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What is data assimilation? 

Data assimilation is the process of estimating the state of a 

dynamical system by combining observational data with an 

a priori estimate of the state (often from a numerical 

model forecast). 

We may also make use of other information such as 

• The system dynamics 

• Known physical properties 

• Knowledge of uncertainties 



Example – ozone hole 



Why not just use the observations? 

1. We may only observe part of the state  

Surface Radiosonde 



Why not just use the observations? 

2. We may observe a nonlinear function of the state, e.g. 

satellite radiances. 

 



Example 

u 

v 

ws 

θ 

Let the state vector consists of the E-W and N-S 

components of the wind, u and v. 

 

Suppose we observe the wind speed ws and 

direction θ. 

 

Then we have 

 

State vector                              Observation vector 𝐱 =  
𝑢
𝑣

 𝐲 =  
𝑤𝑠

θ
 

These are related by the equation                      where 𝐲 = 𝐻(𝐱) 

H is known as the observation operator 

𝐻 𝐱 =
𝑢2 + 𝑣2

𝑡𝑎𝑛−1 𝑢

𝑣

   



Why not just use the observations? 

3. We need to allow for uncertainties in the observations  

(and in the a priori estimate). 

 



A scalar example 

Suppose we have a background estimate of the temperature in this room Tb and a 

measurement of the temperature To.  

We assume that these estimates are unbiased and uncorrelated. 

What is our best estimate of the true temperature? 

We consider our best estimate (analysis) to be a linear combination of the 

background and measurement 

  
𝑇𝑎 =  𝛼𝑏𝑇𝑏 +  𝛼𝑜𝑇𝑜 

Then the question is how should we choose αb and αo? 

 

We need to impose 2 conditions.  



1. We want the analysis to be unbiased. 

 

Let  

𝑇𝑎 = 𝑇𝑡 + 𝜖𝑎 
𝑇𝑏 = 𝑇𝑡 + 𝜖𝑏 
𝑇𝑜 = 𝑇𝑡 + 𝜖𝑜 

 

 

 

Then 

< 𝜖𝑎 > = < 𝑇𝑎 − 𝑇𝑡 > 
               = < 𝛼𝑏𝑇𝑏 + 𝛼𝑜𝑇𝑜 − 𝑇𝑡 > 
              = < 𝛼𝑏 𝑇𝑏 − 𝑇𝑡 + 𝛼𝑜 𝑇𝑜 − 𝑇𝑡 + 𝛼𝑏 + 𝛼𝑜 − 1 𝑇𝑡 > 
              = 𝛼𝑏 < 𝜖𝑏 >   𝛼𝑜 < 𝜖𝑜 >  + 𝛼𝑏 + 𝛼𝑜 − 1 < 𝑇𝑡 >  

Hence to ensure that                      for all values of Tt we require that 

 

 

so  

< 𝜖𝑎 = 0 > 

𝛼𝑏 + 𝛼𝑜 = 1 

𝑇𝑎 =  𝛼𝑏𝑇𝑏 +  (1 − 𝛼𝑏)𝑇𝑜 



Let 

 

 

 

 

Then 

 

 

 

 

 

    using 

 

Then setting                    we find 

2. We want the uncertainty in our analysis to be as small as possible, i.e. we want 

to minimize its variance 
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Hence we have 

 

 

 

 

This is known as the Best Linear Unbiased Estimate (BLUE). 

 

We find that 

𝑇𝑎 =  
𝜎𝑜
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How can we generalise this to a vector state and a vector of 

observations? 



More general problem 

In order to generalise the problem we need to use probability 

distribution functions (pdf’s) to represent the uncertainty. 

𝒙 

p(𝒙) 



Bayes theorem 

We assume that we have  

• A prior distribution of the state x given by p(x) 

• A vector of observations y with conditional probability 

p(y|x) 

 

Then Bayes theorem states 

𝑝 𝐱 𝐲) =  
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)
 



𝑝 𝐱 𝐲) =  
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)
 

Posterior 

Prior Likelihood 

Normalising 

constant 



𝑝 𝐱 𝐲) =  
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)
 



𝑝 𝐱 𝐲) =  
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)
 



𝑝 𝐱 𝐲) =  
𝑝 𝐱 𝑝(𝐲|𝐱)

𝑝(𝐲)
 



But … In practice the pdf’s are very high dimensional (e.g. 

109 in NWP).  

 

This means 

 

- We cannot calculate the full pdf. 

- We need to either calculate an estimator based on the pdf or 

generate samples from the pdf. 

 



Gaussian assumption 

If we assume that the errors are Gaussian then the pdf is defined solely by 

the mean and covariance. 

Prior 

 

 

Likelihood 

 

 

Posterior  

 

𝑝 𝐱 =  
1

(2𝜋)𝑛/2|𝐏|𝑛/2
exp{ −

1

2
(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 } 

𝑝 𝐲|𝐱 =  
1

(2𝜋)𝑝/2|𝐑|𝑝/2
exp{ −

1

2
(𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))} 

𝑝 𝐱 𝐲  ∝ exp{  −
1

2
{(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 + (𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))} } 



Maximum a posterior probability (MAP) 

Find the state that is equal to the mode of the posterior pdf. 

For a Gaussian case this is also equal to the mean. 

x 

p (x|y) 

Mode = Mean 



Recall for the Gaussian case 

 

 

So the maximum probability occurs when x minimises 

 

 

In the case of H linear we have  

𝑝 𝐱 𝐲  ∝ exp{  −
1

2
{(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 + (𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))} } 

 𝐽 𝐱 =
1

2
(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 +

1

2
(𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))  

𝐱 =  𝐱𝑏 +  𝐏 𝐇𝑇(𝐇𝐏𝐇𝑇 + 𝐑)−1(𝐲 − 𝐻 𝐱𝑏 ) 

Note size of matrices! 



How can we solve this in practice? 

1. Variational methods 

 

Use an iterative optimization method to minimize 

 

 

 

      Need gradient 

            𝛻𝐽(𝐱) 

        

 

Usually P held constant (denoted B). 

 𝐽 𝐱 =
1

2
(𝐱 − 𝐱𝑏)𝑇𝐏−1 𝐱 − 𝐱𝑏 +

1

2
(𝐲 − 𝐻(𝐱))𝑇𝐑−1(𝐲 − 𝐻(𝐱))  

x 

J(x) 



2. Kalman filter 

 

Solves directly 

 

 

- Only exact for linear case. 

- Include update of covariance matrix P as system evolves. 

- Can be extended to nonlinear case by linearization. 

 

𝐱 =  𝐱𝑏 +  𝐏𝑇𝐇𝑇(𝐇𝐏𝐇𝑇 + 𝐑)−1(𝐲 − 𝐻 𝐱𝑏 ) 



3. Ensemble Kalman filter  

Similar to standard Kalman filter, but uses ensemble of 

nonlinear model runs to update covariance P at each 

assimilation time. 
 

Uncertainty at  

analysis time 

Uncertainty at forecast time with 

covariance P  

(Gaussian) 

Nonlinear model forecasts 



4. Particle filters  

Use a weighted sample of states to sample the true posterior 

pdf  p(x|y). 

 

As in Ensemble Kalman filter we use an ensemble of 

forecasts from the nonlinear model, but without making the 

Gaussian assumption. 

 

 



Time sequence of observations 
Filter – Treat observations sequentially in time 

Time 

x 

Observation 

Analysis 



Time sequence of observations  
Smoother – Treat all observations together 

Time 

x 

Observation 

Analysis 



Summary 

• Data assimilation provides the best way of using data with 

numerical models, taking into account what we know 

(uncertainty, physics, …). 

• Bayes’ theorem is a natural way of expressing the problem 

in theory. 

• Dealing with the problem in practice is more challenging 

 


