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Variational data assimilation – the idea 

In variational data assimilation we seek the solution that 

maximises the a posterior probability p(x|y). 

Since 

 

 

we will have the maximum probability when x minimises 
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{(𝐱 − 𝐱𝑏)𝑇𝐁−1 𝐱 − 𝐱𝑏 + (𝐻(𝐱) − 𝐲)𝑇𝐑−1(𝐻(𝐱) − 𝐲)} } 
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We consider two main algorithms 

• Three-dimensional variational assimilation (3D-Var) 

 Where we consider 3 space dimensions. 

• Four-dimensional variational assimilation (4D-Var) 

 Where we consider 3 space dimensions plus time as 

the 4th dimension. 

 In this case we can consider the observation operator 

to include the dynamical model. 

 

We will present 4D-Var first and 3D-Var as a variant of this. 

 

 



Four-dimensional variational assimilation 

(4D-Var) 
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Aim: Find the best estimate of the true state of the system 

(analysis), consistent with both observations distributed 

in time and the system dynamics. 
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4D-Var cost function 

with respect to x0, subject to 
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- a priori (background) state – Size of order 108 - 109 

- Observations – Size of order 106  - 107  

- Observation operator 

- Background error covariance matrix 

- Observation error covariance matrix 

 

Minimize 

For N=0 we have 3D-Var 



Numerical minimization - Gradient descent 

methods 
Iterative methods, where 

each successive iteration is 

based on the value of the 

function and its gradient at 

the current iteration. 

x0
(k+1) = x0

(k) – α φ(x0
(k)) 

where α is a step length and φ is a direction that depends on 

  J(x0
(k) ) and its gradient. 

 

Problem: How do we calculate the gradient of J(x0
(k) ) with 

respect to x0
(k) ? 



We introduce Lagrange multipliers λi at time ti and define the 

Lagrangian 

 

 

 

 

Then necessary conditions for a minimum of the cost function 

subject to the constraint are found by taking variations with 

respect to λi and xi. 

Variations with respect to λi simply give the original constraint. 

Method of Lagrange multipliers 

T 



Variations with respect to xi give the adjoint equations 

 

 

 

with boundary condition λN+1 = 0. 

Then at initial time we have 
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An aside – What are the linear operators H & 

M?  
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θ Suppose we observe the wind speed ws. 

 

Then we have                  ,              and 𝐱 =  
𝑢
𝑣

 𝐲 = 𝑤𝑠 

with 

𝐲 = 𝐻(𝐱) 

𝐻 𝐱 = 𝑢2 + 𝑣2 

Then 
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So where have we got to? 

with respect to x0, subject to 

We wish to minimize 

On each iteration we have to calculate  J and its gradient 

• To calculate  J we need to run the nonlinear model 

• To calculate the gradient of  J we need one run of the 

adjoint model (backward in time)  

 



BUT this can be computationally expensive! 



Observation 

Time 

Background 

      x0 

Incremental 4D-Var 

Analysis 

x 



Incremental 4D-Var 

We solve a series of linearized minimization problems 
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and update using  
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Comments on incremental formulation 

• Inner loop cost function is linear quadratic, so has a unique 

minimum. 

• Can simplify the linear model (low resolution, simplified 

physics) in order to save computational time. 

• Equivalent to an approximate Gauss-Newton procedure – 

Convergence results proved by Lawless, Gratton & 

Nichols, QJRMS, 2005; Gratton, Lawless & Nichols, SIAM 

J. on Optimization, 2007. 

• Used in several operational centres, including ECMWF 

and Met Office. 

 



3D-FGAT (First guess at appropriate time) 

We solve a series of linearized minimization problems 
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and update using  
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Replace this equation 

with  

ii xx  1



Properties of 4D-Var 

• Observations are treated at correct time. 

• Use of dynamics means that more information can be 

obtained from observations. 

• Covariances are implicitly evolved. 

• Standard formulation assumes model is perfect. Weak-

constraint 4D-Var being developed to relax this 

assumption. 

• In practice development of linear and adjoint models may 

be complex, but can be done at level of code. 



Ensemble Kalman filter 



The basic idea 

 

• In the Kalman filter we assimilate the observations 

sequentially,making use of the equation we found 

in the first lecture. 

 

• The background state comes from the forecast of 

the previous analysis. 

• In the Kalman filter, the uncertainty on the 

background comes from a forecast of the 

uncertainty on the analysis. 

𝐱 =  𝐱𝑏 + 𝐏𝐇𝑇(𝐇𝐏𝐇𝑇 + 𝐑)−1(𝐲 − 𝐻 𝐱𝑏 ) 



Framework 
• We assume a linear model and observation 

operator. 

• The model may be imperfect. 
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Kalman filter - Illustration 
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• Kalman gain computation 

• State analysis 

• Error covariance of analysis 

We have the following steps: 



• State forecast 

• Error covariance forecast 



Ensemble Kalman filter 

In the ensemble Kalman filter (EnKF) the error 

covariance forecast is approximated by an 

ensemble of model runs 

Uncertainty at  

analysis time 

Uncertainty at forecast time with 

covariance P  

(Gaussian) 



There are 2 main types of EnKF: 

 

I. Perturbed observation EnKF 

II. Deterministic EnKF 

 

We consider both of them. 



I. Perturbed observation EnKF 

Prediction step: 

 1. Evolve each ensemble member using the nonlinear 

model 

 

  

 2. Form the ensemble mean  

 

 



 3. Form the perturbation matrix and reconstruct the 

forecast error covariance matrix 

 

 

 

 

 

 

 



Analysis step: 

Update each ensemble member, perturbing the observations 
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Notes 

• Perturbing the observations is necessary to ensure 

 

 

• However this introduces extra sampling noise. 

 

• There is also the problem of needing to invert a low rank 

matrix, for example using the pseudo-inverse. 

 



II. Deterministic EnKF 

The idea here is to create an ensemble consistent with 

 

 

 

The prediction step is the same as for the perturbed 

observation EnKF. 

 

The analysis step then proceeds as follows: 



Analysis step: 

1. Transform the forecast ensemble to observation space 

 

 

2. Compute the mean           and a perturbation matrix 

3. Compute the analysis 
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The matrix T is chosen such that 

 

 

 

 

Different choices of  T lead to different versions of the EnKF. 

 



EnKF issues 

The small ensemble size relative to the size of the system 

leads to 2 problems that must be faced: 

 

1. The ensemble collapses, i.e. the matrix Pf does not contain 

enough spread. 

 

Solution: Covariance inflation 



EnKF issues 

2. The ensemble covariance matrix Pf is low rank, which 

leads to spurious long-range correlations 

 

Solution: Covariance localization 

 

 

where L is a matrix that ensures long-range correlations are 

zero. 
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