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Instability of MHD-modified interfacial gravity waves revisited
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Abstract

We reveal the basic mechanism of instability of the two-layer conductive fluid system carrying a normal current and exposed
to a uniform external magnetic field. This process is a reflection of a MHD-modified interfacial gravity wave from the boundary.
Due to special boundary conditions, the reflection coefficient turns out to be greater than 1 for some directions of the wave
propagation. We consider two cases: reflection of a monochromatic plane wave from the plane boundary and reflection of
rotating waves in a circular geometry. We believe that the proposed mechanism gives a new understanding of the instability
formation in the system ‘liquid metal–electrolyte’ type. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of instability of MHD-modified inter-
facial gravity waves is one of great interest from both
theoretical and practical points of view. Although it
has been the subject of numerous studies (see [1–4]
and references therein), the basic physical mechanism
underlying this instability has not been clearly under-
stood yet. Understanding of this mechanism, however,
is vital for developing practical methods of suppress-
ing the aforementioned instability as it is the major
factor limiting operation of the reduction cells in the
industrial production of aluminium.

* Corresponding author.
E-mail address: a.lukyanov@coventry.ac.uk (A. Lukyanov).

1 On leave of absence from the Institute of Terrestrial Mag-
netism, Ionosphere and Radio Wave Propagation, Russian Academy
of Sciences.

Fig. 1. Two-layer system.

A schematic model of the fluid system considered in
this Letter is shown in Fig. 1. Two electrically conduct-
ing fluids with substantially different conductivities
(liquid metal and electrolyte) are placed in a noncon-
ductive shallow bath (or cell). A large vertical current
(∼105 A in the aluminium production) flows down-
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wards from the anode through the fluids and is col-
lected by the cathode on the bottom.

The current is supplied by the external circuit,
which has a very complicated geometry. The currents
in the circuit induce magnetic field that affects the flow
in the bath. It is known that the MHD effects can desta-
bilize gravity waves on the liquid metal–electrolyte
interface thus resulting to short circuit and destroy-
ing the setup. The instability turned out to develop
if the current exceeds some critical value. This effect
reduces substantially the efficiency of the cell opera-
tion since the main part of the electrical energy is con-
sumed within the poorly conductive electrolyte layer.
Moreover, the thickness of the layer cannot be reduced
in the case of potentially unstable interface.

In previous investigations, researchers concentrated
either on the study of travelling interfacial waves prop-
agating in nonuniform external magnetic field sur-
rounding the cell or on numerical modelling of the
global modes for a finite cell geometry. It has been
found that the nonuniformity of the external mag-
netic field can be the cause of instability in travelling
waves [2]. In the case of finite geometry instability
can develop even in the uniform magnetic field. The
stability analysis has been performed numerically in
[1,3] using basis of ordinary gravity modes as eigen-
functions. However, pure gravitational modes gener-
ally speaking do not satisfy the special (modified by
Lorentz force) boundary conditions at the sidewalls of
the cell. Nevertheless, the correct boundary conditions
can be put into the ‘weak’ integral formulation of the
problem [1]. Although such a formulation is accept-
able from the numerical point of view, it obscures the
cause of instability.

The crucial role of the boundary conditions in de-
veloping the instability thus has been overshadowed.
One needs to note, though, that in general there was a
clear indication that the boundary inspired the instabil-
ity [4], since in uniform magnetic field the travelling
MHD-modified gravity waves themselves are stable.
In the current investigation we will look specifically at
the processes taking place in the vicinity of the bound-
ary and describe an underlying mechanism of instabil-
ity in aluminium reduction cells.

Our analysis will be based upon a system of lin-
ear equations describing interfacial waves in the shal-
low water approximation. The equations along with
the boundary conditions are obtained from the stan-

dard 3D MHD equations by means of expansions in
small dimensionless parameters naturally determined
by specific physical parameters of the problem. The re-
sulting system of equations describing MHD-modified
linear gravity waves has a quite classical form (cou-
pled wave and Poisson equations). The appropriate
boundary conditions, however, appear to be nontriv-
ial due to the action of the Lorentz force. This makes
the problem of finding the global modes in an arbitrary
geometry a challenge for analytical study.

To study basic processes taking place near the
boundary we consider first the fundamental problem
of reflection of a monochromatic wave from a plane
wall. The necessity to satisfy specific boundary con-
ditions results in amplification of the waves with in-
cident angles lying in the interval(0,π/2) while the
waves with the angles(−π/2,0) are damped. The sit-
uation reverses with the change of the direction of the
external magnetic field.

A similar result is obtained for a circular geometry,
where reflection from the boundary amplifies waves
rotating in one direction and attenuates the waves ro-
tating in the opposite direction. Although the circular
global modes of the problem (in contrast to modes in
rectangular domain) can be easily found in a closed
form [3], we believe that even in this case the reflection
problem gives an insight into the essential processes
governing the onset of the ‘rotating instabilities’ in the
industrial aluminium reduction cells.

2. Basic equations and shallow water
approximation

This section summarises procedure of derivation of
the shallow water wave equations and the boundary
conditions for the two-layer conductive fluid system
carrying the normal current and exposed to external
magnetic field. Our derivation is essentially based on
the results of Bojarevics and Romerio [1] but seems
to be more straightforward. We also distinguish major
factors inspiring the instability.

We start with the general 3D MHD equations for the
two-layer system (see Fig. 1):

(1)ρi

[
∂ui
∂t

+ (ui∇ui )
]

+ ∇(Pi + ρigz)= Fi ,

(2)∇ · ui = 0,
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(3)Fi = Ji × B,

(4)∇ · Ji = 0.

Here i = 1,2 is the layer number,ρi is the density
of the ith layer, ui (x, y, z, t) is the fluid velocity,
Pi(x, y, z) is the hydrodynamic pressure,Ji is the
current density, andB is magnetic field.

In the equilibrium state,

(5)J0 = (0,0,−J0), ∇ × [J0 × B0] = 0.

The last relationship impliesB0z(x, y) to be arbitrary
(given by the external circuit).

The boundary conditions for (1), (2) are

(6)(ui · n)bath= 0,

wheren is the normal unit vector to the bath surface
(lateral walls and bottom). As the system ‘liquid
metal–electrolyte’ is our main physical concern we
will assume the following ranking of conductivities:

(7)σside walls� σ2 � σbottom� σ1,

which is characteristic for the aluminium reduction
cells (see [1]). Then, the boundary conditions for the
current are

(J1,2 · n)side walls= 0, (J1 · n)bottom= −J0,

(8)(J1 · n − J2 · n)interface= 0.

We will describe the interface deviation from the
equilibrium position atz= 0 by the equation

(9)z= h(x, y).

The shallow water approximation is based on per-
turbation expansions in two small parameters

(10)δ = maxh

H1
� 1, ε = H1

L
� 1.

Here L is the typical horizontal dimension of the
problem (characteristic wavelength); we also assume
thatH1 andH2 are of the same order.

We introduce the standard decompositions

ui = δvi (x, y, t)+O
(
δ2, εδ, ε2),

h= δη(x, y, t)+O
(
δ2, εδ, ε2),

(11)Fi = δfi (x, y, t)+O
(
δ2, εδ, ε2).

As a consequence, projection of the equation of mo-
tion (1) ontoz-direction gives the expression for the

pressure to the leading order inε,

(12)Pi = P0 + ρig(h− z),

whereP0 is the interfacial pressure.
Then, substituting (11), (12) into Eqs. (1), (2), and

considering the limit asδ → 0, ε → 0, leads to the
forced linear wave equation for the interface deviation:

∂2η

∂t2
− c2∇2||η= α∇|| · {f1 − f2},

(13)∇|| ≡
(
∂

∂x
; ∂

∂y

)
.

Here

α = 1

ρ1/H1 + ρ2/H2
,

c2 =∆ρgα, ∆ρ = ρ1 − ρ2.

The boundary conditions (6) transform into

(14)
{
g∆ρ∇||h− (f1 − f2)

} · n = 0 onΓ,

whereΓ is the boundary in thex, y-plane.
Now we shift our attention to the electromagnetic

part of the problem. The current redistribution due to
the wave motion of the interface is governed by Eq. (4)
with boundary conditions (8). We shall assume that
σ2/σ1 � ε, which implies that the currentJ2 in poorly
conducting upper layer is vertical to the leading order
in ε. Then one gets the problem forJ1 as follows:

(15)∇ · J1 = 0,

J1z(z= h)= −J0

(
1+ h

H2

)
,

(16)J1z(z= −H1)= −J0,

and

(17)onΓ : J1 · n = 0.

We shall seekJ1 in the form of the decomposition

(18)J1 = J0 + δ( j|| + jz)+O
(
δ2).

In the shallow water approximation, we have to use

j|| = j||(x, y, t)+O(ε),

(19)jz = jz(x, y, z̄, ε, t), z̄= z/ε.

One can see then that Eq. (15) implies the following
decomposition forjz:

(20)jz = c1(x, y, t)+ εc2(x, y, t)z̄+O
(
ε2),

where the coefficientsc1,2 are determined from condi-
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tions (16). Then, Eq. (15) eventually takes the form, as
ε → 0, δ → 0,

∇|| · j|| = J0η

H1H2
,

(21)onΓ : j|| · n = 0.

Eq. (21) implies that|j||| =O(J0/ε), which has the
following important consequences:

(i) The current perturbation in the liquid metal layer
is horizontal (with the accuracyO(ε)).

(ii) One can neglect the induced motion of the liquid
metal (|v1 × B| � |j|||) and, therefore,

(22)j|| = −σ1∇||ϕ,
whereϕ is the electric potential.

(iii) The shallow water decomposition for the Lorentz
force is

(23)f1 = j|| × B0z +O(1).

(iv) The Lorentz force acting on electrolyte is much
less than that acting on liquid metal:

(24)|f2|/|f1| =O(ε).

It is also clear that above decompositions are valid
only if δ � ε.

Substituting (22)–(24) into (13), (21) we eventually
arrive at the desired system describing MHD-modified
interfacial gravity waves in the shallow water approx-
imation,

(25)
∂2η

∂t2
− c2∇2||η= c2∇||φ · [∇|| × b(x, y)ez

]
,

(26)∇2||φ = −βη,
where

(27)φ = σ1B0

∆ρg
ϕ, β = J0B0

H1H2∆ρg
,

and

B0z(x, y)= B0b(x, y)ez

is a given function. The boundary conditions for (25),
(26) take the form (see (14), (22)–(24)):

(28)onΓ : ∂φ

∂n
= 0,

∂η

∂n
= −b ∂φ

∂τ
.

Here ∂/∂n stands for the normal derivative at the
boundary and∂/∂τ denotes the derivative in the direc-
tion tangential to the boundary. In conclusion, we note

that our basic physical assumptionσ2/σ1 � ε � 1
is realistic and corresponds to the actual parameter
values of industrial aluminium reduction cells where
σelectrolyte/σalum∼ (Halum/L)

2 ∼ 10−4 [1].
Now one can distinguish two factors that could lead

to an unbounded growth of the solution to (25)–(28):

(i) spatial nonuniformity of the external magnetic
field B0z(x, y) entering the right-hand part of the
wave equation (25).

(ii) the second boundary conditions (28), which can
act as a source of instability even in the uniform
magnetic field.

It is important to emphasize that although both fac-
tors act simultaneously, the physical mechanisms in-
spiring instability in each case are completely differ-
ent. The first type of instability occurs even in travel-
ling waves [2] in an infinite space and is quite under-
standable from both physical and mathematical point
of view. In the second case, the existence of bound-
aries becomes a crucial factor. We believe that the sec-
ond type of instability, although obviously studied be-
fore, has not been understood so far. From our point of
view this type of instability is much more intriguing
as the mentioned special boundary conditions change
dramatically the structure of solutions compared to the
standard case of gravity waves in a closed domain.

To set separate this particular mechanism acting
in a finite geometry we put the magnetic field to be
spatially uniform (b ≡ 1), which immediately leads to
the most simple form of the governing system,

∂2η

∂t2
− c2∆η= 0,

(29)∆φ = −βη,
while the boundary conditions take the form

(30)onΓ : ∂φ

∂n
= 0,

∂η

∂n
= −∂φ

∂τ
.

Here we have dropped the subscript ‘||’ for the differ-
ential operators assumingη= η(x, y), φ = φ(x, y).

We note that the problems forη andφ are essen-
tially coupled only at the boundary.

3. Reflection of the plane wave from the wall

Although system (29), (30) might seem to be simple
enough it is quite nontrivial from an analytical point of
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view owing to the coupled boundary conditions forη

andφ. The main difficulty is that the standard gravity
modes (the trigonometric Fourier basis for the rectan-
gular domain ) do not satisfy the second boundary con-
dition (30) and cannot be applied (at least directly) to
the construction of the solution to our boundary value
problem. The ‘weak’ formulation of the problem in
[1], however, allows to include this boundary condi-
tion into the integral setting, which is convenient for
numerical studies but somewhat overshadows the sim-
ple physics underlying the processes in the two-layer
system under consideration. The obvious drawback of
this formulation from the analytical point of view is
that the solution is represented in the form of the in-
finite series, each term of which does not satisfy the
boundary conditions.

On the other hand, the formal analytical solution
of the problem with the aid of the implicitly defined
Green function given in [4] seems to provide no more
information than the system itself and does not reveal
the basic mechanism of the instability.

To get a better understanding of the properties of
the solution to the boundary value problem (29), (30)
we shift our attention from finding the global modes in
various geometries to the fundamental problem of the
reflection of the plane wave from the wall.

Let a monochromatic wave with the frequencyω be
incident on an infinite plain boundary layer located at
x = 0 (Fig. 2). Far from the boundary, the wave is just
a monochromatic plain waveη ∼ exp(ikxx + ikyy −
iωt), ω2 = c2(k2

x + k2
y) moving towards the boundary.

Now we shall be concerned with what happens after
the wave is reflected from the boundary.

Let us find a general solution to (29) using Fourier
transform overt andy:

η= η̂(x)exp(ikyy − iωt),

(31)φ = φ̂(x)exp(ikyy − iωt).

Then, we end up with a system of two ODEs with re-
spect tox,

d2η̂

dx2 + η̂
(
ω2/c2 − k2

y

) = 0,

(32)
d2φ̂

dx2
− k2

yφ̂ = −βη̂,

with the boundary conditions atx = 0:

Fig. 2. Plane reflection geometry.

(33)
dφ̂

dx
= 0,

dη̂

dx
= −ikyφ̂.

A general solution to (32), bounded asx → −∞, is
given by the expressions

η̂= C1 exp(ikxx)+C2 exp(−ikxx),

(34)

φ̂ =Aexp
(|ky |x)

+Ω
{
C1 exp(ikxx)+C2 exp(−ikxx)

}
.

HereΩ = βc2/ω2.
From the first boundary condition (33) it follows

that

A= −iΩ kx

ky
(C1 −C2).

According to (34) the reflection coefficient is given by
µ = |C2|2/|C1|2. Using the second boundary condi-
tion we finally get forµ the expression

(35)µ= Ω2 + (1+Ω tanθ)2

Ω2 + (1−Ω tanθ)2
,

where tanθ = ky/kx , −π/2< θ < π/2.
It is seen from (35) that, for positive angles of inci-

denceθ , the reflection coefficientµ> 1, i.e., the wave
is inevitably amplified at the boundary. On the other
hand, ifθ < 0, thenµ< 1 and the wave is damped.

The graph of function (35) is shown in Fig. 3
versus the angle of incidence. The antisymmetry in
behaviour of the reflection coefficient is due to the
existence of the distinguished direction in the problem,
the direction of the external magnetic field (sign ofβ).
This asymmetry, as we will show below, has its
consequence in appearance of ‘rotating’ instabilities
in closed domains.

It is interesting to note that the reflection coefficient
first grows up withΩ , if Ω < 1. Further, whenΩ > 1,
the reflection coefficient is slowing down (see Fig. 4).
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Fig. 3. Reflection coefficient as a function of angle of incidence.

To illustrate analytically how the reflection mecha-
nism works in the case of finite geometry we consider
the simplest analytic solution of problem (32), (33) for
circular domains.

4. Reflection mechanism in circular domains

Problem (29), (30) for a circular domain, in contrast
to the one in a rectangular domain, admits a complete
analytical solution by standard separation of variables:

η= η̂(r)exp(inϑ − iωt),

(36)φ = φ̂(r)exp(inϑ − iωt).

The functionsη̂, φ̂ are subject to the boundary condi-
tions (30), which in polar coordinates take the form

(37)φ̂′(R)= 0, η̂′(R)= − in

R
φ̂(R),

R being the radius of the domain.
The solution bounded atr = 0 and satisfying the

first boundary condition (37), has the form

(38)η̂= CJn(kr),

(39)φ̂ = β

k2

{
η̂− R

n
η̂′(R)

(
r

R

)n
}
,

wherek = ω/c, Jn(x) is the Bessel function of the first
kind, andC is a constant.

Fig. 4. Reflection coefficient as a function of the parameterΩ =
βc2/ω2.

Substitution into the second boundary condition
yields the dispersion relation (forn = 1 this relation
in a slightly different form can be found in [3])

(40)iζ 2 + βR2 = nζ
Jn(ζ )

Jn+1(ζ )
, whereζ = kR.

The dispersion relation (40) implies complex roots
ζ = ξ + iγ and, therefore, complex frequenciesω
for all modes. The graph of functionsγ (βR2) and
ξ(βR2) for n = 1 is presented in Fig. 5. One can see
that the dispersion relation (40) predicts an absolute
instability for waves rotating in one direction and
damping for waves rotating in the opposite direction.
This ‘antisymmetric’ property of the amplification
clearly resembles the principal feature of the plane
reflection considered in the previous section.

To extract effects of reflection governing the insta-
bility we consider solution (38)–(40) forβR2 � 1
(which can be obviously achieved by either increas-
ing the radius of the domain or by increasing the value
of the magnetic field). This implies|ζ |2 ∼ βR2 owing
to the dispersion relation (40).

The Bessel function has the following asymptotics
at large values of its argument [5]:

Jn(z)=
√

2

πz
cos

(
z− πn

2
− π

4

)
+O

(
1

z3/2

)
,

(41)|z| � 1, |z| � n, |argz|< π.
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Fig. 5. Roots of the dispersion relation (39) forn = 1 as functions
of parameterβR2 in a circular domain (bold line: asymptotics as
βR2 � 1).

Then, in the neighbourhood of the boundary (R −
r/R � 1) one can represent solution (38) in the form

η̂= C

{
C1(r)

exp{i(ξr/R − nπ/2− π/4)}
(ξr/R)1/2

(42)

+C2(r)
exp{−i(ξr/R − nπ/2− π/4)}

(ξr/R)1/2

}
+ · · · ,

where

(43)

C1(r)= exp

(
−γ r

R

)
, C2(r)= exp

(
γ
r

R

)
.

Solution (42) represents the ‘circular’ analog of the
plane wave solution (34).

Asymptotics (42) implies the direct relation of the
reflection coefficient with the normalized instability
incrementγ :

(44)µ= |C2(R)|2
|C1(R)|2 = exp(4γ ).

The dependence ofγ onβR2 is readily found from
the decomposition of the dispersion relation (40) for
|ζ | � 1. To the leading order inζ one gets

(45)iζ 2 = −βR2 +O(ζ ),

which immediately yields

(46)ξ ≈ γ ≈ ±
√

|β|R2

2
.

From Fig. 5 it is seen that asymptotics (46) is in a good
agreement with the exact dispersion curve forn = 1
even for comparatively moderate values ofβR2. An-
other remarkable feature of this asymptotics is also the
fact that it depends neither on the number of the mode
nor on the number of the root for the chosen mode
(both numbers are supposed to be finite). Asymptot-
ics (46) has also its consequence in the finite limit-
ing value of the actual (physical) instability increment
Imω = cγ /R asR → ∞ providedβ =O(1).

One should note that although Eq. (40) has an in-
finite number of roots for eachn given, for practical
needs one can be interested only in the first ones as
they provide the greatest instability increment at mod-
erate values ofβR2. The same statement can be made
about the mode numbersn themselves. We will show,
however, that consideration of the modes with large
n leads to establishing a direct correspondence with
the case of plane reflection considered in the previous
section and therefore is interesting from the theoretical
point of view.

To establish this correspondence, we consider as-
ymptotics of solution (38) atβR2 � 1 under the ad-
ditional restrictionn ∼ √

βR2. It can be shown that
in this caseγ � ξ ∼ n. For largen ∼ z, a more gen-
eral asymptotics of the Bessel function should be used
(see, for example, [5]):

(47)

Jn(z)≈
√

2

πz
A(z,n)sin(z− nπ/2− π/4)+ · · · ,

whereA(z,n) is a certain function. Taking this into
account, substitution of solution (38) into the second
boundary condition (37) provided|ζ | ≈ ξ gives a sim-
ple expression for the reflection coefficient,

(48)µ= exp4γ = Ω2 + (1+Ωn/ξ)2

Ω2 + (1−Ωn/ξ)2
,

whereΩ = βR2/ξ2. One can see that relationship
(48) coincides with the one for the plane reflection
case (35) provided the angle of incidence is given by
tanθ = n/ξ . It should be noted, however, that while in
the plane case the angleθ is arbitrary, it is a function
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of βR2 due to the dispersion relation (40) in the
circular case. Also,γ = O(1) now, which means that
the physical instability increment for the higher modes
vanishes asR → ∞.

Thus, the above consideration confirms that the
reflection mechanism indeed governs the formation of
instabilities of the MHD-modified interfacial gravity
waves in closed domains in a uniform magnetic field.
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