# Variational data assimilation and the ensemble Kalman filter

#### Amos S. Lawless Data Assimilation Research Centre University of Reading *a.s.lawless@reading.ac.uk http://www.personal.reading.ac.uk/~sms00asl/*





### Variational data assimilation – the idea

In variational data assimilation we seek the solution that maximises the *a posterior* probability  $p(\mathbf{x}|\mathbf{y})$ . Since

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\{-\frac{1}{2}\{(\mathbf{x}-\mathbf{x}^b)^T \mathbf{B}^{-1}(\mathbf{x}-\mathbf{x}^b) + (H(\mathbf{x})-\mathbf{y})^T \mathbf{R}^{-1}(H(\mathbf{x})-\mathbf{y})\}\}$$

we will have the maximum probability when **x** minimises

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^b) + \frac{1}{2} (H(\mathbf{x}) - \mathbf{y})^T \mathbf{R}^{-1} (H(\mathbf{x}) - \mathbf{y})$$





We consider two main algorithms

• Three-dimensional variational assimilation (3D-Var)

➢ Where we consider 3 space dimensions.

- Four-dimensional variational assimilation (4D-Var)
  - Where we consider 3 space dimensions plus time as the 4<sup>th</sup> dimension.
  - In this case we can consider the observation operator to include the dynamical model.

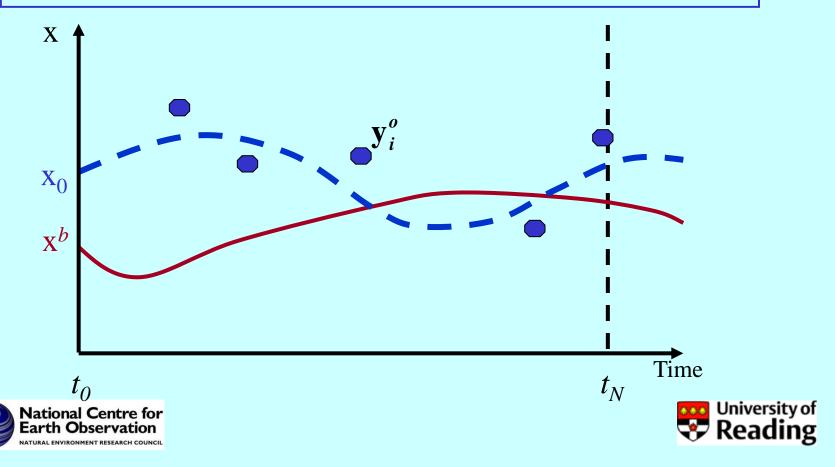
We will present 4D-Var first and 3D-Var as a variant of this.





# Four-dimensional variational assimilation (4D-Var)

Aim: Find the best estimate of the true state of the system (*analysis*), consistent with both observations distributed in time and the system dynamics.



## 4D-Var cost function

Minimize

$$\mathcal{J}(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}^b) + \frac{1}{2} \sum_{i=0}^{N} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)^{\mathrm{T}} \mathbf{R}_i^{-1} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)$$

with respect to  $x_0$ , subject to

$$\mathbf{x}_{i+1} = \mathcal{M}_i(\mathbf{x}_i)$$

- $x^{b}$  *a priori* (background) state Size of order 10<sup>8</sup> 10<sup>9</sup>
- $y_i$  Observations Size of order 10<sup>6</sup> 10<sup>7</sup>
- $H_i$  Observation operator
- *B* Background error covariance matrix
- $R_i$  Observation error covariance matrix





## Numerical minimization - Gradient descent methods

Iterative methods, where each successive iteration is based on the value of the function and its gradient at the current iteration.

$$\mathbf{x}_0^{(k+1)} = \mathbf{x}_0^{(k)} - \alpha \ \boldsymbol{\varphi}(\mathbf{x}_0^{(k)})$$

where  $\alpha$  is a step length and  $\varphi$  is a direction that depends on  $J(\mathbf{x}_0^{(k)})$  and its gradient.

Problem: How do we calculate the gradient of  $J(\mathbf{x}_0^{(k)})$  with respect to  $\mathbf{x}_0^{(k)}$ ?





## Method of Lagrange multipliers

We introduce Lagrange multipliers  $\lambda_i$  at time  $t_i$  and define the Lagrangian

$$\mathcal{L}(\mathbf{x}_i, \boldsymbol{\lambda}_i) = \mathcal{J}(\mathbf{x}_0) + \sum_{i=0}^{N-1} \boldsymbol{\lambda}_{i+1}^{\mathsf{T}}(\mathbf{x}_{i+1} - \mathcal{M}_i(\mathbf{x}_i))$$

Then necessary conditions for a minimum of the cost function subject to the constraint are found by taking variations with respect to  $\lambda_i$  and  $\mathbf{x}_i$ .

Variations with respect to  $\lambda_i$  simply give the original constraint.





$$\mathcal{L}(\mathbf{x}_i, \boldsymbol{\lambda}_i) = \mathcal{J}(\mathbf{x}_0) + \sum_{i=0}^{N-1} \boldsymbol{\lambda}_{i+1}^{\mathrm{T}}(\mathbf{x}_{i+1} - \mathcal{M}_i(\mathbf{x}_i))$$

Variations with respect to  $\mathbf{x}_i$  give the *adjoint* equations

$$\boldsymbol{\lambda}_i = \mathbf{M}_i^T \boldsymbol{\lambda}_{i+1} - \mathbf{H}_i^T \mathbf{R}_i^{-1} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)$$

with boundary condition  $\lambda_{N+1} = 0$ . Then at initial time we have

$$\nabla \mathcal{J}(\mathbf{x}_0) = -\boldsymbol{\lambda}_0 + \mathbf{B}^{-1}(\mathbf{x}_0 - \mathbf{x}^b)$$





# An aside – What are the linear operators H & M?

Suppose we observe the wind speed  $w_s$ .

Then we have 
$$\mathbf{x} = \begin{pmatrix} u \\ v \end{pmatrix}$$
,  $\mathbf{y} = w_s$  and  $\mathbf{y} = H(\mathbf{x})$ 

with

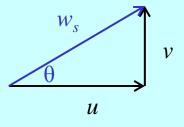
$$H(\mathbf{x}) = \sqrt{u^2 + v^2}$$

#### Then

$$\mathbf{H} = \begin{pmatrix} \frac{\partial H}{\partial u} & \frac{\partial H}{\partial v} \end{pmatrix} = \begin{pmatrix} u & v \\ \frac{\sqrt{u^2 + v^2}}{\sqrt{u^2 + v^2}} & \frac{\sqrt{u^2 + v^2}}{\sqrt{u^2 + v^2}} \end{pmatrix}$$







### So where have we got to?

We wish to minimize

$$\mathcal{J}(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}^b) + \frac{1}{2} \sum_{i=0}^{N} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)^{\mathrm{T}} \mathbf{R}_i^{-1} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)$$

with respect to  $x_0$ , subject to

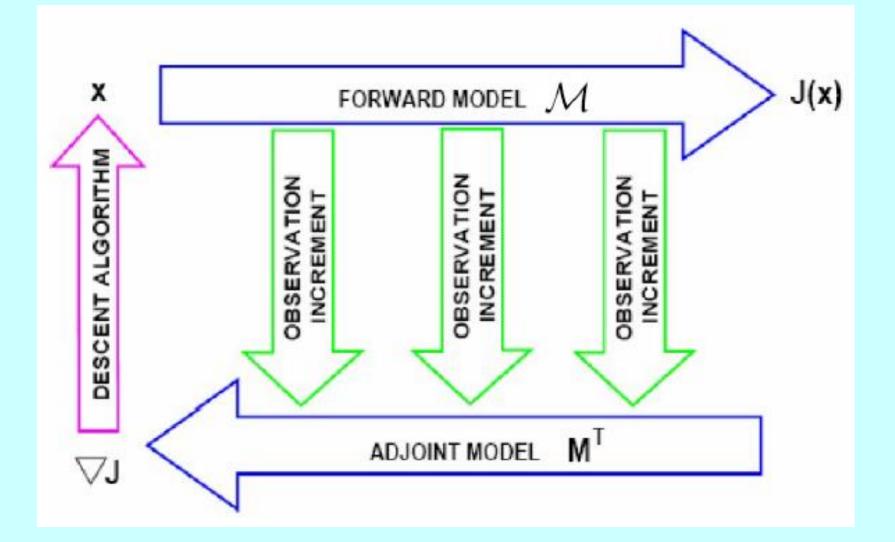
$$\mathbf{x}_{i+1} = \mathcal{M}_i(\mathbf{x}_i)$$

On each iteration we have to calculate J and its gradient

- To calculate *J* we need to run the nonlinear model
- To calculate the gradient of *J* we need one run of the adjoint model (backward in time)





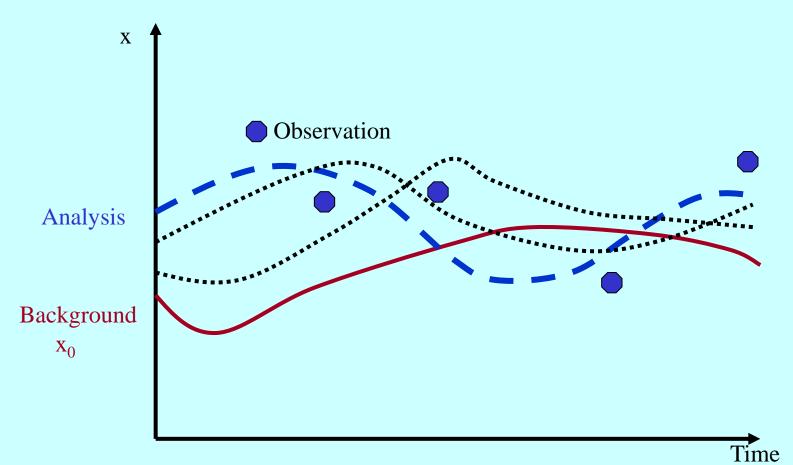


#### BUT this can be computationally expensive!





#### Incremental 4D-Var







### Incremental 4D-Var

We solve a series of linearized minimization problems

$$\begin{split} \tilde{\mathcal{J}}^{(k)}[\delta \mathbf{x}_{0}^{(k)}] &= \frac{1}{2} (\delta \mathbf{x}_{0}^{(k)} - [\mathbf{x}^{b} - \mathbf{x}_{0}^{(k)}])^{\mathrm{T}} \mathbf{B}^{-1} (\delta \mathbf{x}_{0}^{(k)} - [\mathbf{x}^{b} - \mathbf{x}_{0}^{(k)}]) \\ &+ \frac{1}{2} \sum_{i=0}^{N} (\mathbf{H}_{i} \delta \mathbf{x}_{i}^{(k)} - \mathbf{d}_{i}^{(k)})^{\mathrm{T}} \mathbf{R}_{i}^{-1} (\mathbf{H}_{i} \delta \mathbf{x}_{i}^{(k)} - \mathbf{d}_{i}^{(k)}) \end{split}$$

with

$$\mathbf{d}_{i} = \mathbf{y}_{i} - \mathcal{H}_{i}[\mathbf{x}_{i}^{(k)}]$$
$$\delta \mathbf{x}_{i+1} = \mathbf{M}_{i} \delta \mathbf{x}_{i}$$

and update using

$$\mathbf{X}_0^{(k+1)} = \mathbf{X}_0^{(k)} + \delta \mathbf{X}_0^{(k)}$$





### Comments on incremental formulation

- Inner loop cost function is linear quadratic, so has a unique minimum.
- Can simplify the linear model (low resolution, simplified physics) in order to save computational time.
- Equivalent to an approximate Gauss-Newton procedure Convergence results proved by Lawless, Gratton & Nichols, QJRMS, 2005; Gratton, Lawless & Nichols, SIAM J. on Optimization, 2007.
- Used in several operational centres, including ECMWF and Met Office.





## 3D-FGAT (First guess at appropriate time)

We solve a series of linearized minimization problems

$$\begin{split} \tilde{\mathcal{J}}^{(k)}[\delta \mathbf{x}_{0}^{(k)}] &= \frac{1}{2} (\delta \mathbf{x}_{0}^{(k)} - [\mathbf{x}^{b} - \mathbf{x}_{0}^{(k)}])^{\mathrm{T}} \mathbf{B}^{-1} (\delta \mathbf{x}_{0}^{(k)} - [\mathbf{x}^{b} - \mathbf{x}_{0}^{(k)}]) \\ &+ \frac{1}{2} \sum_{i=0}^{N} (\mathbf{H}_{i} \delta \mathbf{x}_{i}^{(k)} - \mathbf{d}_{i}^{(k)})^{\mathrm{T}} \mathbf{R}_{i}^{-1} (\mathbf{H}_{i} \delta \mathbf{x}_{i}^{(k)} - \mathbf{d}_{i}^{(k)}) \end{split}$$

with

and update using



$$\mathbf{d}_{i} = \mathbf{y}_{i} - \mathcal{H}_{i}[\mathbf{x}_{i}^{(k)}]$$

$$\delta \mathbf{x}_{i+1} = \mathbf{M}_{i} \delta \mathbf{x}_{i}$$
Replace this equation
with
$$\delta \mathbf{x}_{i+1} = \delta \mathbf{x}_{i}$$

$$\mathbf{x}_{0}^{(k+1)} = \mathbf{x}_{0}^{(k)} + \delta \mathbf{x}_{0}^{(k)}$$

$$\mathbf{with}_{i+1} = \delta \mathbf{x}_{i}$$

💎 Reading

113

## Properties of 4D-Var

- Observations are treated at correct time.
- Use of dynamics means that more information can be obtained from observations.
- Covariances are implicitly evolved.
- Standard formulation assumes model is perfect. Weakconstraint 4D-Var being developed to relax this assumption.
- In practice development of linear and adjoint models may be complex, but can be done at level of code.





## Ensemble Kalman filter





## The basic idea

• In the Kalman filter we assimilate the observations sequentially, making use of the equation we found in the first lecture.

 $\mathbf{x} = \mathbf{x}_b + \mathbf{P}\mathbf{H}^T(\mathbf{H}\mathbf{P}\mathbf{H}^T + \mathbf{R})^{-1}(\mathbf{y} - H(\mathbf{x}_b))$ 

- The background state comes from the forecast of the previous analysis.
- In the Kalman filter, the uncertainty on the background comes from a forecast of the uncertainty on the analysis.





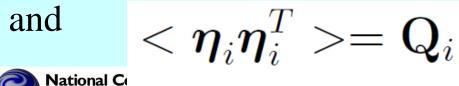
## Framework

- We assume a linear model and observation operator.
- The model may be imperfect.

$$\mathbf{x}_{i+1}^t = \mathbf{M}_i \mathbf{x}_i^t + \boldsymbol{\eta}_i$$

with

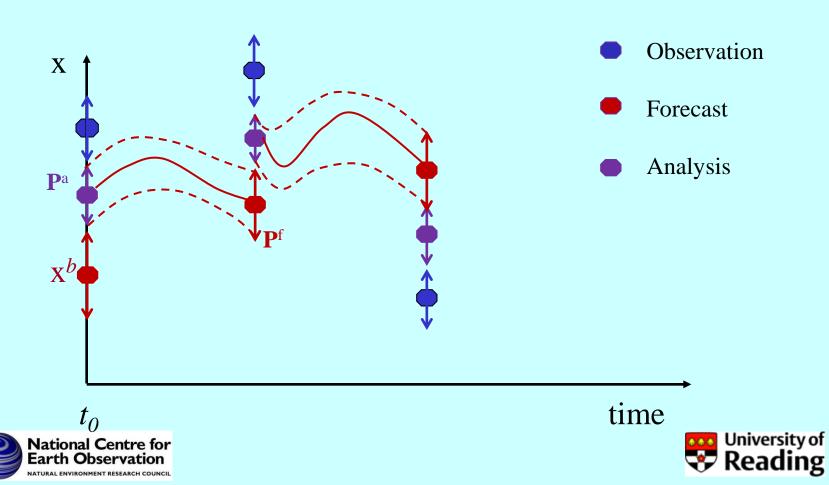
$$< \eta_i >= 0$$







## Kalman filter - Illustration



## We have the following steps:

• Kalman gain computation

$$\mathbf{K}_i = \mathbf{P}_i^f \mathbf{H}_i^T (\mathbf{H}_i \mathbf{P}_i^f \mathbf{H}_i^T + \mathbf{R}_i)^{-1}$$

• State analysis

$$\mathbf{x}_i^a = \mathbf{x}_i^f + \mathbf{K}_i(\mathbf{y}_i - \mathbf{H}_i \mathbf{x}_i^f)$$

• Error covariance of analysis

$$\mathbf{P}_i^a = (\mathbf{I} - \mathbf{K}_i \mathbf{H}_i) \mathbf{P}_i^f$$





• State forecast

$$\mathbf{x}_i^f = \mathbf{M}_{i-1} \mathbf{x}_{i-1}^a$$

• Error covariance forecast

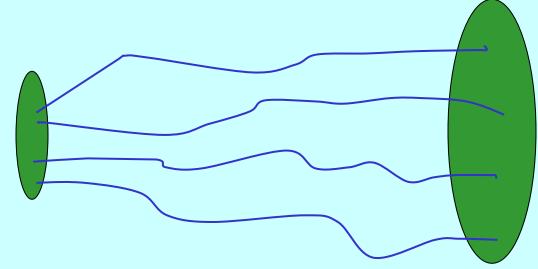
$$\mathbf{P}_{i}^{f} = \mathbf{M}_{i-1}\mathbf{P}_{i-1}^{a}\mathbf{M}_{i-1}^{T} + \mathbf{Q}_{i-1}$$





## Ensemble Kalman filter

### In the ensemble Kalman filter (EnKF) the error covariance forecast is approximated by an ensemble of model runs



Uncertainty at analysis time



Uncertainty at forecast time with covariance P (Gaussian)



## There are 2 main types of EnKF:

# I. Perturbed observation EnKFII. Deterministic EnKF

## We consider both of them.





## I. Perturbed observation EnKF

#### Prediction step:

1. Evolve each ensemble member using the nonlinear model

$$\mathbf{x}^{(i),f} = \mathcal{M}(\mathbf{x}^{(i),a}) + \boldsymbol{\eta}$$

$$\boldsymbol{\eta} \sim \mathcal{N}(0, \mathbf{Q})$$

2. Form the ensemble mean

$$\overline{\mathbf{x}^f} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i), f}$$





3. Form the perturbation matrix and reconstruct the forecast error covariance matrix

$$\mathbf{X}^{f} = \frac{1}{\sqrt{N-1}} [\mathbf{x}^{(1),f} - \overline{\mathbf{x}^{f}}, \mathbf{x}^{(2),f} - \overline{\mathbf{x}^{f}}, \dots, \mathbf{x}^{(N),f} - \overline{\mathbf{x}^{f}}]$$

$$\mathbf{P}^f = \mathbf{X}^f {(\mathbf{X}^f)}^T$$





#### Analysis step:

Update each ensemble member, perturbing the observations

$$\mathbf{x}^{(i),a} = \mathbf{x}^{(i),f} + \mathbf{K}(\mathbf{y} + \boldsymbol{\epsilon}_y + \mathbf{H}\mathbf{x}^{(i),f})$$

#### with

$$\boldsymbol{\epsilon}_{\boldsymbol{y}} \sim \mathcal{N}(0, \mathbf{R})$$

and

$$\mathbf{K} = \mathbf{P}^{f} \mathbf{H}^{T} (\mathbf{H} \mathbf{P}^{f} \mathbf{H}^{T} + \mathbf{R}_{e})^{-1}$$





#### Notes

• Perturbing the observations is necessary to ensure

$$\mathbf{P}^a = (\mathbf{I} - \mathbf{K} \mathbf{H}) \mathbf{P}^f$$

- However this introduces extra sampling noise.
- There is also the problem of needing to invert a low rank matrix, for example using the pseudo-inverse.





## II. Deterministic EnKF

The idea here is to create an ensemble consistent with

 $\mathbf{P}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^f$ 

The prediction step is the same as for the perturbed observation EnKF.

The analysis step then proceeds as follows:





#### Analysis step:

#### 1. Transform the forecast ensemble to observation space

 $\mathbf{y}^{(i),f} = \mathbf{H}\mathbf{x}^{(i),f}$ 

2. Compute the mean  $\overline{\mathbf{y}^{f}}$  and a perturbation matrix  $\mathbf{Y}^{f}$ 3. Compute the analysis

$$\overline{\mathbf{x}^a} = \overline{\mathbf{x}^f} + \mathbf{K}(\mathbf{y} - \overline{\mathbf{y}^f})$$

with

$$\mathbf{K} = \mathbf{X}^{f} (\mathbf{Y}^{f})^{T} (\mathbf{Y}^{f} (\mathbf{Y}^{f})^{T} + \mathbf{R})^{-1}$$

and

$$\mathbf{X}^a = \mathbf{X}^f \mathbf{T}$$





The matrix **T** is chosen such that

$$\begin{aligned} \mathbf{P}^{a} &= & \mathbf{X}^{a} (\mathbf{X}^{a})^{T} = (\mathbf{X}^{f} \mathbf{T}) {(\mathbf{X}^{f} \mathbf{T})}^{T} \\ &\approx & (\mathbf{I} - \mathbf{K} \mathbf{H}) \mathbf{P}^{f} \end{aligned}$$

Different choices of T lead to different versions of the EnKF.





## EnKF issues

The small ensemble size relative to the size of the system leads to 2 problems that must be faced:

1. The ensemble collapses, i.e. the matrix  $\mathbf{P}^{f}$  does not contain enough spread.

Solution: Covariance inflation

$$\mathbf{P}^f = (1+\rho)\mathbf{P}^f_e$$





## EnKF issues

2. The ensemble covariance matrix  $\mathbf{P}^{f}$  is low rank, which leads to spurious long-range correlations

Solution: Covariance localization

$$\mathbf{P}^f = \mathbf{L} \circ \mathbf{P}^f_e$$

where **L** is a matrix that ensures long-range correlations are zero.





## References – Variational methods

- P. Courtier, J-N. Thepaut and A. Hollingsworth (1994), A strategy for operational implementation of 4D-Var, using an incremental approach, *Quart. J. Roy. Meteor. Soc.*, 120, 1367–1387.
- Gratton, S., Lawless, A.S. and Nichols, N.K. (2007), Approximate Gauss-Newton methods for nonlinear least squares problems, SIAM J. on Optimization, 18, 106-132.
- Lawless, A.S., Gratton, S. and Nichols, N.K. (2005), An investigation of incremental 4D-Var using non-tangent linear models, Quart. J. Royal Met. Soc., 131, 459-476.
- Lawless, A.S. (2013), Variational data assimilation for very large environmental problems. In *Large Scale Inverse Problems: Computational Methods and Applications in the Earth Sciences* (2013), Eds. Cullen, M.J.P., Freitag, M. A., Kindermann, S., Scheichl, R., Radon Series on Computational and Applied Mathematics 13. De Gruyter, pp. 55-90.
- O. Talagrand and P. Courtier (1987), Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory, *Quart. J. Roy. Meteor. Soc.*, 113, 1311-1328.





## **References - EnKF**

- J. L. Anderson. An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129:2884–2903, 2001.
- G. Burgers, P. J. van Leeuwen, and G. Evensen. Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126: 1719–1724, 1998.
- G. Evensen. Data Assimilation: The Ensemble Kalman Filter. Springer, 2nd edition edition, 2009.
- D. M. Livings, S. L. Dance, and N. K. Nichols. Unbiased ensemble square root filters. Physica D: Nonlinear Phenomena, 237(8):1021–1028, 2008.
- M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, and J.S. Whitaker. Ensemble square root filters. Mon. Wea. Rev., 131:1485–1490, 2003.



