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Abstract 

A nonlinear theory determining for the first time the conditions for existence and the structure of the stationary striations 
generated in the ionospheric modifications by powerful radio waves is developed. A strong enhancement of the electron 
temperature inside the striations is predicted. A considerable change of the amplitude of striations and its dramatic 
diminishing in the narrow region near the electron cyclotron resonance is established. The structure of the density depletions 
and its characteristic length, width and depth are shown to be in agreement with the observations. 

1. Introduction 

One of  the most essential new physical phenomena, discovered during ionospheric modification by powerful 
radio waves, was the generation of  small scale striations which are plasma density depletions strongly elongated 
along the Earth 's  magnetic field. The striations determine both the effective field aligned scattering of  UHF and 
VHF radio waves (AFAS) and the anomalous wideband attenuation of  HF radio waves (WBA) in the disturbed 
region [1,2]. The close connection of  the striations with high frequency (SEE) and low frequency (LFE) 
emission of  the disturbed ionosphere [3-5]  is also established. 

Considerable changes in the structure of  SEE and W B A  were found under the action at the ionosphere of  
radio waves with a frequency near the multiple gyrofrequency [6]. Both the downshifted maximum and the 
anomalous absorption are strongly diminishing in the narrow region of  the order of  ten kHz [7] and even less [8] 
in the vicinity of  the multiple gyroresonance. 

According to the theory, creation of  the striations is a result of  the local heating of  the anisotropic 
ionospheric plasma by upper hybrid resonance waves, which are generated due to the linear transformation of  
the pump radio wave at the striation density depletions. This process leads to the resonance (or thermal 
parametric) instability [9,10]. The resonance instability is nonlinear and has an explosive character [11-14]. 
These main features of  the instability are confirmed in ionospheric experiments [15]. 
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A fundamental problem is the nonlinear stationary state which is established after the full development of the 
resonance instability. Exactly this stationary state determines the main characteristics of various nonlinear 
phenomena in the ionosphere, which were explored using different radio methods (AFAS, WBA, SEE, LFE). 
Moreover, the striations were recently observed directly in experiments in situ on board rockets [16]. The 
striations have been seen as essentially local stationary depletions of the plasma density, with scales of the order 
of 10 meters across and several kilometers along the magnetic field lines. 

In the present paper the theory of the stationary state of the striations in the ionospheric plasma will be 
developed. 

2. Simplification of nonlinear transport equations 

As was mentioned above, the striations are local depletions of the density of plasma particles (N  - N O = N 1 
< 0), created as a result of local heating of electrons ( T -  T~ > 0) by the field of upper hybrid plasma waves 

El, generated by a powerful pump radio wave E 0. Consequently, the stationary state of striations is described by 
a system of nonlinear stationary transport equations for particle density N1, electron temperature T and wave 
equation for the electric field of plasma waves Ex, excited in striations at the upper hybrid resonance region by 
the pump wave E 0. 

This system has the form [17], 

V/)VN 1 + V/)TVT = y N  1, 
E 16-E 1 

V , ~ V T +  - -  ~v(r-r~), 
No 

v(~E~) = -v(a~eo) .  (1) 

^ ^ 

Here D, DT, 6-, and k are the tensors of diffusion, thermal diffusion, conductivity, and heat conductivity, 
respectively, y is the recombination coefficient, 6 is the average part of electron energy loss under collisions 
with ions and neutrals, v is the frequency of electron collision, T~ is the temperature of the plasma far from the 
localized striation (it is determined by the average heating of the ionospheric plasma by a powerful radio wave), 
E 0 is the electric field of the pump wave, k is the tensor of the dielectric permittivity of the plasma, 6k is the 
part of this tensor which is the response to the density perturbation of the plasma. 

We will suggest in a further analysis on the basis of previous results [17] that the density perturbation N 1 / N  o 
in the striations is small while the electron temperature T may be several times higher than the background 
value T~. 

To begin with, let us consider the case when the functions N a and T depend on two variables only: on z and 
on x, which are along and perpendicular to the direction of the magnetic field line in the H,  E 0 plane, 
respectively. Then the system of equations takes the form 

0 0 - (D 10Ux ] + 0 ( o  / + 0 or I T or 
ax 

0 ( ) = 6 u ( T -  T=), kxxE1 = A  - P O N  ° , dx 2 d2 (2) 7x ~15-;x + Z  Kt'Z + No 

where d = (kzY) -1, Y =  O~eH/W, exx is the transverse component of the dielectric tensor, w n is the electron 
gyrofrequency, w and k z are the frequency and the wave vector of the pump wave, OJp is the Langmuir plasma 
frequency, and Po = Eo(Ok/OXp)Xp ex; Xp = w ~ / w  2. The last equation of system (2) for the upper hybrid wave 
E 1 was transformed similarly to Ref. [12]. 
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Let us now emphasize that the heat energy source o-±E 2 is concentrated in the layer of  order L between 

the upper hybrid resonance level to = coun = f~p2+ co~ and the reflection point of  the pump wave co = COp, 

since only inside this region the pump wave may excite upper hybrid waves within irregularities. This length 
scale in the F-region of  the ionosphere is of  the order of  1 -3  km and so it is small compared to the characteristic 
scale of  the transport processes along the magnetic field in the F-region: the longitudinal diffusion length LII N 
= D~II/T and the longitudinal heat conductivity length L ~ =  CK(T~)II//Su [17]. In the F-region at heights 

z > 200 km the parameter y does not depend on the electron temperature T and we will assume also that the 
parameter 6 is independent of  T. 

We will seek the solution of  system (2) in the form of expansion by small parameters L/LII u and L/LII r, 

T = T O + T 1 + . . . ,  U = N O + N (°) + N O) + . . . .  T 1 << To, N1 (1) << N (°) << N o. 

Then, for the heat transfer equation we have in different orders of  the parameter (L /L~)  

to=to(X), 

-~z[Kll--~-z} = -  dxx K~-~-x + t r ± N 0 l "  
(3) 

Assuming that z = 0 is the point of  upper hybrid resonance and taking the integral over z from z = 0 to the 
reflection point of  the pump wave z = L we obtain from (3) the following relation for the full heat flux flowing 
out from the heated layer, 

KII-~z = - Q ,  (4) 

where 

Q =  ~x K± dx]+-~ L dz . 

Making the same expansion for the density N 1, one has 

aN1(1) [ 7 Ta[ (d dNl (°) dT o ) 
DII---- z D'I W = --L D dx  + : x  DT YNI(°) + l Tx  (5) 

We will consider two separate zones: one of  them lies in the heating layer x ~ [0, L] and another one in the 
region outside it. To match the equations inside and outside the heating area, it is necessary to examine the 
external problem and match the corresponding particle (5) and heat fluxes (4). 

Considering the external problem, it is possible to assume, according to the small parameter (L/LIlT), that the 
length scale of  the heating layer is negligible. Under this condition, the heat transfer equation attains the form 

~ z ~ K i l ~ z ) - r u ( ~ ' - l ) = Q  6 ( z ) .  (6) 

Here 6 (z )  is the Dirac delta function and ~-= TITs. The term on the right hand side, QS(z),  is responsible for 
the heat flux (4). The coefficients K± and KII are functions of  the temperature of  the electrons. Taking into 
account that in the F-region the collisions of  electrons with ions play a leading role, we have: K x = k± Z-1/2, 
Kll = KII ~'5/2, kll = 5.93T=/v0, k± = 1.77T~uo/mco 2, v 0 = ue(T=). 

It is important that in the stationary solution of  Eq. (6) the characteristic transverse length scale x 0 is 
governed by the dimension of  the source Q, while the longitudinal length scale of  striations results from the 
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balance between the second and third terms in the left hand side of the equation. The last statement is correct for 
a sufficiently high temperature when 

'/'max >> 1//~ 4, ~o = Xo~/fvo/k± • (7) 

As we shall see below, relation (7) is usually satisfied. Neglecting therefore the first term in Eq. (6), we can 
easily integrate it with respect to d z with a natural boundary condition Or/Oz = 0 at ~-= 1. Using relation (3), 
we then obtain the value Q, 

4 9/2 4 7/2 Q = 2 T = ~ t ~ , r o - V r 0  + s .  (8) 

Substituting this expression into (4) we get the heat balance equation in the layer. It takes the form 

d dT 0 1 r.L o '±E 2 2 
- -  Jo - -  7~-o + ~ .  ( 9 )  d x  K± "~x "k -~ No d z  = _~ro~ k11~-~01~7.9/2_4 7/2 8 

The first term in Eq. (9) corresponds to the heat flow due to the transverse heat conductivity, the second one 
describes the plasma heating in the layer by the electric field of the plasma wave and the right hand side is 
responsible for the heat losses from the layer determined by the longitudinal heat conductivity. 

Let us now examine the particle transfer. In the exterior region Eq. (2) has the form 

-~X D ± V q- -~x m ± -~x q- -~z [ m ll --~-z ) q- -~z [ D II -~z ) - T NI = QI ~ ( z ) " ( 1 0 )  

Note that the transverse length scale in (10), as well as in (6) is defined by the right hand side of the equation, 
the transverse scale of the temperature and density of the striations as follows from (3), (5) are the same. Then 
for the conditions N~/N o << 1 and T/Too > 1 the first term in (10) is small in comparison with the second one 
and can be neglected. Thus Eq. (10) takes the form 

0 [O ON1 0 r 0 [ rOT 

Solving (11) we have 

- T N l = - ~ N f - o o e x p  L~ Q l ~ ( Z t ) - ~ x  D ~  x -Oz---7(Dll-~z,)]dz'. (12) 

The density length scale outside the layer (0, L) along the magnetic field is defined by the quantity L~, and the 
temperature length scale by L~. In the F-region L~ >> Ll~ [17]. Then, in a first approximation in the parameter 
LN/L r, the integration over dz' in Eq. (12) could be performed and it takes the following form (at the point 
z = 0), 

o ° IJ 1 0r 
- -  TN1 2L~ ± - ~ D I ~ - ~ z  ' (, .13) 

where z = O, N 1 =N1 (°), and T =  To(x). The last two terms in Eq. (13), if we take into account the small 
parameters L/L~, (Too/ToXN1/No), (DII/KII)(K ±/Dr~)(L/L~), can be simplified, and Eq. (13)be presented 
in the form 

) dT°I D~I L~ -~ o No dz (14) TN1 = DT dx  ] Kll - -  " 

Eq. (14) describes the variation of the plasma density in the striations inside the layer. The above equation 
should be examined together with (9). Note that neglecting the transverse transport in (9), (11), we pass over to 
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the solutions describing the temperature increase and plasma density reduction initiated by a 6 heat source 
under longitudinal spreading of heat only [17]. 

Analyzing Eqs. (14) and (9)jointly it is easy to see that the term ( d / d x ) K .  dTo /dx  in (9) is not essential. 
Indeed, from (14) it follows that 

Lo '±E 2 KIILI I d (r~T dT° l  
fo ---~o dZ"~D~l N d x ~  ~ ±  dx  ]" 

So the first term in Eq. (9) in comparison with the second one is small because of the parameter L / L ~  << 1 and 
can be neglected. 

The system of equations in the layer now takes the form 

f0 '~°'±E2 4 9 /2  4 7 /2  - -  d z = 2 T o ~ t ~ - 0  - -~ '0  +~3 
No 

1 Lo'±E_____221 
d "r d~'° t D~IL~fO No dz.  (15) yN l=Too~x D± d x ]  KII 

3. Heating energy source in the striations 

To obtain a self-consistent problem, the source of energy L- l f~ (o '±E~/No)  dz  should be determined. 
Usually, the transverse length scale of irregularities l x is much smaller than (k z Well/W) -1 and the term A 

in (2) can be omitted in the first approximation over the parameter lxk z WeH/W. Then we can rewrite the wave 
equation in the following form, 

~xxE1 = - PoN1/No . (16) 

The expression for the transverse component of the dielectric permittivity tensor kxx can be obtained by 
generalizing the dielectric permittivity tensor of the homogeneous plasma, which has the following structure 
[18], 

wp E ZoW(Zl)IIi~( X, Zt) + Zgezez (17) 8i j (  k , 09) = ~ij -~ - - ~  
l= _co 

where Z 1 = (oJ - lWH)/V/-21 k z [ vl:, X = kZ~ P2H and Pert is the electron gyroradius. 

H i =  

12 dA t k z 
- - A  t i l - -  V X  IZtAI 
X dx Ikzl 

dA  l l 2 dA t k z - -  dA  t 
- -  - - A I - - 2 X - -  • - i l  d x  X dX - - l ~ z l  ~/2xZl--~X 

k z ~ kz dA z 
~ z l  V - X  l Z t a l  i ~ z l  2V~Zl d x  2Z~A t 

The perpendicular dispersion is described by the function AI(X)  = e-X11(X), I f (X)  is a modified Bessel 
function. The parallel dispersion is described by the function 

= 2 [ kz -- d t )  
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Below we will consider the frequency range up to the neighborhood of the third electron cyclotron harmonic, 
i.e. o) = 3 o9o~/. For this case, using the approximation X << 1 (i.e. the wavelength of the excited modes is larger 
than the electron gyroradius) and Z l >> 1, and expanding (17) (retaining the first and resonant thermal 
corrections, which are proportional to X and X2 / (1  - 9y2) ,  respectively) we obtain from (17) 

3 y  2 15Y 4 

G x = G x o ( z ) - N ( x ) - i F  - 1 _ 4 Y ~ ~  ( l _ 4 y 2 ) ( l _ 9 y 2 ) X  2, (18) 

2 2 N ( x ) = N I ( X ) / N  o, z = 0  corresponds to the upper hybrid resonance where e x , o ( Z ) =  1 - ( .Op0(Z) / /C.Dp0(0) ,  
point. The contribution from collisions i F  in (18) was introduced phenomenologicaly and is equal to 
F =  ( v / w ) ( 1  + Y 2 ) / ( 1  - y 2 ) .  

Replacing as usually X by X = --p2eH d2/ /dx 2, POe/_/= & H ( T  = T~), .~= f~'r 71/2 dx ' ,  we come to the 
wave equation describing electrostatic high frequency oscillations propagating across the magnetic field with 
regard to the thermal corrections, 

d 4 d 2 
- 64a4 d ~Z -----721 + ~ 2`'2 d ~--TG + El [~ ,x0  - N ( ~ )  - i F ]  = - P o U ( ~ ) ,  (19) 

where 6 = poe~t/l,, a 4 = 1 5 y 4 / ( 1  - 4y2) (1  - 9y2) ,  a 2 = 3 y 2 / ( 1  - 4Y 2) and lx is the scale of  density 
variation across the magnetic field (above we renormalized the variable :~ on the characteristic scale lx). This 
equation could be analyzed by means of the WKB approximation using the substitution 

E a = e ~ ,  qo = q~o/3 + qh + . . . .  (20)  

Substituting (20) into (19) in the first order of  the WKB approximation we obtain 

- a 4  z4 - a2 22 + ( e ~ o  - N - i F )  = 0, (21) 

where z = d qo0/d:C To the next order of  the perturbation theory we find 

[ d z  z 
. zz-d--~x ] = 0 .  (22) 

From (22) we have the following relation for the function ~&, 

i [ In (z )  + ln(1 + A z 2 ) ] ,  (23) q01= -~ 

where A = 2 a 4 / a  2. Thus the general solution to the homogeneous part of  Eq. (19) in the WKB approximation 
has the form 

{. rx 1. 1. )} Ee 
Ek I Zk [1/2[ 1 +Az2[  1/2 exp~lJx0-6 dx '  - $, arg z k - 71 arg(1 + A z  2 , ,  (24) 

where the c k are free constants and the z k are the respective roots of  Eq. (21), which can be written as 

Zl, 2 = -{- _ p (  a 2 / 2  ) Z3,4= q- --7(a--~-~)- , 

2A 
p = , q(Yc) = GxO - N ( ~ )  - i V .  (25) 

a 2 

The first two roots, 21, 2, correspond to the Bernstein modes, which propagate in case p < 0, i.e. oJ < 3%H.  The 
two other roots are connected with the modified upper hybrid waves (below we will refer to them simply as UH 
waves). In the limit [ pq l  << 1, z3, 4 in (25) pass to well known WKB solution describing upper hybrid waves 
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far away from the cyclotron harmonics Z3, 4 = "[-(Sxx 0 - - N - - i F )  1/4. As is seen from (25) they can propagate 
only inside the striations, i.e. when q > 0, and have quasi cutoffs in the loci of  full reflection points where 
Z3, 4 = 0. For to < 3toeH there is a frequency range near to = 3toe/~ where these modes have a second group of  
cutoff points. It occurs at the condition 

i + p g  < 0. (26) 

Thus there are two principally different types of  excitations in a plasma with small density irregularities. One of 
them is untrapped Bemstein modes (which have no cutoff points) and the other one is trapped modes inside the 
striation UH waves. 

As is known there is some difference in the behavior of  trapped and untrapped modes if the external source 
of  their excitation exists. The amplitude of  untrapped modes is limited by the amplitude of  the external source, 
while the amplitude of  trapped modes in the absence of  dissipative processes tends to infinity. It is limited by 
the damping process only. In the case of  small damping the amplitude of  the trapped modes is substantially 
larger than the amplitude of  the external source. Since we are interested in the heating inside the striations 
produced by excited waves this fact enables us to restrict ourself by taking into account only trapped modes. 
This means that only UH waves give a significant contribution to the heating process inside the striation. For 
this reason we can neglect the contribution from the Bernstein modes in our analysis. 

To obtain the general solution of  the inhomogeneous equation, the partial solution of  Eq. (19) should be 
added to (24), EPl = Po N ( 2 ) / (  8xx o - N - i F ), and finally we obtain 

E1 = E h + E p. (27) 

The solution we have obtained is valid throughout the whole range of  the variable 2 excluding the 
neighborhood of  the turning points xl, 2 w h e r e  z3 ,4 (x1 ,2 )  = 0 and x3, 4 where 1 +AzZ,4(x3,4) = 0. Inside the 
regions xl < 2 < x 3 and x 4 < 2 < x 2 it has an oscillating character and outside it is an exponentially decreasing 
function. Below we will consider the case when the second group o f  cutoff points is absent. Later we will take 
into account the effect of  its appearance in the final expression for the integral source of  the heating. 

The expansion we have used cannot be continued through the points 2 = X l ,  2 without breaking the 
approximation, and the inner solution has to be constructed in the vicinity of  the points 2 = Xl, 2 to define the 
constants c3, 4. This can be done by introducing new variables ~ + =  +_(1/Salz/Z)2/3{(2-T-Xo)/l+_ i F }  and 
expanding (19) near ~ + =  0. After that we come to the equation 

a 4 t~ 2 /3  
- - u  TM[- U I I -  U~--+= 1 

a5/3 12/3 

where u = (E1 /Uo) (6a l /2 / / l )  2/3, U 0 = -PoN(+_Xo) .  The characteristic value l is defined by 

2 - x  o 
8xx o - N - l ' 2 = x o, 

2 + x  o 
- -  2 = - x  o .  

l " 

For simplicity we assume that the striation is symmetrical around 2 = 0 so that Xl, 2 = -T-x o. 
Provided that 

a 4 6 2 / 3  

- - < < 1  a~/3 12/3 

Eq. (28) can be reduced to the inhomogeneous Airey equation, 

u n - - u ~  += 1. 

(28) 

(29) 

(30) 
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The general solution to (30) is 

u = c~Ai(  ~ -+ ) + c f B i (  ~ -+ ) - Gi( ~ -+ ) (3 i )  

where Ai, Bi are Airey functions, Gi is the adjoint Airey function and c :L are f ree  constants. 1,2 
Identifying (31) in the limit ~ -+~ :t: w with (27), the constants c 3 and c a can be  defined. One has 

No ("ri ' l)  1/2 eiq)/2-i'rr/4 No ( q.l.l tl/2 e-iO/2+i'zr/4 

c3 = - 5 -  c o s ( O / 2 )  ' c4 = - 5 -  ] cos( /2) ' ( 3 2 )  

1 where ~ = f+x~(z3/8)  d• + ~ .  
If  the damping term i F is omitted in Eq. (19) the resonances which are seen to exist when 0 / 2  = 7r/2 + zrn 

manifest themselves as the unbounded amplitude of the electric field E 1. To determine the electric field 
amplitude in the resonance conditions it is necessary to take into account the dissipative processes. If the 
collisions are most essential the resonances correspond to the maximum amplitude of the electric field El, 
which scales as 1 / F  compared to the nonresonant value and formula (32) passes to 

No ( ~/ )1 /2  eiO/2_i~r/4 
c3 - 2 ~ a  2 c 0 s ( O / 2 )  = i e t  s i n ( O / Z ) '  

c4 = - 5 -  ~ c o s ( O / 2 )  - i s  1 s i n (O /2 )  ' (33) 

where s 1 = - (F/6) fX&o(dZ3/dq) l  q=~,~0-~v d2. 
But it is worth noting that the effect of Z mode leakage can also play an essential role in the process of upper 

hybrid wave damping [12]. This mechanism is related to the finite value of the longitudinal wave number kz. 
This fact gives rise to an incomplete reflection of a trapped wave near the turning points, where k~ tends to 
zero, and so determines the dissipation of the upper hybrid wave energy. A small part of the energy is 
transformed outside the turning points and propagates away as long electromagnetic waves. To determine this 
damping it is necessary to take into consideration the term A in Eq. (2). According to Ref. [19] this effect could 
be expressed in just the same manner as collisional damping and give rise to replacement of 81 in (33) by 82 
where 'if2 ---~ qrl~ w o u / c f  -Z ~ o ,  l. = [ (dN/dx)(1 /N)]  .=.o] -1. Under the ionospheric modification experi- 
ment for every isolated striation 82 >> e I and Z mode, the leakage effect gives the main contribution to the 
damping mechanism defining the amplitude of the electric field. 

The ohmic heating of the plasma by electromagnetic waves per unit volume and time is given by 

Qt = 2E  *~rE, (34) 

where 

2 1 a ~  i/z 0 ] 
z, Wp - i l z  a 0 

J ~ =  4~r to2 1 - y 2  ± , 
0 0 all 

a_L -- (1 + Y 2 ) / ( 1  - y 2 ) ,  a l  I = 1 - y 2  and ~ = 217/(1 - y2). For the present case of longitudinal waves 
propagating across the magnetic field with to = faun from (34) we have 

v I + Y  2 
Qz = 2~" 1 - y 2  I E?I" (35) 

Taking into account (33) 

U02 ~ l  211 + cos(qS)] [cos2(q0/2 ) + 622 sin2(q0/2) ] . 1 ,  (36) 
I E21 = 4 6a z z3(1 +Az  2) 
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where ff ~ - ½ ~ - +  = 2f_xo(z3/3) dx'. Averaging over the quick-oscillating phase ~ and qb, one has 

( - - ~ x x O )  3/2 Pg 1 c 
I E?I - 2 PoeHa2 Z3(1 +Az2  ) We H . (37) 

From (37) we finally obtain 

~, 1 + y2 ( _ G x 0 ) 3 / 2 e 2  1 c 

Qt( x, z) = 47r 1 - Y  2 PoeHa2 z3(l + az2 ) We H . (38) 

To calculate the whole power generated into the striation by the upper hybrid waves the local power density Qt 
has to be integrated over the heating area, 

L L 2 
Q(x) = £ Qt(x, z) d z =  f0 o-±E 1 dz. (39) 

Since the length scale of the vertical plasma density variation L 0 is larger than the height interval of the heating 
layer it suffices to use the linear approximation G~0 = - z / L o .  We need to remark that the anomalous 
absorption due to the conversion of the pump wave energy into the upper hybrid waves was not taken into 
account here and we assumed that P0 is a constant independent of z. Within this approximation 

Q°'r°3/2c-Nyo d( - G . o ) (  - G . o ) 3 / 2 0 (  1 +Pq) Q( X) 1/2' 

Vop2L c 1 + y2  20 1 - 4Y 2 (40) 
Qo= 47 o OpoeHWeHa2 l - y 2 '  P - -  3 1 - 9 Y  2 

and 

O(x)=l, if x>O, 

= 0 ,  if x < 0 .  

The function O(1 + pq) which is introduced in the integral (40) effectively includes the appearance of the 
second group of cutoff points in the striation and consequently a cutting of the integral in accordance with (26). 

Eq. (15), together with (40), completely defines our problem. Thus, expanding (3) in the parameters L/L~, 
L/L~ and LlIN~/LEIT allows us to reduce the full system of equations (2) to a set of ordinary equations of one 
variable x. We should emphasize however that Eqs. (15), (40) are essentially nonlinear. 

4. Stationary state of  isolated striations 

For the further calculations let us introduce the effective parameter of heating 

ao  
"= 2r No  (41) 

and pass over from x to the dimensionless variable X=x/ lo ,  1 o = (DE kll/6~,oYDii) 1/4. The characteristic 
length l o is determined by the processes of transverse diffusion during the characteristic relaxation time of the 
electron temperature (3Vo) -1 and plasma density y-1. For F-region conditiol~s, the parameter l o ~ 5-10 m. 
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Here D ± ,  DII and kll are the coefficients of  transport, calculated for T = T~. Then system (14) can be written in 
the following form, 

[4 9/2 4 7 / 2 - -  8 
TlfQ(y, N ) = ~ 3 / 2 / 4 , , . 9 / 2 _  4 7/2 E d ( T - 3 / 2  d7-0 ) 8 ~ / 9 " / ' 0 -  fiT0 if- ~ "  

"0 V9"0 f i T 0 - ~ - ~ 3 ,  N =  d g k  0 a s -  -'~--~T~/q'~o~lff -~ '  

-N d(-SxxO) ( -S~o)3/20(1 +pq) (42) fQ(r, N) =£ 

Here s = L 11 / L  II and ~7 (41) are dimensionless parameters. No/ To~ 
It is convenient to introduce, instead of the temperature %, the function y = %1/2. Then, from (42), we get 

d2y y S ~ 4 y - 9 _  4y-7 + 8 N 

= f ( Y ) '  f(Y) = - 23/2~1 +y-2 26 '  (43) 

where the function N(y) is implicitly defined by fQ(Y, N ) = y - 3 ~ 4 y - 9  4 - - 7  _ 7y + 8 / 7 / .  Note that y takes 
values in the interval 0 < y < 1. Integrating (43) we obtain 

l ( dy )2= f;f(y) dy= -~(y)  (44) 

The "potential" ~ ( y )  is shown in Fig. 1. The function ~ ( y )  reaches its local maximum value at y =Y2,  
where Y2 is the root of the equation f ( y )  = O. The dotted line in the Fig. 1 is related to the soliton-type solution 
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Fig. 2. Solution to Eq. (47) for different values of the effective parameter ~ e  as a function of the dimensionless variable X. The upper 
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depletions observed in experiment [16]. 
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Fig. 4. Dependence of the maximum of the absolute value of the density I N(0) I on the relative frequency A,o = (~o -- 3o&n)/3o&H near the 
third gyroharmonic at Vf~6 = 10, the critical value is shown by asterisk. 

where fi ~< y ~< Y2 and the parameter fi is determined by the relation 

f vzf(Y) dy = 0. (46) 

The parameter fi is directly related with the maximum temperature in the center of  the striation, i.e where 
X = O, "/'max = I/Y 2" 

We will consider at first the behavior of  solution (45) at a fixed frequency far from cyclotron resonance. For 
that condition the integration in fQ(N, Y )  can be produced explicitly and system (42) takes a form 

yS / 4 y - 9  4 --7 _ ~ y  + 8  1 
d 2 y  = f ( y ) ,  f(y) = ~ .~_ _ _ , , - 3 / 2 / 4 , , - 9 2 f ~ . ,  t g - ,  7Y4 - 7  q- ~ 3 )  1 / 4 .  ( 4 7 )  
d X  2 23/2¢1 + y - 2  

The solution of  (47) is shown in Fig. 2. It has the form of  a soliton wave and depends on one nondimensional 
parameter 7 t ~ .  The dependences of  the temperature and the density perturbation at the center of  the striation 

on the effective heating parameter f ~ 6  are shown in Fig. 3. As  the effective parameter increases, the 
temperature and the density perturbation grow effectively. It is easy to see from these figures that the necessary 
stationary solution exists only for the specific values of  the parameter t / ~ 6  > 5.8. There is no solution below 
the point t / ~  < 5.8. The dependence of  the half-width of  the soliton X o decreases rapidly when the heating 
parameter varies from 5.8 to 10, but further the fall becomes rather weak and X 0 = 1. A typical magnitude of  
the parameter C0 = X o ( 6 I ) / ~ / ) 1 / 4  in (7) lies inside the range 3 - 8 .  Therefore relation (7) is seen to be always 
satisfied. It should be noted also that, as is seen from Fig. 1 for the existence of  a soliton solution, a small 
average heating is needed: y ~< Y2 = 0 . 9 6 .  
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Thus we see that the structure of the striations is defined by the parameter E o / E  o = ~/-~e/5.8, where E o is 
the amplitude of the pump wave, E o is a characteristic field: a stationary solution exists only if E o exceeds E0*, 

E0* =35 .3(s in  a ) - l t T ~ N ,  ~1/2"/  1"23 ~/vr°  ( 1 - y 2 ) 3 / 2  (48) 
oo oJ V L o L  ~ c ( i + y 2 ) l / 2 ( 1 - 4 y 2 )  1/4'  

where Vro is the thermal velocity of electrons, a is the angle between the pump wave electric field E 0 and the 
magnetic field H.  Estimates show that E o is of the order of 100 m V / m .  This value is easily reached in 
ionospheric modification experiments. 

Let us now analyse the dependence of the maximum of the absolute value of the density perturbation in the 
striation on the frequency near the third cyclotron harmonic. This dependence is shown in Fig. 4. The strong 
decreasing of the striation amplitude in the vicinity of the third gyrofrequency is observed. There is a gap in the 
frequency dependence just in the immediate vicinity of the third gyrofrequency, where no stationary solution 
exists, see Fig. 4. We see clearly also the asymmetry in the behavior of the maximum of the absolute value of 
the density on the frequency in the ranges to < 3toeH and to > 3toeH , in particular the gap in the frequency 
dependence is narrower below the gyrofrequency than above it. Increasing the amplitude of the striations for 
to < 3 toe~ and consequently decreasing for to > 3 toen is connected with the efficiency of excitation of the UH 
waves which is defined by (40). The subsequent decreasing of the amplitude of the striation under to < 3 to~n is 
connected with the suppression of the UH wave excitation when the threshold defined by condition (26) is 
exceeded. This threshold in fact determines the limits of integral (40) (and therefore the width of the heating 
layer at a certain value of X),  cutting it at the point Gxo = N -  l i p .  

So the stationary striations according to our theory are the density depletions alongated along magnetic field 
lines at the scales L r ~ 10-15 km (see Ref. [17]). The characteristic half-width of the striations is l ~ 5 -10  m. 
The depth of the density depletions [ N 1 / N  o [ ~ 1-10% (Fig. 2). The form, depth and width of the depletions 
depend on two nondimensional parameters e and r/ (41), the width increases with decreasing depth. The 
considered stationary striations exist for a finite value N 1 > N~i n only, where N m i n / N  0 = 0.012, see Fig. 2. We 
emphasize that the structure of the striations (see Fig. 2 of [16]), their alongation ( ~  10 km), the depth of the 
density depletions (2-10%) and their characteristic half-width scale (4-10 m) observed in experiments [16], 
correspond well to the present theory. The minimum amplitude of the depletions observed (1-2%) is also in 
accordance with the theory. 

The main prediction of the theory is a strong enhancement of the electron temperature inside the striations 
T/T~ ~ 2 - 4  which was not directly observed yet (one can suppose that the optical emission which is usually 
observed in ionospheric modifications is connected with this tempera~re enhancement [20]). 

We emphasize that the source of the explosive character of the resonance instability is the strong heating 
inside the striations which is proportional to (N1/N0)2. The stabilization comes from the nonlinear growing of 
the transport coefficients (mostly thermal conductivity K) with the temperature T. That is why the stationary 
solution exists only for large enough values of T/T~ > 1.6 (or for N 1 / N  o > 0.012). This nonlinear stabilization 
process was not considered in previous works [9-14]. 

Note that in the general case the solution of Eq. (15) has the form of a nonlinear wave, so we have a set of 
striations. However in this case new macroscopic processes, which are beyond the scope of this paper become 
substantial. First of all it concerns the anomalous absorption of the pump wave. This effect leads to an effective 
reduction of the heating zone scale L, and, as a consequence, to a slowing down of the increase of the 
perturbation magnitude against the amplitude E 0. The other important process is the self-focusing of the pump 
wave. The problem is that the density perturbations in striations are always negative N 1 < 0. Therefore the 
average electron density is reduced during the excitation of a large number of striations. This fact results in a 
self-focusing of the pump wave E 0. But the enhancement of the field E 0 in the focusing region leads in turn to 
increasing striations. Thus there is a close nonlinear connection between the process of striation formation and 
focusing: in the focusing zone where the field E 0 is strong, the striations are strong as well, and otherwise 
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outside of the focusing zone the field is small (it may drop by an order of magnitude [17]). Here striations 
should be small also or even not excited at all. 

5. Conclusion 

A theory for stationary striations is developed and it seems to be in a good qualitative agreement with the 
results of ionospheric modification experiments. The theory could serve as background for further theoretical 
studies of various nonlinear phenomena closely connected with striations: macroscopic processes of anomalous 
attenuation, scattering and self-focusing of radiowaves, special effects near multiple gyroresonances, generation 
of clearly pronounced structures in ionospheric radioemission (downshifted maximum, broad upshifted maxi- 
mum) and so on. 
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