + + + + + 

= − + = − +





 

where 

1 1
6 5

11 1 1
34 2 1

( )
( 1)( 2)( 3)( 4)( 5) ( 1)( 2)( 3)( 4)( 5)

( 2)( 3)( 4)( 5) ( 3)( 4)( 5) ( 4)( 5) ( 5)

A B
G k

k k k k k k k k k k k

DC E F

k k k k k k k k k k

= +
+ + + + + + + + + +

+ + + +
+ + + + + + + + + +

 

so 

( )

2 2

1 1

1 1 1
6 5 2

1 1
lim lim (1) ( 1)

( 1)( 3)( 6) ( 1)( 3)( 6)

1 1019
(1) 2 12 120

6! 5400

N

N N

k k
G G N

k k k k k k k k

G A B C D E F



→ →

+ +
= = − +

+ + + + + +

= = + + + + + =

   

Now use technology to convince yourself this is true. 

What do you get if you try using partial fractions for 
2

1

1

( 1)( 3)( 6)

k

k k k k

 +

+ + +
  instead, or maybe even for 

the simpler problem 
1

1

( 1)( 3)( 6)k k k k



+ + +
 ? 

Here you will get: 

1 1

1 1 5 9 5 1

( 1)( 3)( 6) 90 1 3 6

5 9 5 1 5 9 5 1 5 9 5 1 5 9 5 1 5 9 5 1

1 1 2 4 7 2 3 5 8 3 4 6 9 4 5 7 10 5 6 8 11

5 9 5 1 5 9 5 1 5 9 5 1 5 9 5 190

1 3 6 1 3 6 1 3 6 1 3 6

N N

k k k k k k k k

k k k k k k k k k k k k k k k k

 
= − + − 

+ + + + + + 

 
− + − + − + − + − + − + − + − + − + − + 

=  
 + − + − + − + − + − + − + − + −

+ + + + + + + + + + + + 

 



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and it is not obvious that the series will ‘collapse’. 

However, if we continue: 

1 1 1

1

1 1 5 9 5 1 1 5 5 4 5 1

( 1)( 3)( 6) 90 1 3 6 90 1 1 3 6

1 5 5 4 4 1 1

90 1 1 3 3 6

5 5 5 5 5 5 5 5

1 2 2 3 1 1

4 4 4 4 4 4 4 4 4 4 4 4

1 2 4 3 5 4 6 5 7 2 1

90

N N N

N

k k k k k k k k k k k k k

k k k k k k

N N N N

N N N N

   
= − + − = − − + −   

+ + + + + + + + + +   

 
= − − + + − 

+ + + + + 

− + − + + − + −
− +

− + − + − + − + − − + − +
− −

=

  



4 4 4 4

1 2 1 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 7 5 8 6 9 7 10 8 11 9 12 10 13 11 14 4 1 3

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 3 1 4 2 5 3 6

5 5

1 1

1 4 4 4 4

90 2 3 2

N N N N

N N N

N N N N N N N N N N N N N

N

N N

 
 
 
 − + − +
 + + + +
 
 − + − + − + − + − + − + − + − + + − +
 − − −
 
 − + − + − + − + − + − + − 

− + − + + + + + + + + 

−
+

− − + +
+

137
as

3 5400

1 1 1 1 1 1

4 5 6 4 5 6

N

N N N

 
 
 
  → →
 +
 
 + + + − − − 

+ + + 

 

we see again that the series clearly ‘collapses’. 

Alternatively we can write as 

( )

1 1

1

(1) (2) (2) (3) ( 2) ( 1) ( 1) ( )

(1) (3) (2) (4) (3) (5) ( 2) ( ) (

1 1 5 5 4 4 1 1

( 1)( 3)( 6) 90 1 1 3 3 6

1
( ) ( 1) ( ) ( 2) ( ) ( 3)

90

1

90

N N

N

G G G G G N G N G N G N

H H H H H H H N H N H

k k k k k k k k k k

G k G k H k H k I k I k

 
 
 

− + − + + − − − + − −

+ − + − + − + + − − +
=

= − − + + −
+ + + + + + + +

= − + + − + + − +

 



1) ( 1) ( ) ( 2)

(1) (4) (2) (5) (3) (6) (4) (7)

( 3) ( ) ( 2) ( 1) ( 1) ( 2) ( ) ( 3)

(1) ( ) (1) (2) ( 1) ( 2)

(1) (2) (3) ( 1) ( 2)

1

90

N H N H N H N

I I I I I I I I

I N I N I N I N I N I N I N I N

G G N H H H N H N

I I I I N I N I

 
 

− − + + − + 
 + − + − + − + − +
  + − − + − − + + − − + + − + 

− + + − + − +
=

+ + + − + − + − ( 3)N

 
 

+ 

 

where 

1 5 1 4 1 1
( ) , ( ) , ( ) ,

90 90 1 90 3
G k H k I k

k k k

     
= = − =     

+ +     
 

so 

1 1

(1) ( ) (1) (2) ( 1) ( 2)1 1
lim lim

(1) (2) (3) ( 1) ( 2) ( 3)( 1)( 3)( 6) ( 1)( 3)( 6)

137
(1) (1) (2) (1) (2) (3)

5400

1

90

N

N N

G G N H H H N H N

I I I I N I N I Nk k k k k k k k

G H H I I I



→ →

− + + − + − + 
= =  

+ + + − + − + − ++ + + + + +  

= + + + + + =

   

as before. 
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What about trying 
1 (2 1)(2 1)(2 5)

k

k k k



+ − −
  using one of the techniques above. 

Use technology to experiment/convince yourself of your result. 

Use technology to experiment with 
2

1

1

( 1)( 3)

k

k k k

 +

+ +
  and see what happens. What happens if you use the 

technique above on this problem? 
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Optimisation problems in geometry 

A fixed length is divided into two parts, one forming a circle and the other a square. Show that the 

combined area is a minimum when 

area of circle perimeter of circle
=

area of square perimeter of square
 

A fixed area is divided into two parts, one forming a circle and the other a square. Show that the combined 

perimeter is a maximum also when 

area of circle perimeter of circle
=

area of square perimeter of square
 

A fixed surface area is divided into two parts, one forming a sphere and the other a cube. Show that the 

combined surface area is a minimum when 

volume of sphere surface area of sphere
=

volume of cube surface area of cube
 

A fixed volume is divided into two parts, one forming a sphere and the other a cube. Show that the 

combined volume is a maximum also when 

volume of sphere surface area of sphere
=

volume of cube surface area of cube
 

Are these results also true for hyperspheres and hypercubes in n − dimensions for 3n  , noting that the 

results above are for 2,3n = . 



Page 54 of 110 

Dated November 11 2020 

Oscillations of a falling spring 

Two masses are attached to either end of a light (negligible mass) spring. The spring hangs vertically in 

equilibrium with the upper end attached to a fixed point. The system is then released from rest (by 

detaching the upper mass from the fixed point) with both masses remaining fixed to the ends of the spring. 

Determine the resulting motion of each mass. 
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Outliers – least squares and an alternative 

A standard problem in statistics is to ‘fit’ a straight line to a set of data, and the technique usually 
recommended to students is that of least squares. 

Unfortunately, least squares is not resistant to outliers, meaning that ‘suspect’ points which lie outside the 
range of the others can have an undue influence on the estimate of the slope and intercept. This is 
primarily because all data values directly influence the least squares estimates. 

Given that the identification of outliers from the data is not always a straightforward matter, with sound 
arguments required to justify the removal of points from the data, it is clearly desirable to have available a 
simple line-fitting technique which is resistant to outliers, i.e. one for which the slope and intercept 
estimates are not sensitive to the presence of outliers. 

There are techniques which are as equally simple to apply as least squares and which seek to minimise the 
effect that outliers can have. 

Least squares 

In the usual linear regression situation, given a set of n  observed values ( , )x yi i , i n=1 2, ,..., , the 

standard least squares estimates for the slope ( m ) and intercept ( c ) are 

m
x y x y

x x

n i

i

n

i

n i

i

n
=

−

−

=

=





1

1

1 2

1

2

      ,       c y m x= −       where      x x
n i

i

n

=
=

1

1

      ,      y y
n i

i

n

=
=

1

1

 . 

As discussed above, if the data contains outliers then these will appear in the formulae above and can have 
an undesirable effect on the estimates. Least squares is therefore not resistant to outliers because the 
number of points which can be outliers before the estimates are affected is zero. 

A method that is resistant to outliers because the underlying construction is based on medians is due to 
Theil. We now give a brief description of this method, and a variation of it. 

Theil’s incomplete method 

In this method the estimate of the slope is calculated from the median of pairwise slopes. When n N= 2  is 
even, for each pair of points ( , )x yi i , ( , )x yN i N i+ + , i N=1 2, ,..., , the slope of the straight line through 

these is calculated from 

m
y y

x x
i

N i i

N i i

=
−

−

+

+

  ,   i N=1 2, ,...,  

i.e. the pairwise slopes are based on the first points, second points, etc. in each half of the data. The 
estimates of the slope and intercept are then given by 

   ( )m mi= median  

   ( ) (  )c c y m xi i i= = −median median  

For an odd number of points the middle point is omitted when calculating the pairwise slopes. It is a 
straightforward matter to use technology to calculate m  and c  as we shall show shortly. (Note that the 
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median is the middle value when an odd number of values is put in ascending order, and the mean of the 
two middle values when an even number of values is put in ascending order.) 

Theil’s complete method 

There is a version of Theil’s method in which m
y y

x x

j i

j i

=
−

−

F
HG

I
KJmedian  for 1 i j N, , i.e. all pairwise 

slopes are determined, and c  is as in the incomplete method. Clearly more calculations are required for 
the complete method. 

Example 

Both versions of Theil’s method are more resistant to outliers because the nature of the median means that 
the outlier need not directly affect the estimates. By way of an illustrative example consider the data in the 
table: 

 

xi  0 10 20 30 40 50 60 70 

yi  0 04  0 23  0 39  0 59  0 84  0 86  1 24  1 42  

and depicted as  in the figure, along with the straight line fits using the least squares and Theil’s 
incomplete estimates. (The data represents the results obtained in a calibration experiment.) 

Theil’s complete method gives a straight line which is indistinguishable by eye from the one obtained using 
the incomplete version, and is therefore not shown. It is clear that the estimates from Theil’s methods, 
which are m = 0 0204 , c = 0 00563  (all values are rounded to three significant figures) for the 
incomplete version give best fit lines which do not appear to be affected by the outlying data point. This is 
in contrast to the least squares line, whose estimates are m = 0 0195  and c = 0 0192 , which is affected 
by this point. Thus the point ( , ) (50, )x y6 6 0 86=  , the suspected outlier, has affected the least squares 

estimates, and this line is ‘pulled towards’ this point, unlike Theil’s best fit lines. It is obvious that lines of fit 
which are unduly influenced by such points may give poor estimates for extrapolated values at extremes of 
the data range. 
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Spreadsheet 

Create your own spreadsheet, say, to explore how good Theil’s method is. 

Put the x  values in A3 to A10 and the y  values in B3 to B10. The formula (B7-B3)/(A7-A3) is put in C7, 

representing m1 , and this is ‘replicated’ using the ‘drag and drop facility’ to complete the entries in C8 to 

C10 representing m m m2 3 4, , . The formula MEDIAN(C7:C10) is put in D3 to calculate the slope estimate m . 

This value is then copied and then pasted (as a value and not as a formula) in E3 to E10. The formula B3-
E3*A3 is put in cell F3 and then replicated down to cell F10, and finally the formula MEDIAN(F3:F10) is put 
in G3 to calculate the intercept estimate c . 

Not surprisingly it is more complicated to explain than to carry out! 

 

Next time you use least squares make a comparison of results with those determined from one of Theil’s 
methods. 
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Paper round maths 

A typical paper round for the delivery of free newspapers to every house in a long road involves wheeling a 
trolley comprising a bag full of newspapers. Suppose the houses are semi-detached with front gardens of 
grass on which one is not supposed to walk, but share a common concrete drive, as shown in the figure. 

 

 

 

 

 

 

Assuming that the trolley is wheeled, in turn, to each pair of adjacent semi-detached houses sharing a 
drive, there are clearly three obvious strategies for delivering two newspapers to the two letterboxes. 

Strategy 1 In the most obvious strategy we leave the trolley at A, pick up one newspaper, deliver to B, walk 
back to the trolley at A, walk to D with the trolley, pick up another newspaper, deliver to C, walk back to the 
trolley at D, and then on to the next houses sharing a drive. 

Strategy 2 Here we leave the trolley at A, pick up two newspapers, deliver first to B, walk to C, deliver the 
other newspaper, return directly to the trolley at A, walk to D with the trolley, and then on to the next 
houses sharing a drive. 

Strategy 3 For our final strategy we leave the trolley at the mid-point M, pick up two newspapers, deliver 
first to B, walk to C, deliver the other newspaper, return directly to the trolley at M, walk to D with the 
trolley, and then on to the next houses sharing a drive. 

So the key question is which is the ‘best’ strategy to use? In our case that means the one that involves the 
least amount of walking! 

Show that the three distances (for a fixed distance y ) as a function of x  are as in the figure. What do you 

deduce? 
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Playing cards with Buffon 

Given wooden floorboards of width b  the probability of a needle of length l b  crossing a join when 

dropped is 
2l

p
b

= . This can be tested experimentally, preferably using matchsticks rather than needles, 

though! 

 

If the needle is now dropped onto rectangular wooden blocks/tiles with dimensions a b , where ,l a b , 

what is the corresponding probability? 

 

If the needle is bent into the shape of a circle of diameter d  the corresponding probability for floorboards 

is 

d l l
p

b b b




= = =  

i.e. the probability is halved when the needle is bent into the shape of a circle. This can be tested using 

coins instead of needles bent into the shape of a circle! 
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What is the corresponding result for blocks/tiles? 

What are the corresponding probabilities for polygons – formed by bending a needle (or wire) – when 

dropped onto floorboards or blocks/tiles? 

Results for rectangular shaped objects can be tested by dropping playing cards. 

 

If we view a needle of length l  as a rectangle of width zero, then we have 

2 1 perimeter of shape

 width of floorboards

l
p

b 
= =  

which is the same as for the circle. 

Is this still the case that when a needle/wire is bent into the shape of a rectangle or square, whether on 

floorboards or blocks/tiles? 

 

What about other regular polygons, e.g. an equilateral triangle? 

 

Ellipses? 
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What are the corresponding probabilities if the restrictions above on the dimensions of the needle, coin, 

polygon are removed? 
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Polygon divisions 

In a regular polygon n − sided polygon 
1 2A ,A ,…,An

 the points 
1 2B ,B ,…,Bn

 divide the sides 

1 2 2 3 1A A ,A A ,…,A An  in the ratio :1r . 

 

If the area of the polygon 
1 2B ,B ,…,Bn  has unit area, what values of r  for each value of n  is the area of 

1 2A ,A ,…,An
 an integer? 

Further, if the points 
1 2C ,C ,…,Cn

 denote the points of intersection of 
1 2A B  and 

2 3A B , 
2 3A B  and 

3 4A B , …, and of 
1A Bn

 and 
1 2A B  

 

and the area of the polygon 1 2C ,C ,…,Cn  has unit area, what values of r  for each value of n  is the area of 

1 2A ,A ,…,An  an integer? 
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Potholes 

This is particularly relevant to Core Maths. 

The BBC News item: http://www.bbc.co.uk/news/business-44065655 (May 11 2018) reads: 

‘A spokesperson for the Department for Transport said it was providing councils in 

England with more than £6bn to help improve the condition of roads." This funding 

includes a record £296m through the Pothole Action Fund - enough to fix around 6 

million potholes." 

The total length of roads in England (as of 2014) can be found from: 

https://www.gov.uk/government/statistics/road-lengths-in-great-britain-2014. 

There is much of interest to Core Maths in the BBC report, and the links in the Government webpage by 

way of information in the 2014 report and data in the accompanying spreadsheets. 

On the topic of potholes, first note in the Government report: 

‘Major roads in Great Britain are split into trunk roads which are centrally managed, 

and principal roads which are managed by local authorities (including Transport for 

London). 

Trunk motorways and ‘A’ roads in England are managed by Highways England, in 

Scotland by Transport Scotland and in Wales by the Welsh Government.’ 

So, taking this into account, and the information in the report and/or tables, estimate the length of roads 

you think the £296m ‘Pothole Action Fund’ is meant to cover. 

Is the figure of 6 million potholes likely to represent all potholes on these roads, based on your experience 

of how frequently these occur on your recent journeys, or is there a mismatch in the data? 

What assumptions have you made? 

Assuming the 2014 data is correct, and even allowing for a modest increase in the total length of roads, if 

we take ALL roads (motorways, and trunk, A, B, C and U roads), across GB, amounting to ~250,000 miles, 

this would mean the fund targeted at 6 million potholes will be enough to fix these at a rate of 24 potholes 

per mile across the whole of GB. Might there be enough to ‘slack’ to cover pavements too? 

http://www.bbc.co.uk/news/business-44065655
https://www.gov.uk/government/statistics/road-lengths-in-great-britain-2014
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Power towers 

Given the sequence 

1 2( ) ( )

1 2 3( ) , ( ) , ( ) ,
xx xf x f xx x xf x x f x x x f x x x= = = = =  

for 1, 2,n =  what are: 

1. (1)nf  

2. 
0

(0) lim ( )n n
x

f f x
+→

=  

3. (1)nf   

4. 
0

(0) lim ( )n n
x

f f x
+→

 =  

5. corresponding values to 3. and 4. for any derivative of ( )nf x ? 

Given the sequence 

1
1

1
1 2( ) ( )

1 2 3( ) , ( ) , ( ) ,
x

x x
x g x g xx xg x x g x x x g x x x= = = = =  

for 1, 2,n =  what are: 

1. (1)ng , (2)ng , (4)ng , 1
2

( )ng , 1
3

( )ng  

2. 1 1
2 3

lim (1), lim (2), lim (4), lim ( ), lim ( )n n n n n
n n n n n

g g g g g
→ → → → →

 

3. lim ( )n
n

g x
→

? 



Page 65 of 110 

Dated November 11 2020 

A problem for Su Doku grids 

The table shows a partially completed 9 9  Su Doku grid 

 6  1  4  5  

  8 3  5 6   

2        1 

8   4  7   6 

  6    3   

7   9  1   4 

5        2 

  7 2  6 9   

 4  5  8  7  

and the task is to complete this so that: 

every row, every column and every one of the 3 3  sub-grids shown contains the digits 1 to 9. 

All puzzles set usually have only one solution. 

Here we ask how many solutions there are from other given starting conditions where less information is 
given than that required for a unique solution. 

For simplicity we begin with a smaller version, a 4 4  grid as shown 

1    

   2 

3    

   4 

where this time the task is to complete the grid so that: 

every row, every column and every one of the 2 2  sub-grids shown contains the digits 1 to 4. 

The questions we pose concern the number of solutions to puzzles which initially contain four digits, one 

each of 1, 2, 3 and 4, in specified locations, and how the number of solutions changes as fewer digits are 
given initially. 
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Q1. How many solutions are there starting with: 

1    

 2   

  3  

   4 

A1. There are two solutions which are mirror images of each other: 

1 3 4 2 

4 2 1 3 

2 4 3 1 

3 1 2 4 

1 4 2 3 

3 2 4 1 

4 1 3 2 

2 3 1 4 

Q2. What happens if the 4 is removed, then the 3, and finally the 2? 

A2. The number of solutions increases from the 2 above to 6, so 3 times as many, and then to 24, so 4 times 

as many again. How many do you think there are with just 1 in the top left hand corner? 

Q3. How many solutions are there starting with: 

1   2 

    

    

3   4 

A3. This time there are 7 solutions altogether (which is a little surprising), 2 of which are: 
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1 4 3 2 

2 3 4 1 

4 1 2 3 

3 2 1 4 

1 4 3 2 

2 3 4 1 

4 2 1 3 

3 1 2 4 

where the only difference is the bottom central block 

 

2 1 

1 2 

which switches to 

1 2 

2 1 

The remaining 5 solutions have on the top row. 

1 3 4 2 

Q4. What happens if the 4 and then the 3 are removed? 

A4. This time the number of solutions increases by only 2, to 9, and then to 24 solutions  as in Q2. 

The same number of solutions found in Q3 & Q4 are also found for the following cases: 
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 1 2  

 3 4  

    

 1 2  

    

 3 4  

    

 1 2  

    

    

 3 4  

and similar ones. 

Q5. What happens if we start with: 

1 2 3 4 

    

    

    

A5. This time there are 12 solutions. 

As for Q1 the following each have 2 solutions: 
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1    

 2   

   3 

  4  

1    

2    

  3  

   4 

(and similar ones), whereas the following have 4 solutions 

1   2 

 3 4  

    

    

 

1 2   

    

    

  3 4 

1   2 

    

    

 3 4  
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 1   

  2  

 3   

  4  

(and similar ones), whereas these have only 1 solution: 

 

1    

  2  

  3  

4    

1    

   2 

3    

   4 

As before we could investigate how many solutions are obtained when one or more of the digits are 
removed in these. 

An obvious variation to consider is the number of solutions when starting with, say, all four 1’s in specified 
locations, and then removing these one at a time. 

And now to the 9 9  case, for which there are many more variations to consider, and beyond… 
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Pythagoras and cosine rules for tetrahedra 

In a right-angled triangle OAB  where AOB 90=  

 

Pythagoras’ theorem states that: 

2 2 2AB OA + OB=  

The generalisation to any triangle: 

 

is the cosine rule 

2 2 2AB =OA + OB 2OA.OB cos(AOB)−  . 

There are analogies for tetrahedra which can be proved using scalar and vector products. 

For the right-angled triangle tetrahedron OABC  where AOB=BOC=AOC 90=  
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we have: 

2 2 2 2(area ABC) (area OAB) +(area OBC) +(area OAC) =     . 

The generalisation to any tetrahedron: 

 

is 

2 2 2 2

1
2

(area ABC) (area OAB) +(area OBC) +(area OAC)

OA cos(BOC) + OB cos(AOC) + OC cos(AOB)
OA.OB.OC 

OA cos(AOB) cos(AOC) OB cos(AOB) cos(BOC) OC cos(AOC) cos(BOC)

 =   

 
 +
 − − − 
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Pythagoras for series 

What is the value of: 

( )

( )

2
0 0 1 1 2 2 3 4

2
0 0 1 1 2 2 3 4

2 cos cos1 2 cos cos 2 2 cos cos3 2 cos cos 4

2 sin sin1 2 sin sin 2 2 sin sin 3 2 sin sin 4

       

       

+ + + +

+ + + + +

 

i.e. 

( ) ( )
2 2

2 2 2 2cos 2cos cos 2 2 cos cos3 sin 2sin sin 2 2 sin sin 3         + + + + + + +  ? 

If we only retained the first term in each bracket we would have 2 2cos sin + , which we know is 1 by 

Pythagoras’s theorem in a triangle with hypotenuse of length 1, with one of the angles being 90  , i.e. 

2 2cos sin 1 +   for all   . 

But what about the more general expression above? 

This is also 1, i.e. 

( ) ( )
2 2

2 2 2 2cos 2cos cos 2 2 cos cos3 sin 2sin sin 2 2 sin sin 3 1         + + + + + + + =  

but not for all  , only for 1 1
3 3
(3 1) (3 2) , 1,2,k k k  +   + = . This does include a range of acute 

angles (with 1k = ), though, i.e. 1 1
3 2
    , but sadly not quite so universal as Pythagoras! 
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Pythagorean triples from infinite series 

What is special about the right-angled triangle with one of the angles being   where 

2 3

1 1 1
2 2 2

1 cos 2 cos2 3 cos3 0   +  +  + =  ? 

What about 

2 3

1 1 1
3 3 3

1 cos 2 cos2 3 cos3 0   +  +  + =  

or 

2 3

1 1 1
4 4 4

1 cos 2 cos2 3 cos3 0   +  +  + =  ? 



Page 75 of 110 

Dated November 11 2020 

Quadratics and turning the corner 

What is the equation of the graph shown in the figure? 

 

At first glance it looks like ( ) 2f x x=  for 0x  and ( ) 0f x   for 0x  . 

Consider the quadratic equation (for t ) 

2 2 0y xy p− − =  

where ,x p  are real parameters with 0p  . The roots of this equation are given by 

1
22( )y x x p=  + . 

The function we consider here is the one obtained from the positive root, i.e. 

1
22( ) ( )r x x x p= + +  

as a function of x , with 0p   a parameter. 

The most interesting case is when 1p . The figure is actually the graph of ( )r x  in the case 410p −= , 

which gives the appearance of having a 'corner' in it (like the graph of x  has). 

If we look closely, though, unlike x  the function ( )r x  has a continuous derivative, but this changes rapidly 

near the origin with large curvature. For smaller values of p  the 'corner' is more pronounced, and less so 

for larger values of p . 

For 1p  determine the behaviour of ( ), ( )r x r x  and ( )r x , each for 0, 0x x =  and 0x  . You will 

find that 
1
2(0) 1r p

−
 =  for 1p , indicating large curvature near the origin. 

One way of magnifying the behaviour of this ‘corner’ function is to take logs (say to base 10) and the figure 

shows the graph of 10log ( )z r x= −  for 410p −= . (The minus sign ensures that the graph is predominantly 

above the x -axis.) The log graph changes rapidly near 0x = , and this is more pronounced the smaller the 
value of p . 
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This qualitative behaviour occurs in the field of chemistry where an alkali is added to an acid, e.g sodium 
hydroxide to hydrochloric acid, and the resulting acidity/alkalinity can be determined by solving a quadratic 
equation similar to the one above. The quantity x  is related to the volume of added alkali and the function 

10log ( )r x−  corresponds to the pH of the solution which is a measure of the acidity. The rapid change in 

pH occurs when the volume of alkali added is just sufficient to neutralise the acid. Typically the parameter 
1410p −=  for such problems. We examine this link shortly. 

First we consider another way of interpreting the quadratic equation above which proves useful in the 
application in chemistry. 

Rearranging the quadratic equation we have 

2

2

y p
x

y

−
=  . 

If we now plot x  against y , but with the graph rotated so that y  is along the horizontal and x  is along the 

vertical, then the first graph with the ‘apparent corner’ will be repeated, and if we substitute in 10 zy −= , 

i.e. 

2(10 )

2(10 )

z

z

p
x

−

−

−
=  or 22 (10 ) (10 )z zx p− −= −  

and plot x  against z , but with the graph rotated so that z  is along the horizontal and x  is along the 
vertical, then the second graph above is repeated. 

This idea can be useful when drawing graphs of roots of an equation, and this is particularly so in chemistry 
as we now see. 

In chemistry is the pH of a solution is defined by 

10pH log [H ]+= −  

where [H ]+  is the concentration of hydrogen ions H+ , and represents the degree of acidity of the 

solution. For example, for water 7[H ] 10+ −=  giving a pH  of 7 . The standard approach is to conduct an 
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experiment, called a titration, whereby the base is added gradually to the acid. An alternative approach is 
to determine the pH theoretically. 

In the case of adding a strong base, say sodium hydroxide (NaOH), of concentration 0 2  (in suitable units) 

is added to a volume 50  (again in suitable units) of a solution of a strong acid, say hydrochloric  acid (HCl), 

of concentration 0 2 , then [H ]+  is the (positive) solution of the quadratic equation 

2 10 0 2
[H ] [H ] 0

50
W

V
K

V

+ +−  
− − = 

+ 
 

where the V  is the volume of base added and 
WK  is the ionic product of water whose value at 

temperature 25  deg C is 1410− , which is of the form similar to the above quadratic equation. 

The positive root of the equation is 

2

141 10 0 2 10 0 2
[H ] 4 10

2 50 50

V V

V V

+ −
 −  −   = + +  
 + + 
 

 

giving [H ]+  in terms of the volume V  of NaOH added. 

A plot of [H ]+  against V  is shown: 

 

and a plot of 
10pH log [H ]+= −  against V  is shown: 
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The 'corner' shown is located at the equivalence point given by 10 0 2 0V−  = , i.e. 50V =  where acid and 
base are present in equal amounts, and this is where the rapid transition occurs as shown. These features 

are precisely those discussed for the initial quadratic equation. We note from the expression for [H ]+  that 

10 0 2
[H ]

50

V

V

+ − 


+
      for 50V   

7[H ] 10+ −=        for 50V =  

and 

2

14

14

2

14

14

1 10 0 2 0 2 10
[H ] 4 10

2 50 50

1 4 10

2 10 0 2 0 2 10
4 10

50 50

10

(0 2 10)(50 )

V V

V V

V V

V V

V V

+ −

−

−

−

 −   −  = +  − 
 + + 
 

 
 

 
=  

−   −  +  +  + +  


 − +

  for 50V   

The corresponding three parts of the graph for [H ]+  and pH  can be seen in the figures above. 

Another way of interpreting the quadratic equation is to rearrange as: 

2

2

50 10[H ] 50[H ]

[H ] 0 2[H ]

W

W

K
V

K

+ +

+ +

+ −
=

+  −
 

and if we substitute -pH[H ] 10+ =  we have 
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-pH -pH 2

-pH 2 -pH

50 10 10 50 (10 )

(10 ) 0 2 10

W

W

K
V

K

+  − 
=

+   −
 

Plotting V  against pH  using this expression, but with V  along the horizontal and pH  along the vertical 

gives exactly the same graph as above but without the need to solve the quadratic equation. 

 

We can also read off the pH  for a given volume V , again without the need to solve the quadratic 

equation. This technique proves very useful for titrations where we have a weak acid and strong base, a 
strong acid and a weak base, and finally where we have a weak acid and a weak base. 

For example adding a strong base, e.g. sodium hydroxide (NaOH), of concentration 0 2 to a volume 50  of 

weak acid, e.g. ethanoic acid (CH3COOH), of concentration 0 2 , then then [H ]+  is the (positive) solution of 

the cubic equation 

2( 50)( [H ])[H ] 0 2 ( [H ])[H ] (50 )( [H ]) 0 2 50 [H ] 0a a W a aV K V K K V K K+ + + + + ++ + +  + − + + −   =  

where WK  is the ionic product of water, as before, whose value at temperature 25  deg C is 1410− , and 

aK  is the equilibrium constant for the weak acid, whose value for ethanoic acid at 25  deg C is 85 10− . If 

we want to see how the 
10pH log [H ]+= −  varies with volume of base added, V , we would need to solve 

the cubic equation numerically for many values of V , or we could use the formula for the roots of a cubic. 

Alternatively we could use the approach above for the quadratic and rearrange the expression to write V  

in terms of [H ]+  and substite -pH[H ] 10+ = : 

( )
( )

2

2

50 ( [H ])( [H ] ) 0 2 [H ]

( [H ]) [H ] 0 2[H ]

a W a

a W

K K K
V

K K

+ + +

+ + +

+ − + 
=

+ +  −
 

and then plot V  against pH  using this expression, but with V  along the horizontal and pH  along the 

vertical: 
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Similar remarks apply for weak base/strong acid titrations, and for weak acid/weak base titrations the 
corresponding equation is a quartic but the same approach as above will work in this case too and avoids 
solving the resulting quartic equation, either exactly or numerically for many different volumes V . 
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Revealing numerical solutions of a differential equation 

Ask students to solve the problem: 

1
22(1 ) 0 , (0) 0

dy
y x y

dx
= + −   =  

and you may find they present the solution ( ) sin( )y x x=  through integration and application of the initial 

condition. 

Now ask them to use Euler’s method: 

1
221

0(1 ) , 0n n
n

y y
y y

h

+ −
= + − =  

(where they will need to periodically reduce the size of h  to prevent the argument under the square root 

becoming negative) and explain what they get. 

They will discover that Euler’s method is predicting the solution correctly as they have failed to spot in their 

solution ( ) sin( )y x x=  that the left hand side of the differential equation is cos( )x , whereas the right 

hand side is: 

1 1
2 22 2

1
2

1
2

(1 sin ) (cos ) cos( )

cos( ) for 0

cos( ) for

x x x

x x

x x



 

+ − = + =

=  

= −  

 

i.e. their solution of sin( )x  is only valid for 1
2

0 x   , and that the remaining part of the solution for 

1
2

x    is ( ) 1y x = , as correctly predicted by Euler’s method! 
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Roots and reactions 

The Haber process for the industrial manufacture of ammonia, nitrogen and hydrogen react in the presence 
of a catalyst as follows: 

2 2 3N 3H 2NH+  . 

The two-way arrow indicates that the reaction is reversible, and this is because the rate of reaction for a 
given temperature is proportional to the concentration of the reactants. So when the nitrogen and 
hydrogen are first mixed ammonia will form at a fast rate, but this will slow as the concentrations fall.  

Conversely the rate of decomposition of ammonia grows as the concentration of ammonia increases, and 
after some time a dynamic equilibrium will be reached. 

The amount of nitrogen, hydrogen and ammonia at equilibrium can be determined by solving an algebraic 

equation. For example, if there are initially 
0a  moles of nitrogen, 

0b  moles of hydrogen and 
0u  moles of 

ammonia then the equilibrium amounts are 
0a x− , 

0 3b x−  and 
0 2u x+  moles, respectively, where x  is a 

solution of 

2 3

0 0 0( 2 ) ( )( 3 ) 0u x K a x b x+ − − − =  

and where the equilibrium constant 0K   is known. 

To make sense physically the amounts at equilibrium must be positive, so that x  must lie in 

( )0 0 02, min( , 3)u a b− . Moreover, there should be only one position of equilibrium. Thus 

2 3

0 0 0( ) ( 2 ) ( )( 3 )Q x u x K a x b x + − − −  

should have only one solution in ( )0 0 02,min( , 3u a b− . 

Prove, using calculus, that this is the case. 
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Skyers 

A ball is dropped from rest when 0t =  from a point Q at a height h  above a horizontal plane through O 

and O’ where OO’= d , as shown: 

 

If the ball is at point P when the time elapsed is t , and is viewed by an observer at point O’, how does the 

‘observation angle’   vary as a function of t , and what observations do you make from this in terms of the 
rate at which the observer’s head rotates while watching the ball fall (which will be accelerating due to 
gravity). 

With 10 mh = , 20 md = , the acceleration due to gravity 29 8msg −=  ,   varies as a function of t as 

shown: 
 

 
 

from which we see that the rate of ‘rotation’   reaches a maximum before, and that is clear from the 

graph of   shown: 
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Determine where the ball has fallen to when this maximum is attained. (When 
h

d
 is the same as that in the 

figure above the ball will be at the point P shown in that figure.) What happens if the ball is initially 
projected downwards with a speed u ? 

A natural extension is to consider a ball projected vertically upwards from a point below the horizontal 

plane through OO’. Graphs of   for two different scenarios are shown below, where in the first case   

attains a maximum (below the horizontal) on the way up and on the way down, whereas in the second case 

  attains just one maximum value (again on the way down and below the horizontal). 

 

 

Show that these two cases are distinguished according to whether or not ( , )h d  lies outside the circle 

centre ( )2 ,0u g , radius 2u g . In both cases there are some interesting features which one could 

investigate, for example the oblique points of inflexion in the graphs of  , i.e. where 0 , 0 =    
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Spidergraph 

Some of you may be familiar with Spirograph: 

 

where the locus traced out are curves such as epitrochoids, hypotrochoids, with special cases of epicycloids 

and hypocycloids, as well as cycloids when the rolling disk moves along a straight line as opposed to inside 

or outside a circle. 

But what are the loci traced out by the riders on Disneyland’s Mad Hatter’s Teacup ride, shown, or 

Legoland’s spinning spider: 

 

Here is a schematic of the ride 
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Each of the large and medium size disks rotate (increasing in speed during the ride), while the speed of the 

small disks varies according to whoever has taken charge of the wheel to turn the teacup (or similar). 

Write down expressions for the parametric equations for the locus of the riders. Depending on the 

particular ride (and the rider), which will dictate the various radii of the three disks, and the various speeds 

of all three disks, and which direction they are spinning in, you will see many different patterns for the loci, 

as follows: 

 

 



Page 87 of 110 

Dated November 11 2020 
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Spirals galore 

What is the area of the spiral shown on the left, and what about the general case on the right? 

 

What about a triangle, and the corresponding general case? 

 

A hexagon? 

 

Any regular polygon? 
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Spot the difference 

Can you spot the difference between these two curves? 

 

      

The one on the left is ( ) 0 115 ( 1)( 2)f x x x x=  − −  while the other one is 1
2

( ) 2 ( 1)xg x x x= − + . 

The function ( )g x  and its generalisation to 1
2

( ) ( 1) , 1xh x a x x a= − +  , have some properties in 

common with cubic functions like ( )f x . 

Here are some properties of ( )g x  and ( )h x . 

1. ( )g x  has three real roots at 0,1,2x = . 

2. ( ) 0g n   for all non-negative integers n . 

3. ( ) 0g x   for 0x   and for 1 2x  , and is non-negative otherwise. 

4. ( )g x  has a local maximum in (0,1)  and a local minimum in (1,2) . 

5. ( )g x  has a point of inflexion at 1 06x    ( ( )f x  has its inflexion at 1x = ). 

6. ( )h x  always has a root at 0x = . 

7. ( )h x  has only one real root ( 0x = ) and a horizontal point of inflexion at 0 875x    when 

2 07a   . 

8. ( )h x  has a positive, double real root at 1 44x    when 2 02a   . 

9. ( )h x  has a double real root at 0x =  when a e= . 

 

Can you prove these? 
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Squaring up to factorials 

The series: 
2 3

1
2! 3!

x x x
e x= + + + + , valid for all x , tells us that 

1 1 1 1 1 1
(where 2 71828 )

1 1 10! 1! 2!

0! 1! 2!

e e
e

− = − + − = = = 

+ + +

. 

What about: 

2 2 2

2 2 2

0 1 2

1 1 1

(0!) (1!) (2!)

1 1 1

(0!) (1!) (2!)

1 1 1
, 3,4,

(0!) (1!) (2!)

1 1 1

(0!) (1!) (2!)

n n n
n

+ + +

− + −

+ + + =

+ + +

  ? 
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A tale of two series and a Dickens of an integral 

You know that: 

(1 ln )x xd
x x x

dx
= +  . 

Have you ever wondered about: 

xx dx    or 
1

0

xx dx  ? 

You also know that: 

1 1 1

1 2 3
+ + +    is unbounded 

whereas: 

1 1 1
ln 2

1 2 3
− + − =  . 

Have you ever wondered about: 

1 2 3

1 1 1

1 2 3
+ + +   or 

1 2 3

1 1 1

1 2 3
− + −  ? 

What about others such as: 

1 2 3

1 1 1

1 3 5
− + +   or 

0 1 2

1 1 1

2 4 6
+ + +  ? 
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The other Bernoulli trials 

The three Bernoulli brothers, Daniel, Johann II and Nicolaus II were playing a game with three six-sided 
dice, labelled: A (Daniel), B (Johann II) and C (Nicolaus II), given to them by 
their father, Johann. The dice had the numbers 1 to 18 written on them so 
that the sum of the digits on each die is the same, i.e. 57. The game consists 
of rolling either two or three of the dice at a time, and a win occurs for the 
die showing the highest number on the upper face. The dice are said to be 
non-transitive if when A rolls against B then A wins on average, and when B 
rolls against C then B wins on average, and, importantly, when C rolls against 
A then C also wins on average. In other words there is a cyclic pattern as 
illustrated in the figure, where A > B means A beats B on average, etc. 

The first set of dice that Johann produced are shown in Table 1. 
 

Die A  Die B  Die C 

1 6 8 

 

3 5 7 

 

2 4 9 

11 15 16 10 14 18 12 13 17 

Table 1 

These are examples of non-transitive dice. The likelihoods of A beating B, B beating C and C beating A are 
same, and after a careful check (by comparing each of three possible pairings of the three dice) the winning 
die would win 19 and lose 17 times out of a possible 36 outcomes, and so the odds of A beating B etc. are 

19 :17 . Table 2 shows the 36 possible outcomes for the pair A and B and which die wins for each outcome. 

  Die B  

  3 5 7 10 14 18 sum = 57 

Die A 

1 B B B B B B  
6 A A B B B B  
8 A A A B B B  

11 A A A A B B  
15 A A A A A B  
16 A A A A A B  

sum =  57        

Table 2 

Exactly the same result occurs for the pair B and C and the pair C and A, with the difference between wins 
for A and wins for B in the trial between A and B being 19 17 2− = , and similarly for B and C, and C and A. 
This information is shown in Table 3. 
 

Die A  Die B  Die C 
Wins 
 A - B 

Wins 
 B - C 

Wins 
 C - A 

1 6 8 

 

3 5 7 

 

2 4 9 
2 2 2 

11 15 16 10 14 18 12 13 17 

Table 3 

They next played a game where all three dice were to be rolled and the winner each time would be the one 
whose die showed the highest score. 

Out of 216 possible outcomes on average they would each win the same number of times, i.e. 72 each, and 
in this case the odds of winning are all equal. This information is summarised in Table 4. 

 

B 

A 

C 
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Die A  Die B  Die C 
Wins 
 A - B 

Wins 
 B - C 

Wins 
 C - A 

Wins 
A 

Wins 
B 

Wins 
C 

1 6 8 

 

3 5 7 

 

2 4 9 
2 2 2 72 72 72 

11 15 16 10 14 18 12 13 17 

Table 4 

Is this always the case? What other possibilities are there? Table 5 shows another scenario. 

Die A  Die B  Die C 
Wins 
 A - B 

Wins 
 B - C 

Wins 
 C - A 

Wins 
A 

Wins 
B 

Wins 
C 

1 6 9 

 

4 5 7 

 

2 3 11 
4 4 4 72 72 72 

10 13 18 8 16 17 12 14 15 

Table 5 
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Table 6 shows a range of other scenarios with some interesting variations. 
 

Die A  Die B  Die C 
Wins 
 A - B 

Wins 
 B - C 

Wins 
 C - A 

Wins 
A 

Wins 
B 

Wins 
C 

1 2 4 

 

3 5 10 

 

6 7 8 
2 2 2 102 57 57 

15 17 18 12 13 14 9 11 16 

1 6 9 

 

4 5 7 

 

2 3 11 
4 4 4 72 72 72 

10 13 18 8 16 17 12 14 15 

1 2 5 

 

3 4 9 

 

6 7 8 
2 2 2 97 63 56 

14 17 18 12 13 16 10 11 15 

1 2 5 

 

3 4 11 

 

6 7 8 
4 4 4 96 60 60 

15 16 18 12 13 14 9 10 17 

1 2 7 

 

5 6 10 

 

3 4 8 
4 4 4 88 56 72 

14 15 18 11 12 13 9 16 17 

1 2 9 

 

6 7 8 

 

3 4 5 
6 6 6 81 54 81 

14 15 16 11 12 13 10 17 18 

1 5 7 

 

2 3 6 

 

4 8 9 
2 2 2 80 80 56 

10 16 18 14 15 17 11 12 13 

1 5 8 

 

3 4 9 

 

2 6 7 
2 2 2 73 71 72 

13 14 16 11 12 18 10 15 17 

1 6 8 

 

3 5 7 

 

2 4 9 
2 2 2 72 72 72 

11 15 16 10 14 18 12 13 17 

1 6 11 

 

5 7 8 

 

2 3 4 
6 6 6 63 63 90 

12 13 14 9 10 18 15 16 17 

1 7 8 

 

2 5 6 

 

3 4 9 
2 2 2 71 74 71 

10 14 17 13 15 16 11 12 18 

1 7 8 

 

3 5 6 

 

2 4 9 
2 2 2 71 73 72 

10 14 17 12 13 18 11 15 16 

1 7 8 

 

3 5 6 

 

2 4 9 
4 4 4 72 74 70 

11 12 18 10 16 17 13 14 15 

1 7 8 

 

4 5 6 

 

2 3 10 
4 4 4 72 72 72 

11 12 18 9 16 17 13 14 15 

1 6 11 

 

5 7 8 

 

2 3 4 
6 6 6 63 63 90 

12 13 14 9 10 18 15 16 17 

1 2 11 

 

5 6 9 

 

3 4 7 
4 4 4 80 56 80 

12 15 16 10 13 14 8 17 18 

1 2 9 

 

5 6 7 

 

3 4 11 
4 4 4 88 64 64 

10 17 18 8 15 16 12 13 14 

Table 6 

Variations on this problem include the simpler problem of tossing three coins with the numbers 1 to 6 
written on the faces so that the sum on each coin is the same. 

Table 7 shows the only possible case in which we see that the coins are equally likely to win against each 
other in a two-coin tossing competition, whereas in a three-coin tossing competition with these values A 
wins 4 times out of the 2 2 2 8  =  possible outcomes, with B and C winning 2 out of 8 each. Because 8 is 
not divisible by 3 it could not have been possible that in this case each would win the same number of 
times. 
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Coin A  Coin B  Coin C 
Wins A     

- Wins B 
Wins B     

- Wins C 
Wins C     

- Wins A Wins A Wins B Wins C 

1 6  2 5  3 4 0 0 0 4 2 2 

Table 7 

A simple way of checking the number of wins in the three-coin game, and indeed for any game with all 
three (or more) coins or dice (or spinners) is to write down all the possibilities as shown in Table 8 for the 
above example and tally up the wins (which are highlighted). 
 

Coin A Coin B Coin C 

1 2 3 

1 2 4 

1 5 3 

1 5 4 

6 2 3 

6 2 4 

6 5 3 

6 5 4 

Table 8 

For three spinners made of equilateral triangular card, and the numbers 1 to 9 written on them, and a total 
for each spinner of 15, two results are found as shown in Table 9. 

Spinner A  Spinner B  Spinner C 
Wins 
 A - B 

Wins 
 B - C 

Wins 
 C - A 

Wins 
A 

Wins 
B 

Wins 
C 

1 5 9  3 4 8  2 6 7 1 1 1 11 8 8 

1 6 8  3 5 7  2 4 9 1 1 1 10 7 10 

Table 9 

Only in the first case, with 11 wins out a possible 3 3 3 27  =  outcomes, is there an outright winner in the 
three-spinner game. Each spinner wins 5 and loses 4 times out of the 9 possible outcomes when it 
competes against its neighbour. Even though 27 is divisible by 3, there is no solution where each spinner 
wins 9 times in the three-spinner game. 

Turning now to three tetrahedral dice, with the numbers 1 to 12 written on them with the sum of faces 
being 26, it is again not possible to achieve equally likely outcomes in the three-dice game because the 

number of possible outcomes 4 4 4 64  =  is not divisible by 3. Three examples are shown in Table 10, 
and the last example is one in which the outcomes are as near equal as is possible, with 21, 21 and 22 wins 
for A, B and C, respectively, with C narrowly winning. The dice are again non-transitive with A winning 9 
times and losing 7 times in 16 possible outcomes when competing against B, and similarly for the other two 
pairings. 

Die A  Die B  Die C 
Wins 
 A - B 

Wins 
 B - C 

Wins 
 C - A 

Wins 
A 

Wins 
B 

Wins 
C 

1 3 

 

2 7 

 

4 5 
2 2 2 28 18 18 

10 12 8 9 6 11 

1 4 

 

2 7 

 

3 5 
2 2 2 25 18 21 

10 11 8 9 6 12 

1 7 

 

3 5 

 

2 4 
2 2 2 21 21 22 

8 10 6 12 9 11 

Table 10 
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Three examples for pentagonal spinners are shown in Table 11. Here we see that the odds of A beating B, B 

beating C, and C beating A, vary from 13:12 , 14 :11 and 3: 2  in rows 1, 2 and 3, respectively. Because 

5 5 5 125  =  is not divisible by 3 we know for certain that there cannot be a case where there are equally 
likely outcomes of winning in the three-spinner game. 
 

Die A  Die B  Die C 
Wins 
 A - B 

Wins 
 B - C 

Wins 
 C - A 

Wins 
A 

Wins 
B 

Wins 
C 

1 3 11 

 

2 7 8 

 

4 5 6 
1 1 1 48 38 39 

12 13 9 14 10 15 

1 4 6 

 

2 3 10 

 

5 7 8 
3 3 3 52 42 31 

14 15 12 13 9 11 

1 3 11 

 

6 7 8 

 

2 4 5 
5 5 5 45 30 50 

12 13 9 10 14 15 

Table 10 

Clearly there are many more variations to consider. Apart from other regular polygonal spinners, other 
obvious cases include the possibilities arising from polyhedral dice in the shape of the three remaining 
Platonic solids: the 8-sided octahedron, the 12-sided dodecahedron and the 20-sided icosahedron. What 

we know for certain is that because 312 1728=  is divisible by 3, while 38 512=  and 320 8000=  are not, 
it is only in the dodecahedral case where we could have the non-transitive property with each die winning 
against its neighbour and equally likely outcomes of winning in the three dice game. 

What about using four dice. Can these all be non-transitive, and with equally likely outcomes when all four 

roll? Because 44 256=  is divisible by 4 it is theoretically possible to have equally likely outcomes in the 
four tetrahedral dice game when all four are rolled, but can you find a solution in which the dice are also 
non-transitive? In this case even with four non-transitive dice there are solutions in which the odds of A 
beating B are larger than those of B beating C, etc, which is not the case above in the three-dice game. 

Similarly with 46 1296=  divisible by 4 it is theoretically possible to have equally likely outcomes in the four 
cubic dice game when all four are rolled, but can you find a solution in this case in which the dice are also 

non-transitive? With 43 81=  not divisible by 4 it is not possible to have equally likely outcomes in the four 
triangular spinner game when all four are spun, and in any case it is not possible to have four non-transitive 
triangular spinners with the numbers 1 to 12 written on them with each spinner having the same sum, or 
indeed four spinners with the same sum because the sum of the numbers is 78 which is not divisible by 4. 

With coins, spinners and polyhedral dice in the shape of the five Platonic solids, including the regular six-
sided dice, and any number of them, the possibilities are endless.  

Two obvious facts that can easily be established are as follows. 

• For k  lots of n -sided spinners/dice with consecutive integers starting at m  up to 

1m nk+ − , the sum of the numbers is 1
2

(2 1)nk m nk+ − , and this is divisible by k  (giving 

the sum on each spinner as 1
2

(2 1)n m nk+ − ) only if n  is even or nk  is odd. Clearly in the 

case where 3n =  and 4k = , i.e. four triangular spinners, we cannot achieve the same sum 
on each spinner with consecutive integers regardless of which integer we start with. With 

6n =  and 4k = , however, i.e. four cubic dice, then n  is even and the sum on each dice is 
3(2 23)m+ . If we have the same number of spinners/dice as the number of sides on them, 

i.e. n k= , then we would need either n  to be even or 2nk n=  to be odd, and one or other 

of these is always true, for example with 6n k= = , i.e. 6 cubic dice. 
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• For k  lots of n -sided spinners/dice the number of outcomes in the k  spinner/die game is 
kn , and for it to be theoretically possible to have equally likely outcomes then kn  must be 

divisible by k . With 6n =  and 4k = , i.e. four cubic dice, then 46 4 324kn k = = , and it is 

theoretically possible to have equally likely outcomes in this case as we saw earlier. If we 

again have the same number of spinners/dice as the number of sides on them, i.e. n k= , 

then we would need nn  to be divisible by n , and since 1n nn n n −= , which is certainly true 

for integers 2n  , and hence it is always theoretically possible to have equally likely 

outcomes in this case, for example with 6n k= = , i.e. 6 cubic dice. 

As a final challenge can you find an example of 6 non-transitive cubic dice with the numbers 1 to 36 written 
on the faces, with the sum on each die of 111, where in the 6-dice game each wins on average 

6 56 / 6 6 7776= =  times out of the 66 46656=  possible outcomes? 
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The revenge of the hare over the tortoise 

This alternative to the original fable apportions a win to whoever of the hare and the tortoise travels the 
furthest based on a set of prescribed rules (regardless how long it would take) rather than whoever crosses 
a line first. The options are as follows: 

Option 1: Move forward in turn the following distances: 
4 4!

, 0,1,2,3,4
(4 )! !

i
i i i

 
= = 

− 
, i.e. the distances 

1,4,6,4,1. 

Option 2: Move forward in turn the following distances: 
31 (3 )!

, 0,1,2,
2 2 3! !i i

i i
i

i i

+  +
= = 

 
, i.e. the 

distances 5 5 35 7
2 2 16 4

1,2, , , , , . 

The hare offered the tortoise the choice of moves, pointing out that Option 1 comprised a finite number of 
moves, whereas Option 2 required infinitely moves. Ignoring the clear fact that infinitely many moves 
cannot be made in a finite time, the winner would be the one who would cover the furthest distance when 
one considered the limit of the number of moves in Option 2. 

The tortoise immediately chose Option 2 because he thought that by taking infinitely many moves, even 
though they started by increasing in size, but then decreasing, eventually he would cover more ground than 
in Option 1. He also thought that the moves in Option 2 were very much in keeping with his style. The hare 
was delighted with this. He was confident that the tortoise would never come close to covering the 
distance he would travel by the moves in Option 1. Option 1 was also more in keeping with the hare’s style 
– a few large moves, increasing at first and then decreasing (as he tired), but altogether a finite number. 

Did the tortoise make the correct choice? 

After 5 moves the hare had covered a distance 1 4 6 4 1 16+ + + + = . 

After 4 moves the tortoise had travelled a distance of 5 5
2 2

1 2 8+ + + = , so already one-half of that 

travelled by the hare. 

The total distance each covers is: 

4 4 4 4 4

0 1 2 3 4

         
+ + + +         

         
  Option 1 

3 4 5 61 1 1

0 1 2 32 4 8

       
+ + + +       

       
 Option 2 

The sum in Option 1 is 16. 

What is the infinite sum in Option 2; is it larger or smaller than 16? 

Generalisations of this problem are: 

5 5 5 5 5 5

0 1 2 3 4 5

           
+ + + + +           

           
   Option 1 

(which gives a distance of 32), and  

4 5 6 71 1 1

0 1 2 32 4 8

       
+ + + +       

       
  Option 2 

so is sum is larger or smaller than 32? 

Here is a solution to determine the sum, nS , of the infinite geometric series with binomial coefficients 
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2 3
0

1 1 1 21 1 1 1
, 1,2, , 1

0 1 2 3
n i

i

n i n n n n
S n a

ia a a a



=

− + − + +         
= = + + + + =          

         
  (1) 

where the original problem is with 2a =  and 4n = . 

Consider first the expression 
1

1

n

a

−

 
− 

 
 for 1,2, , 1n a=   using the infinite (convergent) binomial 

expansion 

2 3

2 3

2 3

1 1 1
( ) ( ) ( 1) ( ) ( 1) ( 2)

1
1 1

1! 2! 3!

1 ( 1) 1 ( 2)( 1) 1
1

1! 2! 3!

1 1 21 1 1

0 1 2 3

1

n

i

n n n n n n
a a a

a

n n n n n n

a a a

n n n n

a a a

n

a

− −  − −  − −  − −  − −  − −  −

− = + + + +

+ + +
= +  +  + 

− + +
= + + + +

=

     
     

       
 
 

   
   
   

       
       
       

0

1

, 1, 2,

i

n

i

i

S n



=

− +

= =

 
 
 



(2) 

i.e. the sum in (1). (Note that (2) also converges for 1a  − .) Hence the sum in (1) is 
1

1

n

a

−

 
− 

 
, 

representing the (general) distance travelled using Option 2. With 2a =  and 4n =  this becomes 
4 4

41 1
1 2 16

2 2

− −

   
− = = =   

   
, which is precisely the distance travelled for the sum in Option 1 in the 

original challenge., i.e. it would appear that the tortoise would get closer to the place where the hare 
finished, and eventually draw level in the limit! So the tortoise might as well take the offer of the truce and 
save himself the arduous journey of approaching the hare! But what about the general case? 

Returning expression for the sum in (2) we have, using the finite binomial expansion, the standard result 

0

2

1 1 1
1 1

1 1

1

( 1)

1 1 1
, 1,2,

0 1 21 ( 1) ( 1)

n n n n

n

i
i

n

a a

a a a a

n

ia

n n n n
n

na a a

− −

=

−       
− = = = +       

− −       

 
=  

−  

       
= + + + + =       

− − −       

  (3) 

a finite geometric series with binomial coefficients and the value of nS  from (2). (Note (3) is also valid for 

0n = ). With 2a =  and 4n =  the finite series of moves implicit in (3) is precisely those of the original 

ones for Option 1 in the general case, i.e. 
4 4 4 4

0 1 2 3

       
+ + +       

       
, confirming what we have already 

established – Option 1 and Option 2 give identical distances in this case. 

However, we also see in general from (2) and (3) that 

0 0

11 1
, 1,2, , 1

1 ( 1)

n n

i i
i i

n i na
n a

i ia a a



= =

− +    
= = =     

− −    
    . (4) 
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i.e. 

2 3

2

1 1 21 1 1

0 1 2 3

1

1 1 1
, 1,2, , 1

0 1 21 ( 1) ( 1)

n

n

n n n n

a a a

a

a

n n n n
n a

na a a

− + +       
+ + + +       

       

 
=  

− 

       
= + + + + =        

− − −       

  (5) 

and with 2a =  (5) gives 

1 1 21 1 1
2 , 1, 2,

0 1 2 3 0 1 22 4 8

n
n n n n n n n n

n
n

− + +
+ + + + = = + + + + =

               
               
               

 (6) 

showing that in the general case for the original problem, Option 1 with a finite number of moves 
(representing the right hand side of (6)) and Option 2 with an infinite number of moves (representing the 

left hand side of (6)) cover exactly the same distances. We also see that that by replacing n  by 1n +  on the 

left hand side of (6) the distance covered will be 12 2 2n n+ =   , i.e. if we start the moves with n  
increased by 1 then the distance covered in both Options 1 and 2 will be doubled. 

The result in (5) also showed the hare and the tortoise what would happen in a range of other Options 1 
and 2 by varying the individual moves, i.e. 

Option 1: Move forward in turn the following distances: 
1

, 0,1, ,
( 1)i

n
i n

ia

 
= 

−  
. 

Option 2: Move forward in turn the following distances: 
11

, 0,1,2,
i

n i
i

ia

− + 
= 

 
. 

giving in each case a distance travelled of 
1

n
a

a

 
 

− 
. 

For example, with 3
2

3,4,5,a = in (5) gives, in turn: 

( )3
2

1 1 21 1 1 1 1 1

0 1 2 3 0 1 23 9 27 2 4 2

n

n

n n n n n n n n

n

− + +               
+ + + + = = + + + +               

               
 

( )4
3

1 1 21 1 1 1 1 1

0 1 2 3 0 1 24 16 64 3 9 3

n

n

n n n n n n n n

n

− + +               
+ + + + = = + + + +               

               
 

( )5
4

1 1 21 1 1 1 1 1

0 1 2 3 0 1 25 25 125 4 16 4

n

n

n n n n n n n n

n

− + +               
+ + + + = = + + + +               

               
 

1 1 22 4 8
3 2 4 2

0 1 2 3 0 1 23 9 27

n n
n n n n n n n n

n

− + +               
+ + + + = = + + + +               

               
 

(all for 1,2, )n = , where in each case Option 1 with a finite number of moves (representing the right 

hand side), and Option 2 with an infinite number of moves (representing the left hand side) cover exactly 
the same distances. 

As a variation what about varying their moves so that for every other one they would step backwards? 

For the alternating moves the series would now be alternating ones whose sums could be determined by 

replacing ' 'a  by ' 'a−  in (4) and simplifying, i.e. 
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0 0

1( 1) ( 1)
, 1,2, , 1

1 ( 1)

ni in

i i
i i

n i na
n a

i ia a a



= =

− +   − − 
= = =     

+ +    
    (7) 

or by doing the same in (5), i.e. 

2 3

2

1 1 21 1 1

0 1 2 3

1

1 1 ( 1)
, 1,2, , 1

0 1 21 ( 1) ( 1)

n

n

n

n n n n

a a a

a

a

n n n n
n a

na a a

− + +       
− + − +       

       

 
=  

+ 

       −
= − + − + =        

+ + +       

 . (8) 

Note the change in the denominator of the geometric coefficients from 1a −  in (5) to 1a +  in (8). 

For example, with 3
2

2,3,4,a =  in (8) gives, in turn (all for 1,2, )n =  

( )2
3

1 1 21 1 1 1 1 ( 1)

0 1 2 3 0 1 22 4 8 3 9 3

n
n

n

n n n n n n n n

n

− + +               −
− + − + = = − + + +               

               
 

( )3
4

1 1 21 1 1 1 1 ( 1)

0 1 2 3 0 1 23 9 27 4 16 4

n
n

n

n n n n n n n n

n

− + +               −
− + − + = = − + + +               

               
 

( )4
5

1 1 21 1 1 1 1 ( 1)

0 1 2 3 0 1 24 16 64 5 25 5

n
n

n

n n n n n n n n

n

− + +               −
− + − + = = − + + +               

               
 

( )3
5

1 1 22 4 8 2 4 ( 1) 2

0 1 2 3 0 1 23 9 27 5 25 5

n n
n

n

n n n n n n n n

n

− + +               −
− + − + = = − + + +               

               
 

where in each case Option 1 with a finite number of alternating forwards and backwards moves 
(representing the right hand side) and Option 2 with an infinite number of alternating forwards and 
backwards moves (representing the left hand side) cover exactly the same distances. 

Finally we see that for the positive series (5) in the case that the geometric coefficients on the left hand 

side are powers of the unit fractions 1 1 1 1
2 3 4 5
, , , ,  then the corresponding geometric coefficients on the 

right hand side are the ‘shifted’ (in the denominator) unit fractions 1 1 1 1
1 2 3 4
, , , , . 

Similarly for alternating series (8) in the case that the geometric coefficients on the left hand side are 

powers of the unit fractions 1 1 1
2 3 4
, , ,  then the corresponding geometric coefficients on the right hand 

side are the unit fractions (‘shifted’ in the denominator the other way): 1 1 1
3 4 5
, , , . 

We now consider alternative moves to the Options above which comprised only a finite number of moves 
in each case. 

These new moves involved using the binomial coefficients to determine the distance to move each time.  

For example, taking the 5th row in Pascal’s triangle: 
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

    (9) 

one would move forwards, in turn, 1,4,6,4,1 units, representing the binomial coefficients 

4 4!
, 0,1,2,3,4

(4 )! !
i

i i i

 
= = 

− 
. This means ones ends up 

 41 4 6 4 1 16 2+ + + + = =  

units from the starting point; whereas moving forwards 1 unit, backwards 4 units, forwards 6 units, 
backwards 4 units, and finally forwards 1 unit, means ones ends up 

 1 4 6 4 1 0− + − + =  

units from the starting point, i.e. in this case one ends up where one started (although the total distance 
travelled is still 16 units). 

Both of these results are particular cases of the general results 

 2 , 0,1,
0 1 2 1

n
n n n n n

n
n n

         
+ + + + + = =         

−         
    (10) 

1( 1) ( 1) 0 , 1,2,
0 1 2 1

n n
n n n n n

n
n n

−         
− + − + − + − = =         

−         
  (11) 

where the first result (10) corresponds to moving forwards at every turn. The second one (11) corresponds 
to moving alternately forwards and backwards, and is interesting because it means that the moves would 
always ultimately result in ending up back at the starting point regardless of which row in (9) one used to 
determine the size of the individual jumps. 

The two became interested in variations on these two versions where the individual moves were scaled 
according to a prescribed formula. They were mainly interested in alternating jumps, which is what we 
mostly consider here, mainly because they didn’t want to end up too far from the start! We leave you to 
experiment with non-alternating moves. 

The first variation was where each move was scaled by 
1

2
 of the previous jump, which would end up 

1

1

1 1 1 1
( 1) ( 1) , 0,1,

0 1 2 12 4 2 2

n n

n n

n n n n n
n

n n

−

−

         
− + − + − + − =         

−         
 (12) 

units from the starting point. (They also considered other moves, e.g. where the fractional scaling 
1

2
 was 

replaced by 
1

3
.) They discovered that the moves would end up 
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1

1

1 1 1 1 1
( 1) ( 1) , 0,1,

0 1 2 12 4 2 2 2

n n

n n n

n n n n n
n

n n

−

−

         
− + − + − + − = =         

−         
 (13) 

units from the starting point. For example, with 4n =  one would end up 

4

4 4 4 4 41 1 1 1 1 1 1 1 1 1
1 4 6 4 1

0 1 2 3 42 4 8 16 2 4 8 16 16 2

         
− + − + = −  +  −  +  = =         

         
 

units from the starting point, as predicted by (13). Note from (13) that the end point is exactly where one 
would end up by merely moving forwards the distance moved in the very last move only, of value 

1 1

2 2n n

n

n

 
= 

 
 units. Other examples include ending up 

1

1

1 1 1 1 2
( 1) ( 1) , 0,1,

0 1 2 13 9 3 3 3

n
n n

n n n

n n n n n
n

n n

−

−

         
− + − + − + − = =         

−         
 

units from the starting point, where we scale each move of the original by 
1

3
 instead of 

1

2
, but note that in 

this case the end point is not where one would end up by merely moving forwards the distance moved in 
the very last move only. 

This intrigued the pair so they now looked at a simple variation on the last one where the distances were 

not scaled by the powers of 
1

2
, namely 

1 1 1
, , ,

2 4 8
., but instead by the unit fractions 

1 1 1
, , ,

2 3 4
; in other 

words, the moves would result in ending up 

11 1 1 1
( 1) ( 1) , 0,1,

0 1 2 12 3 1

n n
n n n n n

n
n nn n

−         
− + − + − + − =         

− +         
 (14) 

units from the start. 

They first noted that if the powers 
1 1 1

, , ,
2 4 8

 were replaced by the unit fractions 
1 1 1

, , ,
2 3 4

. and only 

moved forwards (indefinitely) by the unit fraction distances they would end up moving further and further 
away from the start because 

1 1
1

2 3
+ + + = 

  
 

the well-known harmonic series, although if they alternated these moves forwards and then backwards, 
they found that they approached an end point which was 

1 1
1 ln(2) 0 7

2 3
− + − =    

units from the start. 
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Returning to (14), they discovered that they ended up where they would have done by merely moving 

forwards the distance in the very last move only, of value 
1 1

1 1

n

nn n

 
= 

+ + 
 units, i.e. 

11 1 1 1 1
( 1) ( 1) , 0,1,

0 1 2 12 3 1 1

n n
n n n n n

n
n nn n n

−         
− + − + − + − = =         

− + +         
 (15) 

in common with the moves given in (13). For example, with 4n =  one ends 

4 4 4 4 41 1 1 1 1 1 1 1 1
1 4 6 4 1

0 1 2 3 42 3 4 5 2 3 4 5 5

         
− + − + = −  +  −  +  =         

         
 

units from the starting point, as predicted by (15). 

(For forward moves: 

11 1 1 1 2 1
, 0,1,

0 1 2 12 3 1 1

nn n n n n
n

n nn n n

+          −
+ + + + + = =         

− + +         
) 

One last variation comprises translating one place to the left the unit fractions which they scaled the 

binomial coefficients by, i.e. move forwards 
1

02

n 
 
 

, backwards 
1

13

n 
 
 

, forwards 
1

24

n 
 
 

, and so on, ending 

up 

11 1 1 1 1
( 1) ( 1) , 0,1,

0 1 2 12 3 4 1 2

n n
n n n n n

n
n nn n

−         
− + − + − + − =         

−+ +         
 

units from the starting point. For example, with 4n =  this results in ending up 

4 4 4 4 41 1 1 1 1 1 1 1 1 1 1
1 4 6 4 1

0 1 2 3 42 3 4 5 6 2 3 4 5 6 30

         
− + − + =  −  +  −  +  =         

         
 

units from the starting point, and with 3n =  this results in ending up 

3 3 3 31 1 1 1 1 1 1 1 1
1 3 3 1

0 1 2 32 3 4 5 2 3 4 5 20

       
− + − =  −  +  −  =       

       
 . 

units from the starting point. This suggests the result that 

11 1 1 1 1 1
( 1) ( 1) , 0,1,

0 1 2 12 3 4 1 2 ( 1)( 2)

n n
n n n n n

n
n nn n n n

−         
− + − + − + − = =         

−+ + + +         
 

           (16) 

Can you prove this? What about forward moves? 

1 1 1 1 1
, 0,1,

0 1 2 12 3 4 1 2

n n n n n
n

n nn n

         
+ + + + + =         

−+ +         
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Or more general moves: 

11 1 1 1 1
( 1) ( 1) , 0,1,

0 1 2 11 2 1

n n
n n n n n

n
n nk k k k n k n

−         
− + − + − + − =         

−+ + + − +         
 (17) 

for 1,2,k =  together with the corresponding case of moving only forwards? 

For completeness, the result for the alternating trial in (17) is 

!( 1)!
, 0,1, , 1,2,

( )!

n k
n k

n k

−
= =

+
, coinciding with the results in (15) and (16) in the cases 1,2k = , 

respectively. 
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Times of flight 

An object is projected vertically upwards with speed U  in a uniform gravitational field where g  is the 

constant acceleration due to gravity. The speed of return to the point of projection is denoted by V , and 
the times ‘up’ to the highest point, and ‘down’ from the highest point to the point of projection, are 

denoted by 
ut  and 

dt , with 
u dT t t= +  denoting the total time of flight. 

If it is assumed that there is no (air) resistance to motion, show that: 

, ,u d

U U V
U V t t T

g g

+
= = = =  . 

Extension 1 Assume now that there is a resistance to motion of magnitude 2( )k speed , where 0k   is a 

constant. 

Show that 

11
tanu

k
t U

ggk

−
 

=   
 

 1 11 1
tanh sinhd

k k
t V U

g ggk gk

− −
   

= =      
   

 . 

and that 
d ut t . 

Extension 2 Assume now that there is a resistance to motion of magnitude ( )k speed , where 0k   is a 

constant. 

Show that 

ln
g g kU

U V
k g kV

 +
+ =  

− 
 

1
ln 1u

kU
t

k g

 
= + 

 
 

1
ln 1d

kV
t

k g

 
= − − 

 
 

and that 

U V
T

g

+
=  

as for no resistance. 

Show that d ut t . 

Extension 3 Assume now that there is a resistance to motion of magnitude ( )f speed  for some positive 

function f  (for positive arguments). 

Show that d ut t . 

Extension 4 Assume now that there is a resistance to motion where mechanical energy is not conserved 
(which is also the case for Extensions 2,3,4),and show that 

V U    and  d ut t   . 
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Two problems thrown up by projectiles 

An object is projected at an angle   (to the horizontal) up a plane inclined at angle   (to the horizontal). 

What should   be so that the object lands as far as possible up the plane from the point of projection, 

attaining its maximum ‘range’ up the plane? 

 

A simple calculation shows that this achieved when 1 1
2 2
( )   − = − , i.e. when the initial direction of 

motion bisects the angle between the plane and the vertical. The special case where the plane is horizontal 

with 0 = , and so the required 1
4

(45 ) =  will be familiar. Another interesting case is when 

1
6

(30 ) = so that the angle for the maximum ‘range’ is 1
3

(60 ) = , i.e. where 2 = . 

 

What about the ‘angle of impact’ when the object hits the plane? Suppose the object hits the plane at a 

right-angle. What is the minimum angle of projection,  , for which this occurs as   varies? It turns out 

that this occurs when 2 =  (with ( )1 1

2
tan −=  and ( )1tan 2 2 −= ). 

 

What are the corresponding results when there is an (air) resistance proportional to (speed)n  for 0n  , 

e.g. a linear ( 1n = ) and a quadratic ( 2n = ) law of resistance? 
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Is 3 unique? 

The familiar result 

1 1 1tan 1 tan 2 tan 3 − − −+ + =          (1) 

Immediately suggests the general problem of finding other natural numbers 1n   for which 

1 1 1tan 1 tan 2 tan n k− − −+ + + =         (2) 

for some k . 

 

Pictorial representation of 1 1 1tan 1 tan 2 tan 3 − − −+ + = . 

Prove that 

1 1 1 1 ( )
tan 1 tan 2 tan tan

( )

f n
n m

g n
− − − −  

+ + + = + 
 

      (3) 

for some m  satisfying 
2 1

4 2

n n
m

− +
  , where the expressions ( )f n  and ( )g n in (3) are different 

according to whether n  is odd or even: 

2

2

1
( ) ( ,1) ( ,3) ( ,5) ( 1) ( , 1)

is even
( ) 1 ( ,2) ( ,4) ( 1) ( , )

n

n

f n S n S n S n S n n
n

g n S n S n S n n

− = − + − + − − 


= − + − + − 

 ,  (4) 

1
2

1
2

( ) ( ,1) ( ,3) ( ,5) ( 1) ( , )
is odd

( ) 1 ( ,2) ( ,4) ( 1) ( , 1)

n

n

f n S n S n S n S n n
n

g n S n S n S n n

−

−

= − + − + − 


= − + − + − − 

  .  (5) 

and where 

1 2

1 2( , ) , , {1,2, , }
j

j

i i i

S n j i i i n j n
  

=         (6) 

representing the sum of all possible 
n

j

 
 
 

 combinations of j  distinct values chosen from the n  values. 

1, 2, ,n . 
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To find general solutions of (2) you will need to find values of n  for which ( ) 0f n =  and ( ) 0g n   so that 

the first term on the right hand side of (3) vanishes. To explore this further you need to generate 

expressions for ( )f n  and ( )g n . 

Prove that 

( , ) ! , 1,S n n n n= =  

1
2

( ,1) ( 1) , 1,S n n n n= + =  

21
24

( ,2) ( 1)(3 2) , 2,S n n n n n= − + =  

and (to be able to determine ( , )S n j  for 3,4, , 1j n= − ): 

( 1, ) ( , ) ( 1) ( , 1) , 1S n j S n j n S n j j n+ = + + −    

where ( ,0) 1S n =  for all n . 

Use technology to generate ( , ), ( ), ( )S n j f n g n  and investigate their properties to explore other possible 

solutions of (2) (other than (1)), i.e. for some value of n  other than 3 . 

There are some interesting features of ( )f n  and ( )g n , and thus 
1 1 1tan 1 tan 2 tan n− − −+ + + , for 

15,80,395,1904n = , and once you have discovered what these are, find the next value of n  where these 

occur – as a hint the value is some 10000n  . Investigating this may provide you with some further insight 

into solving the original problem (2). 


