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6 : Frequency Response Part B

In the first part have looked at finding and plotting Freq Resp
Dynamic systems modelled in terms of jω
Complex Transfer function determined at various ω
Plotted on Nyquist and on Bode diagrams

Asymptotic approximations of Bode also shown
Here, use system’s corner frequencies CF
Then starting at low frequency, plot response til next CF

CFs can be of first or second order poles/zeros
Will now reverse situation, have Bode Plot ..

Starting at low frequency, deduce each CF …
This is System Identification
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System Identification
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Suppose have measured values of m, p and 

Can we determine what the system is.

This is System Identification.

Initially guess at structure – eg Pole, 2 Pole, Lead + Poles, etc

But can also estimate actual corner freqs.

How ?

Computer can assist this.

Start with simple examples

Have another GUI which helps 

Note is more accurate if CFs are further apart.

Simple System Identification
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10 -1 10 0 10 1 10 210-1

100

101

10 -1 10 0 10 1 10 2
-90

-45

0

What is system ?

What is K?

Low freq gain = 6 

How find other para?

1 / freq where 
gain = 6/√2 or 
phase = -45O

T = 1 / 2
ω 0.1     0.4      2.0     11.6    100.0
m    6.0    5.9      4.2       1.0       0.1
p   -2.9  -11.8   -45.0   -80.2   -88.9

K
1 + sT

Second Simple Example
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What is system ?

What is K?

How find other para?

Where phase = -135O

T = 1 / 3

10-1 100 101 10210-2

100

40

10-1 100 101 102
-180
-135
-90
-45

0

ω 0.1       0.4      3.0      11.8    100.0
m   40.0      9.3       0.9       0.1          0
p   -91.9   -98.0  -135.0  -165.7  -178.3

K
s(1 + sT)


-1KGain  at 10  = 40

So K = 40*0.1 = 4

Iterative Search
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Assume:  m, p, w in vectors

As system is pure integrator at low freqs, can ‘remove’ it : 

m = m * .w;  divide all in m by gain there (= 1/ω) 

p = p - -90;   subtract phase … then replot and analyse

10-1 100 101 1020.1

1
4
10

10-1 100 101 102
-90

-45

0

These graphs →

Hence System is

4
1 + s/3

4
s(1 + s/3)

Lead-Lag elements
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10-2 100 1021
2

10

100

10-2 100 102
0

45

90

1+sTeHas form K :  K =
1+sTa

Te > Ta, as first corner 
freq is 1/Te



 

a

a a

If p max = a at 

1 - sin(a) afac = 
1 + sin(a)

1 afacTe = ; Ta =
*afac

a = 72 at  a = 0.633;   afac = 0.7959;   Te = 1.987;   Ta =  1.258

2
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Next Consider
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K 1+sTeHere *
1+sT 1+sTa

K is 6, 

T found where m=6/√2:

1/interp1(p,w,-45) ~ 11
10

-3
10

-2
10

-1
10

0
10

10.1

1

6
10

10
-3

10
-2

10
-1

10
0

10
1

-180
-135
-90
-45

0

K 6So   
1+sT 1+s11

[ma, pa] = bode(6, [11 1], w);  % find m,p for this element

m = m ./ ma; p = p – pa; % so can analyse lead-lag

Then process new m, p … 
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a = min(p) = -116-90 
at ωa = 1 rad/s

So afac = 2

Ta = 2

Te = 1/2 = 0.5



 

a

a a

If p min = a at 

1 - sin(a) afac = 
1 + sin(a)

1 afacTa =  Te =
*afac

6 1+s0.5So Sys = *
1+s11 1+s2

10 -3 10 -2 10 -1 10 0 10 110-1

100

10 -3 10 -2 10 -1 10 0 10 1
-90

-45

0

Identification of Second Order
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K = m(1)

wn = 1/w(P = -90) 

ζ= K/2*m(P = -90)

Suppose m,p,w have data for:

10-1 100 101 102 10310 -8

1
10 2

10-1 100 101 102 103
-180

-90

0

5

2
2 nn

2 ss
KP(s) = 

1


 

2
n n
2 nn

n, 

2

O

At 
KP(j ) = 
j 1

KP  = ;  P = -90
2

 








  



Next Consider
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10-1 100 101 102 10310-4

10-2

100101

10-1 100 101 102 103
-180

-90

0

Although has form

Better (as poles interact) 
to find K, ζ and ωn as 
before, then

m(1) =  4.9983; p=-90 at 12.25 to give  ωn; ζ = 1.265;

So T1 = 0.1666;  T2 = 0.040

1 2

K
(1+sT )(1+sT )

2
1 2

n

-1T , T  =  




On interp1 and monotonicity
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[m,p,w]=bode(5*[1/10 1], conv([1/2 1], [1/50 1]))

Can find ω where phase = -45 by interp1(p, w, -45, ‘spline’)

But, only works if first vector is monotonic – here get answer 10

10-1 100 101 102 103
-90

-45

0 Need to search where p 
always decreasing

Find index where p rises:

ndx = min(find(diff(p)>0))

interp1(p(1:ndx), w(1:ndx), -45, 'spline')

ans =    4.3771

Identifying Multiple Elements
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Algorithm given below … implemented in another GUI

Given [m, p, w] for system
Do following until identified all elements:

Look at low freq response, decide element structure, find para(s)
(may need to search lower freq m’s and p’s rather than all)

do [ma, pa] = bode (this element, w)
m := m ./ ma;    p := p – pa ie whole system / this element

Early errors propagate, but can work well
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Example
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Looks like zero & two poles

Est T where m = dcgain/√2; 

Remove pole, analyse rest

T=1/interp1(m(p>-45),  w(p>-45), m(1)/sqrt(2));

% search m etc where p>-45.  Returns  T = 23.6

[ma,pa] = bode(1, [T 1], w); m := m ./ ma; p := p – pa;

0.001 0.1 10
-90

-45

0

0.001 0.1 10
10 -2

10 0
10 1

0.001 0.1 10
100

101

102

0.001 0.1 10
0

15
30
45

doLeadLag(m, p, w)

Get Te = 5.6, Ta = 1.9

MatLab GUI

p14 RJM  27/09/16 BI3SS16 - Frequency Response - Part B
© Prof Richard Mitchell 2016

Gain Int

Z (m) P (m)

Z (p) P (p)

Z^2 P^2

L-L

Use w to 100

10
-3

10
-1

10
0

10
210

-8

10
0

10
4

10
-3

10
-1

10
0

10
2

-360
-270
-180
-90

0

Sys + Est Remainder

10
-3

10
-1

10
0

10
210

-8

10
0

10
4

10
-3

10
-1

10
0

10
2

-360
-270
-180
-90

0

Accept Cancel

Integrator

Sys Est as 1/s

√Auto Calculate Paras

After Integrator
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Gain Int

Z (m) P (m)

Z (p) P (p)

Z^2 P^2

L-L

Use w to 100

Sys + Est Remainder

10
-3

10
-1

10
0

10
210

-8

10
0

10
4

10
-3

10
-1

10
0

10
2

-360
-270
-180
-90

0
10

-3
10

-1
10

0
10

210
-8

10
0

10
4

10
-3

10
-1

10
0

10
2

-360
-270
-180
-90

0

Sys Est as 15/s Accept Cancel

Gain

Hint Low F G 14.999

15

After Gain
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Gain Int

Z (m) P (m)

Z (p) P (p)

Z^2 P^2

L-L

Use w to 100

Sys + Est Remainder

10
-3

10
-1

10
0

10
210

-8

10
0

10
4

10
-3

10
-1

10
0

10
2

-360
-270
-180
-90

0
10

-3
10

-1
10

0
10

210
-8

10
0

10
4

10
-3

10
-1

10
0

10
2

-360
-270
-180
-90

0

Accept Cancel

Ta 10

Sys Est as 15/s(10s+1)
Gain is 0.707 at 0.1

After Pole
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Gain Int

Z (m) P (m)

Z (p) P (p)

Z^2 P^2

L-L

Use w to 100

Sys + Est Remainder

10
-3

10
-1

10
0

10
210

-8

10
0

10
4

10
-3

10
-1

10
0

10
2

-360
-270
-180
-90

0
10

-3
10

-1
10

0
10

210
-8

10
0

10
4

10
-3

10
-1

10
0

10
2

-360
-270
-180
-90

0

Accept Cancel

zeta 0.71

Sys Est as 15/s(10s+1)(s2*0.04+s*0.284+1)

wn 5
Hint P = -90 at 5 rad/s when G = 0.7

Add Quadratic Pole
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Gain Int

Z (m) P (m)

Z (p) P (p)

Z^2 P^2

L-L

Use w to 100

Sys + Est Remainder

10
-3

10
-1

10
0

10
2

10
-8

10
0

10
4

10
-3

10
-1

10
0

10
2

-360
-270
-180
-90

0
10

-3
10

-1
10

0
10

2
10

-8

10
0

10
4

10
-3

10
-1

10
0

10
2

-360
-270
-180
-90

0

Press DONE
Sys Est as 15/s(10s+1)(s2*0.04+s*0.284+1)
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Three Pole Systems
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Approach here : find first pole, where gain = dcgain/√2

Then use two pole/quadratic system on system/pole
Here K = 20; Ts are 1, 4 and 15

Get   gain: 19.9976   T1: 5.9411

T2: 13.1470      T3: 0.8769

Here K = 20 T = 5 ζ = 0.5 ωn = 10

Get   gain: 19.9996  zeta: 0.5041

wn: 9.9992     T3: 4.9584

10-2 100 102

100

10-2 100 102
-270
-180
-90

0
10-2 100 102

10
0

10-2 100 102-270
-180
-90

0

Summary
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In this lecture we have

Looked at the identification of systems with single and quadratic 
poles and zeros

Next week, we will consider

Stability Margins

M-circles and then Sensitivity Circles

Then closed loop and disturbance frequency responses.

Exercise – Lecture 6 (for 2 weeks)
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Go to MatLab and run sysidgui

Enter your student number and you should see system 1.

Identify the system and copy the complete system to the ClipBrd
and thence to your word document. Comment on the result.

Repeat for systems 2, 3.

Then untick the ‘Auto Calculate Parameters’ option

Identify systems 5 then 4.

Note the system assumes parameters are 1 – you change them 
based on the hint you get. 

Note hint gives angular freqs but you may be asked for time 
constants.

7 : Margins and Closed Loop FR
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We have seen how we can plot the frequency response 

As Bode or Nyquist diagram

We can also identify the system from the Bode Plot

Generally we look at the FR of the loop transfer function

In this lecture we start to relate loop and closed loop FR

We start with Stability Margins

Then we look at M-Circles : closed loop FR on Nyquist

We then add Sensitivity Circles and relate them to Margins

Then we will consider the closed loop FR

Next week we formally relate Loop FR to closed loop Step Resp.

Gain and Phase Margin
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System oscillates when gain = 1 and phase lag = 180O

System stable if gain < 1 when phase lag = 180O

Or if phase lag < 180O when gain = 1

If system near to oscillator, then very underdamped

Hence define margins : how close to oscillating

Phase Margin : gain = 1 how much more phase lag before oscillates

Gain Margin : phase = 180O, by what multiply gain before oscillate

If Phase Lag is 135O when gain = 1, PM = 180-135 = 45O

Often this implies ~20% on step response

If gain = 0.25 when Phase = -180O , GM = 1/0.25 = 4

In decibels, GM = -20log(0.25) = 12dB

On Bode Plots
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When phase -180,   
gain = 0.47, 

GM = 20 log(0.47) 
= 6.54dB

When gain = 1,      
phase = -154.5

PM = 25.5

100 101 102 10310-4

100
10

2

10
0

10
1

10
2

10
3

-270
-180
-90

0

[m, p, w] = bode(num, den);
GM = -20*log10(interp1(p, m, -180, 'spline'));
PM = 180+interp1(m, p,1, 'spline');

In MatLab
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On Nyquist

p25 RJM 27/09/16 BI3SS16 – Frequency Response – Part B
© Prof Richard Mitchell 2016

-2 0 2 4 6 8-5

-4

-3

-2

-1

0

1

-1 0 1

-1

0

1

GM: use where locus 
cross –ve real axis; 

PM, use where locus 
meet unit circle

PM related to overshoot of step response, as we shall see next week

p26 RJM  27/09/16 BI3SS16 - Frequency Response - Part B
© Prof Richard Mitchell 2016

M and N circles
Other circles are drawn on the Nyquist plane

These two are for relating loop TF to closed loop

M-circles locus of constant closed loop gain

N-circles locus of constant closed loop phase

Superimposed on a Nyquist plot : called Nichols chart.

Both circles defined by their origin and radius

2

2 2

2

M MM circles    Origin:     - ,0        Radius     
M 1 M 1
1 1 N 1N circles    Origin:      - ,              Radius  
2 2N 2N

 


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Use of M-Circles
M is closed loop gain : for system with A and β (and – in summer)

M circle defines positions on Aβ plane where M constant

Define Mpf = Max(M)     which occurs at ω = ωrf

One use of M and M-circle 

(strictly for systems with very high d.c. loop gain)

If Nyquist locus touches M = 1.3 circle (like PM = 45O)

often implies ~ 20% overshoot to step input

ω where M = Mpf (ie ωrf) related to freq of transient resp

This should become clearer in next lecture

AM = 
1+A

Example – from Lecture 3
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0 19.74 46.5

1

1.24

-4 -2 0 2-15

-10

-5

0

5

O
D

I
C

E
 3 2

3
8s 6s s

Design PM=45O

C = 1/17.9373
= 0.0557

Nyq Plot 
of C*P

Just 
touch 
M=1.3 
circle
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Various M-circles

Gives no feel for loop gain 
or closed loop gain

So plot in 3D, Z axis is M

NB 1.6 circle 
inside 1.3

So inside 1.3 
circle, M > 1.3.

-4 -2 0 2

-2

0

2

0.4
0.7

11.3
1.6

1.9

-3 -2 -1 0 1-1
0

1

5

10

AM = 
1+A
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Or Better – a 3D plot (β = 1)

-2
0

2
4

-2 0 2 4

0

5

10

Clipped at -1,j0

Much of plot 
gain = 1 (O=I) 

Not so near 
0,0 and -1,j0

Want Nyquist
locus mainly 
where gain 1

But, design so 
locus touches 
suitable M 
circle … 
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Sensitivity Function / Circle
Vector from -1,j0 to Blob = x 
But going via 0,0 = 1 + Aβ
So x = 1 + Aβ
|x| = distance of point from -1,j0

The Sensitivity Function is defined as

Ms = Max (| S(jω) | ) is 
minimum distance of locus to -1,j0

Sensitivity circle: origin -1,j0, radius Ms

Can design for specific Ms value : 
locus just touch it

1 OS(j ) =  = 
1 A D




At ω’s where S(jω) > 1, Disturbances are amplified ! 
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Finding Ms

Can find gain and phase for loop transfer function num / den.

But how to find Ms?

s

n n d nIf A  =  then 1 A  = 1  =  
d d d

d(j )1Thus M  = Max  = Max
1 A (j ) d(j ) n(j )

 


   


 

   
       

3 2
3Recall C = 0.0557 and P = 

8s  + 6s  + s

So have c, and num, den are polys for p:
>> [m,p,w] = bode(den, polyadd(den, c*num));
>> ms = max(m)           
Ms = 1.7726

RJM function adds 
two polys – pads 
smaller with 0s til
both same size  
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Complementary Sensitivity Function

We have met the sensitivity function

(which relates to circle, origin -1,j0)

Control Engineers also use the 
complementary sensitivity function

Name comes from fact the S(jω) + T(jω) = 1

Control engineers assume  = 1, so T(jω) = M(jω)

It is suggested that one could do a design with relative stability 
specified by Ms = Max(|S(jω)|) = value 1.4 … 2

Can also specify Mt = Max(|T(jω)|)   and Ms = Mt

These can be considered alternative to GM and PM

1 S(j ) =  
1 A




A T(j ) =  
1 A



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Mx circles on Nyquist

M = 1.4 and 2

Design so 
Nyquist locus 
kept outside 
circles

-3 -2 -1 0
-2

0

2

-3 -2 -1 0
-2

0

2

2
t t

2 2
t t

2

s s

M M
t M 1 M 1

2M 2M 1 2M 1
s t 2M(M-1) 2M(M-

M  circles    Origin :      -1,0                 Radius  :   1/M

M  circles    Origin:     - , 0              Radius :    

M = Max(M ,M )  Origin:  ,0    Radius : 
 

   1)
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Closed Loop Frequency Response
Bode and Nyquist are plots of loop TF.

Can also plot how |closed loop gain| vary with frequency

Closed Loop Transfer Function is

So use MatLab’s Bode function  (using RJMs polyadd function)

>> [m p w] = bode (n, polyadd(n,d)); % calc data

>> plot(w,m);     % plots variation of gain with angular freq

>> Mpf = max(m); wrf = w(m==Mpf);

n(s)Suppose A =  and  = 1  ('-' in summer)
d(s)


n(s)

n(s)d(s)  = n(s) d(s) n(s)1-
d(s)


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Closed Loop Gain – for 5 systems

Mpf is max closed loop gain, occurring at ωrf

If graph peaks, ωrf related to freq of damped sinusoid in step response.

We will use this later

0 1 2 3 4 5
0

2

4

6

Mpf for 

ωrf

5a) 
10s+1

5b) 
(8s 1)(5s 1) 

5c) 
(3s 1)(2s 1)(s 1)  

5d) 
s(5s 1)

5e) 
s(s 1)(2s 1) 
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Estimating ωrf
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A good estimate for ωrf is where loop gain is 1. For the examples: 

5     Gain = 1 at  = 0.3127;   CLGain Max at  = 0.3117
(8s 1)(5s 1)

 
 

5 Gain = 1 at  = 0.7091;   CLGain Max at  = 0.7733
(3s 1)(2s 1)(s 1)

 
  

 


5   Gain = 1 at  = 0.9901;   CLGain Max at  = 0.9899
s(5s 1)

 
 

5   Gain = 1 at  = 1.212;   CLGain Max at  = 1.103
s(s 1)(2s 1)

AClGain =  When |A | = 1, A -180, |1 + A |  0, CLGain max
1+A

  


  

Why
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Closed Loop Disturbance Response

Closed Loop Dist 
Transfer Function is

NB This is sensitivity function – relates to Max (S) circle

At low freq, graph < 1 :reducing effect of D on O

0 1 2 3 4 5
0

2

4

6

O 1 d(s) =  = n(s)D d(s) n(s)1-
d(s)


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Experiment – Old Educational Servo

Closed Loop : diff to move Output slowly – til max torque

Step resp; note freq of osc : easy to move O at that freq

Open loop – very easy to move Output slowly

Diff to move O at speed of closed loop response

Output, O

P

Input, I
E

C

Velocity fb

Position fb
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Using Simple Linear Model of Servo

Low freq, s (ie jω) negligible

Open Loop:

Closed Loop:

Confirms easy to move output when OL, diff CL

Open loop : no feedback so I = E

O O K=  =  
I E s(1 sT)

O  = 1
D

K
s(1 sT)

K 2
s(1 sT)

O K =  =  
I 1 s T s K




  

2
2
s T s

K s T s K
s(1 sT)

O 1 =  = 
D 1


 




O O O OLow Freq   OL  = ,    = 1;    CL    = 1,    = 0
I D I D



Why easy to add high freq D?
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0 2 4 6 8 10
0

0.5

1

1.5

t

-at
rtO = 1 - k e  sin (  - )  

The a value – sets how quickly sinusoid decays – more later
ωrt is angular freq of the sinusoid

That is freq we wish to add as disturbance

Graph below shows how O responds to input step
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Higher Frequency Test

Suppose K = 9, T = 0.5

Then ωrt = 4.12 rad/s

At this freq, sinusoid D is amplified – confirm test

rt
TK-0.25Can show  = 

T


   
O KTThen  = 
E TK-0.25 TK+0.75

O KTC.L.  = 
I TK-0.1875

   TK-0.25 TK+0.75OC.L.  = 
D TK-0.1875

O 4.5 =  = 0.953 
E 22.3

O 4.5 =  = 2.17
I 4.3125

O 22.3 =  = 2.27
D 4.3125
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Use MATLAB: Graphs K = 9; T = 0.5

O v t

Confirms test

0 2 4 6 8 10
0

0.5

1

1.5

t

0 2 4 6 8 10
0
1

3

5

ω

OOL: v
I



OCL: v
I



OCL: v
D



OOL: =1
D

rt
O OAt ; OL: =1 CL: =2.23
D D



Summary
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This lecture has covered various related topics:

Gain and Phase Margin – we design to achieve a given PM

M-circles : where closed loop gain is constant

We can design to achieve a given max(closed loop gain)

We have looked also at sensitivity circles

We can design to achieve a given max(sensitivity)

We have looked at the closed loop freq and dist responses

The design concepts relate to the relationship between loop 
frequency responses and closed loop step response

We will explore that relationship next week.
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8 : Relating Time and Freq Domain

Can find O(t) if I is a step – thence Oss, Tpk %o/s, etc

Will also assess loop TF, find PM etc – then find how relate

This week we seek to relate frequency domain with time domain
Do this by finding exact relationship for second order system
Then assess how well applies to other systems:

O
I

K
2
n

2
ns 2 s




2
n

2
n

2
n

2 2s 2 s n n

KOLoop = ;  = G(s) = K *  = 
I 1 s 2 s

Loop
Loop






    
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Relationships on Bode, CLGain, Step

Show Mpf and PM related to ζ and o/s;         ωrf, ζ give Tpk,  Tset

In lecture, show what do – not go through all – left to you

Mpf

ωrf

PM Tpk Tset

o/s

ω

1

Gain

-180

-90

0

0 ω
0

1

2

0
t0

1
1.5

Phase

CL

Gain

ω

ωbw
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Time Domain Step Responses

Steady 
State 
output, 
OSS = K;  

Transient OT =

Sets settling time Freq of oscillations
rt = n (1-ζ2);

2 2
n n n

2 2 2 2 2
n n n n

K K(s+2 )1 KO(s) =  =  - 
s s 2 s s (s ) (1 )

  
    


    

    2
n 1 t 2 -1

n2

KO t  = K e sin 1  t tan
1


 


  



n- t
rt-K' e  sin (  t + )  
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Peak Value – when dO/dt = 0

Zero at sin (rπ), first peak when sin(π), next at sin(3π)

Per unit overshoot

O/S  20.5% if ζ 0.45

2 2
n n

2 2 2 2 2
n n n n

K KO(s) =  = 
s 2 s (s ) (1 )

 
    



    

 nt 2n
n2

KdOSo O  =  = e sin 1  t
dt 1


 




 



pk 2
rtn

So T  =  = 
1
 

 

 
n

2 21 1nwhen     O = K Ke cos  = K K e
  

   
 

 
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Settling Time, Tset

O settles within 2% of Oss when

{ For 0.3 < ζ < 0.7,  3.96 < numerator < 4.25 } 

 nt
rtTO (t) = K'e sin  t   

n t
set 2

KT  is t when e  < 0.02 K
1









ntK'e within 2% of K

 2

set
n n

ln 0.02 * 1 4t = T


 

 
 
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Frequency Response: Max Gain Mpf

Want  where M max : when diff of square of denom is 0

Thus max gain, Mpf, =

2 2
n n

2 2 2 2 2 2
n n n n

K KG(j )= ;  so M= G(j ) =
- j2 ( - ) (2 )

 
 

        

2 2 2
nrfStraightforward to show     = (1 2 )   

ss
2 2

OK  = 
2 1 2 1    

2
ss
2
pf

O2
M

Rearranging, gives  = 0.5 0.5 1    

negative if system unstable
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On Tpk
22

n pkrf 2 2rfn

1 2 = 1 2 ;        T  =  = 
1 1

    
  




 

Fine if 2ζ2 < 1, or ζ < 0.707. If not, use closed loop bandwidth …

Can use

   

4
n

2 22 2
n n

1i.e. 
2- 2



   




2 2 2 4 2
nbw =  1 2 4 4 2          
 

2
n

2 2
n n

1G(j ) = ;  Find  where G(j )  = 
- j2 2


  

    

2 4 2

pk 2 2
n bw

1 2 4 4 2 
So T  =  = 

1 1
   

   

   

 
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Loop Transfer Function for PM

Loop TF

2 2 2 2 2 4
nForm quadratic in  from |L| =1. Solve:  = 2 4 1        
 

0 0.5 10

PM
100

ζUgg – but for ζ < 0.6 good approx PM = 100 ζ

2
n

2
n

L(s) =   
s 2 s




2
n

2 2
n

L(j )  =   
(2 )




  

Want  where |L(j )| = 1 

-1

n

L(j ) = - 90 - tan   
2





-1 -1

n n

PM = 180 + Phase = 180 - 90 - tan  = 90 - tan
2 2
 
 

-1 1n

2 4

2 2= tan  =tan
2 4 1

 
  



  

Summary
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ζ  PM / 100  : from PM can estimate ζ.

Or if know peak closed loop freq: using Mpf and ωrf

settle
n

4Settling time,T   




2 4 2
pk 2 2rt n bw

1 2 4 4 2 Time to Peak, T  = =  = 
1 1

    
    

   

 

We can use these to numerically estimate step resp from bode data

2
ss
2
pf

O2
M

 = 0.5 0.5 1    
rf

n 2
 = 

1 2





21overshoot = e





Predicting Response from Bode data
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Suppose have [m, p, w] that gives Bode plot of loop TF

At each w, have m cos(p) + j m sin(p) : But need closed loop gain

2 2 2 2

2 2 2 2

2

m cos (p) + m sin (p)mcos(p) + jmsin(p)  = 
1 + mcos(p) + jmsin(p) 1+2mcos(p) + m cos (p) + m sin (p)

m                                 = 
1 + m  + 2mcos(p)

mc = m ./ sqrt(1 + m.^2 + 2*m.*cosd(p));  % closed loop gain
mpf = max(mc);                                        % find Mpf : max cl gain
wrf = w(mc == mpf);                                 % w where max cl gain
yss = mc(1);                                              % steady state = dc gain
zeta = sqrt(0.5 - 0.5 * sqrt(1-yss^2/mpf^2));   % and ζ
Thence can estimate ωn, ωrt, Overshoot, Tpk, Tset … 
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This is first example where we try these ideas out
n = 20; % num = 20 simple controller
d = conv([5 1],[8 1]); % denom = (1+s5)*(1+s8)
[y,x,t]=step (n, [0 0 n] + d); % of closed loop system
plot(t,y,'k-',[min(t), max(t)], [1 1],'k-');      % plot y and i/p

Step Response of 2nd Order System

0 10 20 30
0

0.5

1

1.5

First peak 1.414 @ 4.475
Next peak 1.061 @ 13.370
Within 2% of 0.952 by  23.3s
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Nyquist and CL-Freq Resp

[m p w] = bode (n, [0 0 n] + d); % calc closed loop freq resp
plot (w,m,'k-');                         % plot magnitude vs freq

If locus 
touch M=1.3 
circle, often 
20%o/s.
Here Mpf is 
2.179, 
so locus 
touch 
M=2.179 
circle at ωrf

0 10 20

-10

-5

0

-6 -4 -2 0

-2

0

2

0 5 10
0

1

2 Mpf = 2.179

ωrf = 0.687

-2 -1 0
-1

0

1
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Applying These
Mpf = 2.179 and rf = 0.687 rad/s;

So ζ = 0.2243 and rt = 0.706 rad/s;

Actual Step response:

peak of 1.40 @4.47 s and 1.06@13.4 s;

Tset (settling time) =

Predictions from Freq Domain

peaks at π/0.706 = 4.45; that + 2π/0.706 = 13.3 s

Peak from formula (20/21)*(1+0.486) = 1.41 s

Tset = 23.9 s

Quite close – not exact as loop tf not in form K/s(1+sT)

23.3s

Another Example
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0 2 4 6 8
0

0.5

1

1.5

-2 0 2 4
-3
-2
-1
0
1

0 2 4 6 8
0

0.5

1
Mpf 1.394 ωrf = 1.682 
ζ = 0.2968 ωn = 1.853

Tpk ~ 1.776 Tpk = 1.395 
%os ~ 37.67 %os = 37.01 
Tset ~ 5.714 Tset = 5.23

Predictions are ok

num = 37.58; 
den = (s + 1)(s + 2)(s+5)
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Mpf = 16.1;       rf = 0.251;      ζ = -0.028;       rt = 0.251
Actual Peak    1.76 at 14.96s;      Next at 38.9s
Predict as 1.90 at π/rt = 12.5s;  Next at 3 π/rt = 37.6s

Now try on an Unstable System
n = 10; d = (1+s5)(1+s8)(1+s10);
Step resp, Closed Loop Freq resp, Nyquist+M=Mpf

0 50
-2

0

2

0 0.5 1
0

10

20

-2 -1 0
-0.4

-0.2

0

0.2
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Increase n to 20: More Oscillatory
Step resp, Closed Loop Freq resp, Nyquist + M=2.995

Mpf = 2.995;     rf = 0.311;     ζ = -0.161,     rt = 0.315
Actual Peak      2.22 at 11.6s;      Next at 31.3s
Predict as 2.54 at π/rt = 10.0s; Next at 3π/rt = 29.9s

0 50
-10

0

10

0 0.5 1
0

2

4

-2 -1 0
-0.4

-0.2

0

0.2
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Mpf = 4.85;        rf = 2.43;      ζ = 0.104;    rt = 2.44
First peak 1.73 @ 1.14s; Next 1.37 @ 3.70s; Settle by 14.2s
Predict as 1.72 at π/rt = 1.29s; 3 π/rt = 3.86; Tset: 15.7s

Now consider this system

0 5 10
0

1

2
Step

0 5 10
0

5
Cl Freq

2
(s 2)(s 3)Plant = ;  Series Controller K = 1000

s (s 1)(s 24)(s 30)
 

  
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Mpf = 11.1;    rf = 0.846;     ζ = -0.045,     rt = 0.847

Peak pred as 2.15 at π/rt = 3.71s     3π/rt = 11.1s

First peak 2.04 at 3.68s;        Next at 11.0s

Same System, But K down To 100

0 10 20 30
-5

0

5
Step

0 5 10
0

5

10 Cl Freq
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K = 1000 + M = 4.85 Circle; For K = 100 + M = 12.0

Nyquists for These Two Systems

When K = 100, curve encircles the –1,j0 point – so unstable.
When K = 1000, resonant freq where phase < 180O, so stable
Conditionally stable system - increase gain to stablise it
Although gain > 1 when phase = -180O system not unstable
Because freq of oscillation of transient where CL gain max

-6 -4 -2 0
-0.4
-0.2

0
0.2

0.4
0.6
0.8

-6 -4 -2 0
-0.2

0

0.2

0.4
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On Conditionally Stable Systems
So system unstable if gain > 1 when phase -180O not always true 

can have conditionally stable systems

In such cases reduce gain to make system unstable!

NB these are rare, but now 
know why stable!

1

-180

Phase

Gain

ω

ω
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Summary

Have shown how time domain responses can be estimated from 
frequency responses 

Ok for 2nd order and others if dominant mode appropriate

We see that PM related to overshoot

Hence we can design controllers to achieve such a specification

We have already done this for P controller

Next week we remind ourselves of this and then consider more 
sophisticated controllers.
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9. Frequency Response Designs

We have considered the analysis of systems in the freq domain

We can determine stability, plot responses, estimate time response

We have seen how to Design P

In this lecture

We remind ourselves of P control

and consider Phase Lead Control, P +I and PID control

We will also look at how these controllers change Bode plots
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Proportional Design - Reminder

C = 1 / gain of C*P when phase is -180O + PM

Design C so C*P 
has given PM

Let P = num/den

OI
C

E
P

O
3 2

4e.g. P(s) = ;  PM = 45 ;  C = 1/1.334 = 0.7495
24s 26s 9s 1  

-1 0 1 2 3 4-4
-3
-2
-1
0
1

0 10 20 30 40 50 600

0.5

1

1.5

Stable, but not very good

Now Another Example

p68 RJM  27/09/16 BI3SS16 - Frequency Response - Part B
© Prof Richard Mitchell 2016

Code looks at Bode data 
of C * P

Calculates CL Freq Resp

Hence estimates ζ & ωn

Thence Tpk, %os and Tset

O

1P(s) =  
(s + 5)(s + 1)(s+2)

Set PM = 45 ;  C = 37.58

0 2 4 6 80

0.5

1

0 5 100

0.5

1
1.5

-2 0 2 4-3
-2
-1
0
1

Mpf 1.394 Wrf 2.49 zeta 0.2968 wn 2.743 
Estimates: Tpk ~ 1.199 %os ~ 37.67 Tset ~ 3.859 
Actual:       Tpk = 1.395 %os = 37.01 Tset = 5.23      ok

More Complicated Example
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O

36(s/11 + 1)P(s) =  
(s/71 + 1)(s/30 + 1)(s/222 + 1)(s/448 + 1)

Set PM = 45 ;  C = 0.0491

0 0.05 0.1 0.15 0.20

0.5

1

0 500 10000

0.5

1
1.5

-2 0 2 4-3
-2
-1
0
1

Mpf 1.396 Wrf 245.5 
zeta 0.2353 wn 260.3

Tpk :  %os : Tset

Est 0.012 : 46.7 : 0.051 
Act 0.014 :  65.9 : 0.183

Pred ok.
Controller Naff

Phase Lead Control – for speed up
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Te > Ta, phase ^ at low freqs, 

So phase -180 at higher freq
10-2 100 1021

10

100

10-2 100 102
0

45

90

Speed of response set by ωrf, which is near where loop phase -180

To speed response, have Phase Lead instead of P control:

p
1 + sTe C(s) = K
1 + sTa
 
 
 

-1 -1Te Ta
Ta Te

1Phase max  at  = 
Te*Ta

Then  = tan  - tan

 



-1 Ta
TeCan show  =  - 2 tan  

2


Phase Lead Controller
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To speed by fac n, if phase -180+PM at ωx, 

design so phase -180+PM at n*ωx.

10
-2

10
-1

10
0

10
1

-270

-180
-135
-90

0

ωx

nωx

α

p
1 + sTe C(s) = K
1 + sTa
 
 
 

x

x

x

pn = P(n* )
 = -180 + PM - pn

    (must be < 90)
90 - Let G = tan

2
1Te = 

n* *G
GTa = 

n*
Then Kp to meet PM 












 
 
 

Results – speed up by 2
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C = P PhL
Tpk 0.014 0.007
TSet 0.18 0.172
%os 65.9 55.9
Oss 0.639 0.713

O

36(s/11 + 1)P(s) =  
(s/71 + 1)(s/30 + 1)(s/222 + 1)(s/448 + 1)

1 + s0.00624PM = 45 ;  Cp = 0.0491;  Cpl = 0.0689
1 + s0.000902
 
 
 

10
0

10
2

10
510

-7

10
0

10
1

10
0

10
2

10
5

-270

-180

-90

0

90

-2 0 2 4

-4

-2

0

0 0.05
0

1
1.2

PhL : faster, slightly 
better Oss … naff
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Example for a Type 1 System

C = P PhL
Tpk 0.616 0.308
TSet 1.47 0.70
%os 23.3 23.5
Oss 1 1

PL Speeds up.
Here Oss = 1…

70 1 + s0.176P(s) = ;  Cp = 0.0836;  Cpl = 0.154
s(s/6 + 1)(s/35 + 1) 1 + s0.067

 
 
 

10
-1

10
1

10
310

-6

10
0

10
3

10
-1

10
1

10
3

-270

-180

-90

-2 0 2-10

-5

0

0 0.5 1
0

1
1.3

P + I Controller
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For Type 0 system, to ensure Oss is 1 C(s) includes an integrator

eg a P+I controller

The integrator adds 90O phase lag, the associated lead adds some 
phase lead – which can help

As we shall see, can design for this, but system slow.

Aim, choose a working freq, ωc, and find Ti and Kp so that system 
has unity gain and phase -180O + PM.

Note ωc typically near where plant has phase lag of ~ 90O

This is lower than that used for phase lead, so system slow...

i
p p

i i

1 + sT1 C(s) = K 1 +  = K'
sT sT

   
   
   

Details
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i
p

i

1 j TC(j ) = K
j T






c cSo C(j ) = - PM - P(j )  =      

 i 2
1T  = tan  
c






22 pi 2
c p p

i i 2

1 tan ( ) K1 ( T)| C(j ) | = K = K = 
T T cos( )

c
c c c








   

 



 
  

  
p c i

c c p
c i

K TsinAs |C(j ) ||P(j ) | = 1; | P(j ) |  = 1; so K  = -  
- Tsin |P(j ) |c

-1
c i 2C(j ) = tan T  - c

 

c cWant C(j )*P(j ) = - PM   

-1
i 2 = tan T  - c  

Example – on same plant
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C = P P+I
Tpk 1.4 2.58
TSet 2.5 5.86
%os 37 23.6
Oss 0.787 1

Better: Oss 1, 
but slow

3

10
-2

10
0

10
210

-8

10
0

10

10
-2

10
0

10
2

-270

-180

-90

0

10

-2 0 2 4

-4

-2

0

0 5
0

1
1.3

O
p pi

1 1P(s) =  PM = 45 ;  C  = 37.58; C  = 12.45 1+
(s + 5)(s + 1)(s+2) 0.894s

 
 
 

P(j ) = -90 at  = 1.118
 = -180 + 45 --90 = -45

tan(45)/1.118 = 0.894

 



Estimating Time Response from Asyms
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12.45(0.894s + 1) 1C*P(s) = *
0.894s (s + 5)(s + 1)(s+2)

10-1 100 10110-2

100

102

10-1 100 101
-270

-180

-90

Clearly |CP| = 1 bit after 1 
rad/s, say 1.2

Give estimate for ωrf

PM design at 45, ζ = 0.45

2

2rt rf

1-2Tpk ~  = 
1-

  
  

Estimate is 2.3s

Actual is 2.6s
Do able in an Exam!

Confirmation : How to do in an Exam
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12.45(0.894s +1) 1C*P(s) = *
0.894s (s + 5)(s + 1)(s+2)

Corner Freqs 1; 1/0.894 = 1.2; 2 and 5

12.45 1 1.39Before 1 : TF = *  =   Gain = 1 at ω = 1.39
0.894jω (5)(1)(2) jω

1.391..1.2 TF =  * 0.894jω = 1.24 Gain not equal 1 !
jω

1 1.24 1.2..2 TF = 1.24 *  = Gain = 1 at ω = 1.24
jω jω

This is in range 1.2 ..4, so this is a good estimate of |CP| = 1

Which itself is an estimate of where CL Gain maximum
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Modified Ziegler Nichols PID
To speed up, add to controller a term prop to differential of error

Results in most common type of industrial controller  - PID

Numerous ways to find parameters – Modified Ziegler Nichols common

Choose a partic freq, ωc, design controller for desired PM 

ie C*P has gain 1 and phase -180O+PM at ωc

Can be done by P+I controller – Kp and Ti define operation. 

For PID, suggest Td ≤ 0.25 * Ti so C(s) has two real zeros

Here set Td = 0.25 * Ti as it makes Maths easier

p d
i

1 C(s) = K 1 sT
sT

 
  

 

2
i i d

p
i

1 sT s TT = K
sT

  
 
 
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PID Controller

c cSo C(j ) = - PM - P(j ) =      

2 2i 2
2

sin( )2 2 2 cosT  = tan  =  =  
1 sin1 cos( )c c c

 


 
   

  
     

2
i

i pd
i

(1 j 0.5T)If T  = 0.25T, C(j ) = K
j T







-1
c i 2C(j ) = 2*tan 0.5 T  - c  

c cWant C(j )*P(j ) = - PM   

Continued
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p
c c c

K
As |C(j ) ||P(j ) | = 1;      | P(j ) |  = 1; 

cos
  




i
2 cosT  =  

1 sinc


 

2
i

c p
i

1 (0.5 T) C(j ) | = K
T

c

c







   
2cos 2 21 sin

c p p2cos
1 sin

1 1 sin cos C(j ) | = K = K
2cos (1 sin )






 


 




  


2 2
p

p p

K1 -2sin sin cos 2(1 - sin )= K  = K  = 
2cos (1 sin ) 2cos (1 sin ) cos

   
    
 

 

p
c

cosso K  =  
|P(j ) |




On Same Plant
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189.09 1 +  + 0.293s
1.171s

 
 
 

C = P PID
Tpk 1.4 0.72
TSet 2.5 1.63
%os 37 25.4
Oss 0.787 1

Better: Oss 1, and faster

Plant has phase -180O at 4.12 rad/s – this can be ωc set PM 45O

10-2 100 10210-8

100
103

10-2 100 102-270
-180
-90

0
-2 0 2 4

-4

-2

0

0 50

1
1.3

i
2 cos 45 cos(45)T  = *  = 1.17;  |P(j4.12)| = 0.0079; Kp =  = 89

4.12 1-sin 45 0.0079

On Asymptotes
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 
2 2Kp Ti 76 1C(j ) = * 1+j = * 1+j 0.58 ; P(j ) = 

j Ti 2 j (j  + 5)(j  + 1)(j +2)
   

    
 
 
 

10
-1

10
0

10
110

-1

10
0

10
2

10
-1

10
0

10
1

-180

-90

0

Clearly |CP| = 1  ~ 5

Is est for ωrf

PM design at 45, ζ = 0.45

2

2rt rf

1-2Tpk ~  = 
1-

  
  

Estimate is 0.5s

Actual is 0.7s

Again – estimate by Asymptote
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   2 2

1 1..1.9 1.9..5 5
16 16 8 40
j jj j  

 
Asyms

Gain = 1 in last asym, at √40 = 6.3  similar to est of 5 from figure

 276 1C(j )*P(j )  = * 1 + j 0.58 *
j (j  + 5)(j  + 1)(j  + 2)

  
   

CFs 1, 1/0.58 = 1.72, 2, 5;  
1.72  v close to 2, so replace 1.72 and 2 by ~1.9

40 (j  + 1.9)So C(j )*P(j ) 
j (j  + 5)(j  + 1)


 

  


 2 j  + 21 1 + j 0.58 * 1 + j /1.9 = 
(j  + 2) 1.9


 



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Summary
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We have seen how to design, in the frequency domain

P, Phase Lead, P+I and PID controllers

P is simplest – often not acceptable in type 0 systems

For type 1 systems, Oss = 1, so P ok, but Phase Lead speeds up

For type 0 systems, an integrator needed for Oss = 1

P+I ok, but slow, so PID often used – most common in industry

One method has been shown – there are others.

Next week we finish the course by considering

Positive and Negative Feedback

Estimating frequency response from time domain samples

Assignment
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You are now in a position to complete the assignment

See the sheet for details, but essentially you will

Design P, Phase Lead, P+I and PID controllers for systems based on 
your student number using another GUI

Copy relevant code, results, etc., into the Word doc

Submit by deadline onto Blackboard

10 : Final Topics
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In this lecture we finish the course

We look into concept of negative and positive feedback

Consider definition and claims

and relate this to the frequency domain

We also look at estimating the freq resp from time samples
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Positive and Negative Feedback
Various views and erroneous comments exist. 
Here give sensible definition and consistent claims for effect.
Bode’s colleague Black’s Change in Gain due to Feedback
Bell System Technical Journal, Vol XIII, pp1-18, Jan 1934

Amplification (or Gain) 
without feedback = |A|

with feedback |G| =

Positive Feedback if |G| > |A| ;     that is  | 1 + A | < 1
But note, A is a function of frequency …

O
D

I
A



|A|
| 1 + A |
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Distance from -1,j0

x = 1 + A 

So distance from 
-1,j0 = |1 + A  |

Any point in circle is 
where |1 + A  | < 1

Positive Feedback at freqs 
where Nyquist plot in circle

Negative Feedback at others

+ve feedback and instability not related
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Consider 
these 
systems

-5 0 5

-4

-2

0 a
b
c
d
e

5a) 
10s+1

5b) 
(8s 1)(5s 1) 

5c) 
(3s 1)(2s 1)(s 1)  

5d) 
s(5s 1)

5e) 
s(s 1)(2s 1) 

Locus Some +ve fb Stable
(a)
(b)
(c)
(d)
(e)

used earlier
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Claims for Negative Feedback

1) It reduces error (or errors) in the system

many books not define what error is

2) It reduces the effects of disturbances

sometimes disturbances are not defined

3) It reduces effects of changes in the forward path gain

this is a useful effect in electronics, for instance, as gains
change, as well as in other systems

4) It reduces the magnitude of the system gain

Black's claim – often ignored by control engineers

Let us investigate these claims – doing 2, 3 and then 1.
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Reducing Effect of Disturbances

i.e. if negative fb

Assuming I = 0, for open loop, O = D
for closed loop, 

O
D

I
A



So effect of D on O reduced if

or

1O = D
1+A

1D    D
1+A

 1 1
1+A


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On Changes in Forward Path Gain, A 

What is effect on G of changing A, assuming  is constant? 

O
D

I
A



2 2 2

dA d(1+A )(1+A )* -A*dG (1+A )-A 1dA dA =  =  = 
dA (1+A ) (1+A ) (1+A )

  

  

O A = 
I 1+A

ADefine G = 
1+A
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Investigating This

1So proportional change in G = prop. change in A *
1+A

Change in G on its own not useful, the
relative change in G better, ie dG/G

2 2
dA dA

dG dA 1(1+A ) (1+A )So  =  =  = AG G A 1+A
(1+A )

 




For effect of change in A to be reduced by feedback

i.e. if system has negative feedback1 < 1
1+A

2
dAdG = 

(1+A )
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What About Changing β?
2 2

2 2
dG (1+A )*0-A*.A A =  =  = G
d (1+A ) (1+A )
dG A d = Gd  = 
G 1 A


  

 
 

So cant say, if negative feedback, effect of changing β reduced. 

In fact, if have (as want) high loop gain:

However, usually, more likely that A changes, not β.

Overall – definition pretty consistent with claims.

dG d
G




 
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'Desired Output' = -I  / , what is actual output?

Open Loop, Actual Output = A * I

Closed Loop

Output Error = Desired Output - Actual Output

But, size of error affected by output size: define Error Ratio :

Negative Feedback Reduces Error

Output Error Desired Output - Actual OutputER =  = 
Desired Output Desired Output

AActual Output = * I
1+A

Output ErrorER = 
Desired Output
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I AI
1 AClosed Loop: ER =  = I

 



 

I AI
Open Loop :  ER =  =I







Error Ratio

Feedback has reduced the size of the error if:

Not negative feedback definition – but similar 

Let’s show the regions on the Argand Plane :

A 11  = 
1 A 1 A


 


 




 
1 1 A

1 + A
  1 1-A 1 A

1 - A

or
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Consider these on Argand Plane

-2 -1 0 1-1

0

1

3D plot, Error vs plane

Much of plane E < 1

E > 1 near -1,j0 and +1,j0

Easy to avoid +1,j0 by 
high low freq loop gain

Then -ve fb ~ reduce E-2
02-2 0 2

0

2

4 E

2 2 2 2

2 2

Error raised inside figure of 8  
((1 x) y )((1 x) y ) = 1
NB y = 0 when x = 0 or 2
Positive feedback inside
(1 x)  y  = 1

   



 
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2nd Order System no Positive Feedback

High F, LoopTF ~2/s, up imag axis

Re no +ve feedback, look at | denom |
2

2 4 2

2 4 2

Open Loop :   

Closed Loop:  1-2 4  

           = 1 2  = 1



  

  

 

  

-8 -6 -4 -2 0 2
-6

-4

-2

0

10
0

10
2

10
-2

10
0

10
2

OL Gain

CL Gain

2
1 2sLoop TF   

s


2

2
2

1 2s 1 2ssCL:   = 1 2s 1 2s s1 s




  
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Second Order Correlations On This

Mpf = 1.16 rf = 0.707 rad/s Oss = 1
ζ = 0.5 rt = 0.866 rad/s n = 1 rad/s

Dominant mode of this system too different.

Estimate   Actual
Tpk 3.6s 1.98s
Opk 1.16 1.14
Tsettle 8s 5.4s
Why the difference? 0 2 4 6

0

1

2
Step Resp 
overshoots 
though no 
+ve fb

2 2 2 2
n n

1 2s 1 1Comparing    and  = 
1 2s s s 2 s s s 1 


     

Estimating System Frequency Response
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Fourier Transform 

process a signal (a function of time), 

generate its frequency response

Result a set of complex numbers at various frequencies, 

This is the power spectrum

Could then reconstruct signal by summing sinusoids …

Note, real signals are the ‘true’ value, plus noise

So can only generate estimates of the spectrum.

PS( )  Y (j )y t 

How to get Transfer Function?
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yu G(s)

In Laplace Domain : Y(s) = G(s) * U(s)

In Freq domain : Y(jω) = G(jω) * U(jω)

Y(j )G(j ) = 
U(j )






So an estimate of the power spectrum of G is found by

PS
PS

PS

Y (j )G (j ) = 
U (j )





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Frequency Resp from Time Domain
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MatLab has the tools to do this. Uses structs for data

Basic algorithm

y = output, u = input, over time = t
dat = iddata(y, u, t(2)-t(1)) % form time domain data
datd = detrend(dat) % remove best straight line fit

% removes mean value
idplot(ze) % plot in and out
fr = spa(datd) % finds spectral response
bode(fr) % plot it as bode plot

Persistently Exciting Input
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Important that the system is ‘persistently excited’ 

step signal not enough, as output over small freq range

‘random’ pulse train better

also called pseudo random binary sequence

Eg to generate 1000 bit sequence, u(t) = randomly u(t-1) or 1-u(t-1)

0 10 20 30 40
0

1

u

Time 

r = rand(1000,1); 
u = r; u(1) = 1; 
for ct = 2:length(u), 

if r(ct)<0.8, u(ct)=u(ct-1);
else        u(ct) = 1-u(ct-1);  
end; 

end;

Ts = 0.04; t = [0 : Ts : Ts*999]; % 1000 element time
y = lsim(50, [1 8 50], u, t); % sim known 2nd order sys
dat = iddata(y, u, Ts);
datd = detrend(dat);
idplot(dat)

Example – test on 2nd order system
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0 200 400 600 800 1000-2

0

2

0 200 400 600 800 1000
0

0.5

1

y

u

[ma, pa, wa] = bode(50, [1 8 50]); % get actual bode to test 
fr=spa(datd); % now do spa
[m,p,w]=bode(fr);
mm=squeeze(m);
pp=squeeze(p); 
ww=squeeze(w);

mm is 1,1,n matrix
squeeze so 1,n vector

Plot m and mm; p and pp

Do Spectral Analysis
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Results from spa 
close to actual, 
until high freqs

10-1 100 101 102 10310-4

10-2

100

10-1 100 101 102 103-270

-180

-90

0

Summary
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In this lecture
Looked at positive and negative feedback

Have a definition consistent with claims
Showed that systems often have both +ve and -ve

Also, briefly introduced Spectral Analysis
For finding frequency response of plant from I/O data
Note, I must persistently excite system

Overall, in these lectures
Have considered how to find and plot frequency responses
To identify and control systems using the frequency response
To find frequency response from time domain data


