Application of Lagrange multipliers - Example

Consider the linear model

$$
\begin{aligned}
u_{k+1} & =u_{k}+2 v_{k}, \\
v_{k+1} & =v_{k}+3 u_{k}
\end{aligned}
$$

and suppose we make observations of $\tilde{u}_{0}, \tilde{u}_{1}$ of u at times t_{0}, t_{1} respectively, each with error variance σ_{o}^{2}. We consider the data assimilation problem with no background term.

In this case we can write the system of equations as

$$
\mathbf{x}_{k+1}=\mathbf{M} \mathbf{x}_{k}
$$

with

$$
\mathbf{x}=\binom{u}{v}, \quad \mathbf{M}=\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right) .
$$

Since we observe u the observation operator at each step is

$$
\mathbf{H}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
$$

and the observation error covariance matrix \mathbf{R} is the scalar σ_{o}^{2}.

Direct method

The cost function is given by

$$
\begin{aligned}
\mathcal{J}\left(\mathbf{x}_{0}\right) & =\frac{1}{2} \sum_{i=0}^{1}\left(\mathbf{H}_{i} \mathbf{x}_{i}-\mathbf{y}_{i}\right)^{T} \mathbf{R}^{-1}\left(\mathbf{H}_{i} \mathbf{x}_{i}-\mathbf{y}_{i}\right) \\
& =\frac{1}{2} \frac{\left(u_{0}-\tilde{u}_{0}\right)^{2}}{\sigma_{o}^{2}}+\frac{1}{2} \frac{\left(u_{1}-\tilde{u}_{1}\right)^{2}}{\sigma_{o}^{2}} \\
& =\frac{1}{2} \frac{\left(u_{0}-\tilde{u}_{0}\right)^{2}}{\sigma_{o}^{2}}+\frac{1}{2} \frac{\left(u_{0}+2 v_{0}-\tilde{u}_{1}\right)^{2}}{\sigma_{o}^{2}}
\end{aligned}
$$

Then

$$
\nabla \mathcal{J}\left(\mathrm{x}_{0}\right)=\binom{\frac{\partial \mathcal{J}}{\partial u}}{\frac{\partial \mathcal{J}}{\partial v}}
$$

So

$$
\nabla \mathcal{J}\left(\mathbf{x}_{0}\right)=\binom{\sigma_{o}^{-2}\left(u_{0}-\tilde{u}_{0}\right)+\sigma_{o}^{-2}\left(u_{0}+2 v_{0}-\tilde{u}_{1}\right)}{2 \sigma_{o}^{-2}\left(u_{0}+2 v_{0}-\tilde{u}_{1}\right)}
$$

Note that to apply this method we need to calculate n components of the gradient vector, where is n the length of the vector \mathbf{x}. This is very expensive for large n.

Adjoint method

From the adjoint equations we have

$$
\begin{aligned}
\boldsymbol{\lambda}_{1} & =-\mathbf{H}^{T} \mathbf{R}^{-1}\left(\mathbf{H x}_{1}-\mathbf{y}_{1}\right) \\
\boldsymbol{\lambda}_{0} & =\mathbf{M}^{T} \boldsymbol{\lambda}_{1}-\mathbf{H}^{T} \mathbf{R}^{-1}\left(\mathbf{H} \mathbf{x}_{0}-\mathbf{y}_{0}\right)
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\boldsymbol{\lambda}_{1} & =-\binom{1}{0} \sigma_{o}^{-2}\left(u_{1}-\tilde{u}_{1}\right) \\
& =-\binom{\sigma_{o}^{-2}\left(u_{0}+2 v_{0}-\tilde{u}_{1}\right)}{0} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\boldsymbol{\lambda}_{0} & =-\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)\binom{\sigma_{o}^{-2}\left(u_{0}+2 v_{0}-\tilde{u}_{1}\right)}{0}-\binom{1}{0} \sigma_{o}^{-2}\left(u_{0}-\tilde{u}_{0}\right) \\
& =-\binom{\sigma_{o}^{-2}\left(u_{0}-\tilde{u}_{0}\right)+\sigma_{o}^{-2}\left(u_{0}+2 v_{0}-\tilde{u}_{1}\right)}{2 \sigma_{o}^{-2}\left(u_{0}+2 v_{0}-\tilde{u}_{1}\right)}
\end{aligned}
$$

Hence we see that $\boldsymbol{\lambda}_{0}=-\nabla \mathcal{J}\left(\mathbf{x}_{0}\right)$. However, in this case we have calculated all the components of the gradient vector with just one run of the adjoint model.

