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What Is data assimilation?

Data assimilation is the process of estimating the state of a
dynamical system by combining observational data with an

a priori estimate of the state (often from a numerical
model forecast).

We may also make use of other information such as
* The system dynamics

« Known physical properties

« Knowledge of uncertainties
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Example — ozone hole

Jzone ot 10hPo QB:00:00 22—-Sep—2002

Erwizat Azsimilation

Data Assimilation Reseorch Centre

MIFAS data (=) E=4 2002
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Why not just use the observations?

1. We may only observe part of the state

Data Coverage: Surface (8/1/2009, 0 UTC, qu00)
Total number of observations assimilated: 24232

LNDSYN (16578)SHPSYN (2200)MOBSYN (0)BUQY (5454)

Surface
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Data Coverage: Sonde (8/1/2009, 0 UTC, qu00) =
Total number of observations assimilated: 1578 m

PILOT LAND (305)PILOT SHIP (0)PILOT MOBILE (0)TEMP LAND (628)
TEMP SHIP (3) DROPSOND (1)WINPRO (641)

Radiosonde
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Why not just use the observations?

2. We may observe a nonlinear function of the state, e.qg.
satellite radiances.
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Example

Let the state vector consists of the E-W
and N-S components of the wind, u and
V.

Suppose we observe the wind speed w.. 0

VY.

Then we have x = (:“j) y=w, and y=H®X)

with

H(x) = u? + v2

H iIs known as the observation operator.
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Why not just use the observations?

3. We need to allow for uncertainties in the observations
(and in the a priori estimate).
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A scalar example

Suppose we have a background estimate of the temperature in this room T, and a
measurement of the temperature T..

We assume that these estimates are unbiased and uncorrelated.
What is our best estimate of the true temperature?

We consider our best estimate (analysis) to be a linear combination of the
background and measurement

Ta = abTb + aOTO
Then the question is how should we choose «,, and a,?
We need to impose 2 conditions.
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1. We want the analysis to be unbiased.

Let
Ta = Tt + €a
Tb = Tt + €p
TO — Tt + EO
Then

<€, >=<T,—T, >
=< apTy + a, T, — Ty >
=<ab(Tb_Tt)+ao(To_Tt)+(ab+ao_1)Tt>
=a,<€,>+a,<€,> +(ap+a,—1)<T; >

Hence to ensure that < e, = 0 > for all values of T, we require that
ap, +a, =1

)
To = apTp + (1 —ap)T,
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2. We want the uncertainty in our analysis to be as small as possible, i.e. we want
to minimize its variance

Let
<€t >=of
<e€x>=op
<e:>=gcp
Then

O-C% =< (Ta — Tt)z >
=< (apTp + (1 — ap)T, — Tp)* >
=< (ap(Tp = T) + (1 — ap)(Ty — Tp))* >
=< (ab ey + (1 — ab)eo)z >

= ajop + (1 — a,)?0} _
using < €ye, > =0

~ ddf _
Then setting T 0 we find
a5
ay =—5——
P 7 62 + o2
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Hence we have

2 2
Ta — —Tb + TO
o + of o + of

This is known as the Best Linear Unbiased Estimate (BLUE).

We find that
2 2
05, 0
2 bvo . 2 2
o, = < miny oy, o,
a O'g-l-O'OZ {b 0}

How can we generalise this to a vector state and a vector of
observations?
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More general problem

In order to generalise the problem we need to use probability
distribution functions (pdf’s) to represent the uncertainty.

p(x) N
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Bayes theorem

We assume that we have

« A prior distribution of the state x given by p(x)

« A vector of observations y with conditional probability
p(y[x)

Then Bayes theorem states

p(X)p(y|x)
p(y)
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Prior Likelihood

/

p(X)p(y|x)
p(y)

p(x]y) =
e

Posterior

Normalising
constant
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Prior
= = = | jkelihood
— Posterior
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But ... In practice the pdf’s are very high dimensional (e.g.
10° in NWP).

This means
- We cannot calculate the full pdf.

- We need to either calculate an estimator based on the pdf or
generate samples from the pdf.
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Gaussian assumption

If we assume that the errors are Gaussian then the pdf is defined solely by
the mean and covariance.

Prior .
p(X) — (Zﬂ)n/z |P|1/2 eXp{ — E (X _ Xb)TP_l(X _ xb)}
Likelihood
1
PO = Gz Pl O H (x)"R™(y — H(x))}
Posterior

p(xly) o exp{ ——{(x —x,)"P7 (x — x;) + (y — H®))"R™(y — H(x))} }
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Maximum a posterior probability (MAP)

Find the state that is equal to the mode of the posterior pdf.
For a Gaussian case this is also equal to the mean.

p (Xly) ..

P(xly)

T X
National Centre for University of
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Recall for the Gaussian case
p(xly) o« exp{ ——{(x —x,)"PL(x — X,) + (y — H®))"R™*(y — H(x))} }
So the maximum probability occurs when X minimises
J&x) = x—xp)P7Hx—xp) + (y -~ HX)'R(y — HX))
In the case of H linear we have

x = x;, + PTHT(HPHT + R)"1(y — H(x}))

Note size of matrices!
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How can we solve this In practice?

1. Variational methods

Use an iterative optimization method to minimize

JX) = (x—x)'PTHx —Xp) + (y — HX)'R™(y — H(X))
J(X) A

Need gradient
V] (%)

v

Usually P held constant (denoted B).
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2. Kalman filter

Solves directly
X = X, + PTHT(HPH? + R) "1 (y — H(x}))
- Only exact for linear case.

- Include update of covariance matrix P as system evolves.
- Can be extended to nonlinear case by linearization.
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3. Ensemble Kalman filter

Similar to standard Kalman filter, but uses ensemble of
nonlinear model runs to update covariance P at each
assimilation time.

Nonlinear model forecasts

Uncertainty at Uncertainty at forecast time with
analysis time covariance P
(Gaussian)
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4. Particle filters

Use a weighted sample of states to sample the true posterior
pdf p(x]y).

As in Ensemble Kalman filter we use an ensemble of
forecasts from the nonlinear model, but without making the
Gaussian assumption.
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Time sequence of observations
Filter — Treat observations sequentially in time

*Observation
® Analysis
X N
* i
* o~—
*
'I:ime
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Time sequence of observations
Smoother — Treat all observations together

*Observation
® Analysis

N
7

Time
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Summary

Data assimilation provides the best way of using data with
numerical models, taking into account what we know
(uncertainty, physics, ...).

Bayes’ theorem 1s a natural way of expressing the problem
In theory.

Dealing with the problem in practice is more challenging
... This 1s the story of the next lecture.
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