Application of Lagrange multipliers - Example

Consider the linear model

Uyl = Up + 20,

Upp1 = U+ 3uy

and suppose we make observations of g, 1 of u at times ty, t; respectively, each with
error variance o2. We consider the data assimilation problem with no background

term.
In this case we can write the system of equations as

Xpr1 = Mxy,

() w-(30)

Since we observe u the observation operator at each step is

with

H=(10)

and the observation error covariance matrix R is the scalar o2.

Direct method

The cost function is given by
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Note that to apply this method we need to calculate n components of the gradient
vector, where is n the length of the vector x. This is very expensive for large n.
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Adjoint method

From the adjoint equations we have

Al = —HTR_I(Hxl—yl)
Ao = M'A —H'R ' (Hx, — yo).

Hence we have
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Hence we see that Ag = =V J(x¢). However, in this case we have calculated all the
components of the gradient vector with just one run of the adjoint model.



