6 : Frequency Response Part B

In the first part have looked at finding and plotting Freq Resp
Dynamic systems modelled in terms of $\mathrm{j} \omega$
Complex Transfer function determined at various ω
Plotted on Nyquist and on Bode diagrams
Asymptotic approximations of Bode also shown
Here, use system's corner frequencies CF
Then starting at low frequency, plot response til next CF CFs can be of first or second order poles/zeros
Will now reverse situation, have Bode Plot ..
Starting at low frequency, deduce each CF ...
This is System Identification
p1 RJM 27/09/16
BI3SS16 - Frequency Response - Part B BI3S516 - Frequency Response - Par
© Prof Richard Mitchell 2016

System Identification

Suppose have measured values of m, p and ω
Can we determine what the system is.
This is System Identification.
Initially guess at structure - eg Pole, 2 Pole, Lead + Poles, etc But can also estimate actual corner freqs.

How?

Computer can assist this.
Start with simple examples
Have another GUI which helps
Note is more accurate if CFs are further apart.
p2 RJM 27/09/16 $\begin{gathered}\text { BI3SS16 - Frequency Response - Part B } \\ \text { O Prof Richard Mitchell } 2016\end{gathered}$

Simple System Identification

Second Simple Example

What is system?

$$
\frac{K}{s(1+s T)}
$$

What is K ?

0			
-45			
-135			
-180			
10^{-1}	10^{0}	10^{1}	10^{2}
$\omega \quad 0.1$	0.43 .0	11.8	100.0
m 40.0	9.30 .9	0.1	0
p -91.9	-98.0-135.0	-165.7	-178.3

Gain $\frac{K}{\omega}$ at $10^{-1}=40$
So $K=40 * 0.1=4$
How find other para?
Where phase $=-135^{\circ}$
$T=1 / 3$
p4 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Iterative Search

Assume: m, p, w in vectors
As system is pure integrator at low freqs, can 'remove' it :
$m=m$ *.w; divide all in m by gain there ($=1 / w$)
 cyeventics

Lead-Lag elements

100	Has form $K \frac{1+s T e}{1+s T a}: K=2$
$\begin{array}{r} 10 \\ 2 \end{array}$	Te > Ta, as first corner freq is $1 / \mathrm{Te}$
$10^{-2} \quad 10^{0} \quad 10^{2}$	If p max $=a$ a \dagger
90	$a f a c=\sqrt{\frac{1-\sin (a)}{1+\sin (a)}}$
0	$\mathrm{Te}=\frac{1}{\omega_{a}{ }^{\star} \mathrm{afac}} ; \mathrm{Ta}=\frac{\mathrm{afac}}{\omega_{a}}$

$a=72$ at $\omega_{a}=0.633 ; \quad$ afac $=0.7959 ; \quad$ Te=1.987; \quad Ta $=1.258$
p6 RJM 27/09/16 BI3SS16 - Frequency Response - Part B
BI3SS16 - Frequency Response - Par
@ Prof Richard Mitchell 2016

BI3SS16 - Frequency Response - Part B

Identification of Second Order

On interp1 and monotonicity

[$m, p, w]=\operatorname{bode}\left(5^{*}[1 / 101], \operatorname{conv}([1 / 21],[1 / 501])\right)$

Identifying Multiple Elements

Algorithm given below ... implemented in another GUI
Can find w where phase $=-45$ by interp1($p, w,-45$, 'spline')
But, only works if first vector is monotonic - here get answer 10
Given [m, p, w] for system
Do following until identified all elements:
Look at low freq response, decide element structure, find para(s) (may need to search lower freq m's and p's rather than all)
do [ma, pa] = bode (this element, w)
$m:=m . / \mathrm{ma} ; \mathrm{p}:=\mathrm{p}-\mathrm{pa}$ ie whole system / this element
Early errors propagate, but can work well

BI3SS16 - Frequency Response - Part B

Three Pole Systems

Approach here : find first pole, where gain = dcgain/ $\sqrt{ } 2$
Then use two pole/quadratic system on system/pole

Here $K=20$; Ts are 1, 4 and 15
Get gain: 19.9976 T1: 5.9411
T2: 13.1470 T3: 0.8769

Here $K=20 T=5 \zeta=0.5 \omega_{n}=10$ Get gain: 19.9996 zeta: 0.5041 wn: 9.9992 T3: 4.9584

p19 RJM 27/09/16
I3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Exercise - Lecture 6 (for 2 weeks)

Go to MatLab and run sysidgui
Enter your student number and you should see system 1.
Identify the system and copy the complete system to the ClipBrd and thence to your word document. Comment on the result.
Repeat for systems 2, 3.
Then untick the 'Auto Calculate Parameters' option
Identify systems 5 then 4.
Note the system assumes parameters are 1 - you change them based on the hint you get.
Note hint gives angular freqs but you may be asked for time constants.
p21 RJM 27/09/16

Gain and Phase Margin

System oscillates when gain = 1 and phase lag $=180^{\circ}$
System stable if gain < 1 when phase lag $=180^{\circ}$ Or if phase lag < 180° when gain = 1
If system near to oscillator, then very underdamped
Hence define margins : how close to oscillating
Phase Margin : gain = 1 how much more phase lag before oscillates Gain Margin : phase $=180^{\circ}$, by what multiply gain before oscillate If Phase Lag is 135° when gain $=1, P M=180-135=450$
Often this implies $\sim 20 \%$ on step response
If gain $=0.25$ when Phase $=-180^{\circ}, G M=1 / 0.25=4$
In decibels, $G M=-20 \log (0.25)=12 \mathrm{~dB}$ BI3SS16 - Frequency Response - Part B
OProf Richard Mitchell 2016
p23 RJM 27/09/16

7 : Margins and Closed Loop FR

We have seen how we can plot the frequency response
As Bode or Nyquist diagram
We can also identify the system from the Bode Plot Generally we look at the FR of the loop transfer function In this lecture we start to relate loop and closed loop FR We start with Stability Margins
Then we look at M-Circles: closed loop FR on Nyquist We then add Sensitivity Circles and relate them to Margins Then we will consider the closed loop FR Next week we formally relate Loop FR to closed loop Step Resp.
p22 RJM 27/09/16 BL3SS16 - Frequency Response - Part B $\begin{gathered}\text { OProf Richard Mitchell } 2016\end{gathered}$

BI3SS16 - Frequency Response - Part B

On Nyquist

GM: use where locus cross -ve real axis;
PM, use where locus meet unit circle
PM related to overshoot of step response, as we shall see next week p25 RJM 27/09/16

BI3Ss16 - Frequency Response - Part B 3SS16 - Frequency Response - P
O Prof Richard Mitchell 2016

M and N circles

Other circles are drawn on the Nyquist plane
These two are for relating loop TF to closed loop

$$
\begin{array}{ll}
\text { M-circles } & \text { locus of constant closed loop gain } \\
\mathrm{N} \text {-circles } & \text { locus of constant closed loop phase }
\end{array}
$$

Superimposed on a Nyquist plot : called Nichols chart.
Both circles defined by their origin and radius

$$
\begin{array}{lll}
M \text { circles Origin: } & -\frac{M^{2}}{M^{2}-1}, 0 & \text { Radius } \frac{M}{M^{2}-1} \\
\text { N circles Origin: } & -\frac{1}{2}, \frac{1}{2 N} & \text { Radius } \frac{\sqrt{N^{2}+1}}{2 N}
\end{array}
$$

p26 RJM 27/09/16 BI3SS16 - Frequency Response - Part B
BI3SS16 - Frequency Response - Pa
OProf Richard Mitchell 2016

Use of M-Circles

M is closed loop gain : for system with A and β (and -in summer)

$$
M=\left|\frac{A}{1+A \beta}\right|
$$

M circle defines positions on $A \beta$ plane where M constant Define $M_{p f}=\operatorname{Max}(M) \quad$ which occurs at $\omega=\omega_{r f}$
One use of M and M-circle
(strictly for systems with very high d.c. loop gain)
If Nyquist locus touches $M=1.3$ circle (like $P M=45^{\circ}$) often implies ~ 20\% overshoot to step input
ω where $M=M_{p f}$ (ie $\omega_{r f}$) related to freq of transient resp
This should become clearer in next lecture
p27 RJM 27/09/16 BI3SS16 - Frequency Response - Part B
© Prof Richard Mitchell 2016
Example - from Lecture 3

Various M-circles

Gives no feel for loop gain or closed loop gain
So plot in 3D, Z axis is M

p29 RJM 27/09/16 yours

Or Better - a 3D plot $(\beta=1)$

Sensitivity Function / Circle

Vector from $-1, \mathrm{jO}$ to $\mathrm{Blob}=x$
But going via $0,0=1+A B$
So $x=1+A \beta$
$|x|=$ distance of point from $-1, j 0$
The Sensitivity Function is defined as $S(\mathrm{j} \omega)=\frac{1}{1+A \beta}=\frac{O}{D}$
$M_{s}=\operatorname{Max}(|S(j \omega)|)$ is
minimum distance of locus to - $1, \mathrm{jO}$
Sensitivity circle: origin $-1, j 0$, radius M_{s}
Can design for specific M_{s} value :

locus just touch it
At ω 's where $S(\mathrm{j} \omega)>1$, Disturbances are amplified!
p31 RJM 15/05/12 BI3SS16 - Frequency Response - Part B
© Prof Richard Mitchell 2016

Complementary Sensitivity Function

We have met the sensitivity function
(which relates to circle, origin $-1, j 0$)
Control Engineers also use the complementary sensitivity function

$S(\mathrm{j} \omega)=\frac{1}{1+A \beta}$
$\mathrm{T}(\mathrm{j} \omega)=\frac{A \beta}{1+A \beta}$

Name comes from fact the $S(j \omega)+T(j \omega)=1$
Control engineers assume $\beta=1$, so $T(\mathrm{j} \omega)=M(\mathrm{j} \omega)$
It is suggested that one could do a design with relative stability specified by $M_{s}=\operatorname{Max}(|S(j \omega)|)=$ value $1.4 \ldots 2$
Can also specify $M_{t}=\operatorname{Max}(|T(\mathrm{j} \omega)|)$ and $M_{s}=M_{+}$
These can be considered alternative to $G M$ and $P M$
p33 RJM 27/09/16 Br3s516 - Frequency Response - Part B © Prof Richard Mitchell 2016 yen

Closed Loop Frequency Response

Bode and Nyquist are plots of loop TF.
Can also plot how |closed loop gain| vary with frequency
Suppose $\mathrm{A}=\frac{\mathrm{n}(\mathrm{s})}{\mathrm{d}(\mathrm{s})}$ and $\beta=1$ ('-' in summer)
Closed Loop Transfer Function is $\quad \frac{\frac{n(s)}{d(s)}}{1--\frac{n(s)}{d(s)}}=\frac{n(s)}{d(s)+n(s)}$
So use MatLab's Bode function (using RJMs polyadd function)
> [mpw] = bode (n, polyadd(n, d)); \% calc data
>> plot(w,m): \% plots variation of gain with angular freq
$\gg \operatorname{Mpf}=\max (m) ; w r f=w(m==M p f)$;
p35 RJM 27/09/16 BI3SS16 - Frequency Response - Part B
BI3S516 - Frequency Response - Part
© Prof Richard Mitchell 2016

M_{x} circles on Nyquist

M_{s} circles	Origin:	$-1,0$	Radius: $1 / M_{s}$
M_{+}circles	Origin:	$-\frac{M_{s}^{2}}{M_{+}^{2}-1}, 0$	Radius : $\frac{M_{+}}{M_{+}^{2}-1}$
$M=\operatorname{Max}\left(M_{s}, M_{+}\right)$	Origin:	$-\frac{2 M^{2}-2 M+1}{2 M(M-1)}, 0$	Radius: $\frac{2 M-1}{2 M(M-1)}$

$M=1.4$ and 2
Design so Nyquist locus kept outside circles
p34 RJM 27/09/16 BI3SS16 - Frequency Response - Part B

BI3SS16 - Frequency Response - Par
© Prof Richard Mitchell 2016

RJM function adds two polys - pads smaller with Os til both same size
>> $[m, p, w]=$ bode(den, polyadd(den, $\left.c^{\star} n u m\right)$)
$\gg m s=\max (m)$
p32 RJM 15/05/12
BI3sS16 - Frequency Response - Part B SS16 - Frequency Response - Pa
© Prof Richard Mitchell 2016
So have c, and num, den are polys for p :
$M s=1.7726$

Can find gain and phase for loop transfer function num / den. But how to find M_{s} ?

$$
\begin{aligned}
& \text { If } A \beta=\frac{n}{d} \text { then } 1+A \beta=1+\frac{n}{d}=\frac{d+n}{d} \\
& \text { Thus } M_{s}=\operatorname{Max}\left(\left|\frac{1}{1+A \beta(j \omega)}\right|\right)=\operatorname{Max}\left(\left|\frac{d(j \omega)}{d(j \omega)+n(j \omega)}\right|\right) \\
& \text { Recall } C=0.0557 \text { and } P=\frac{3}{8 s^{3}+6 s^{2}+s}
\end{aligned}
$$

Finding M_{s}

BI3SS16 - Frequency Response - Part B

Estimating $\omega_{r f}$

A good estimate for $\omega_{r f}$ is where loop gain is 1. For the examples:

Closed Loop Disturbance Response

$\begin{aligned} & \text { Closed Loop Dist } \\ & \text { Transfer Function is }\end{aligned} \quad \frac{O}{D}=\frac{1}{1--\frac{n(s)}{d(s)}}=\frac{d(s)}{d(s)+n(s)}$
$\frac{5}{(8 s+1)(5 s+1)}$ Gain=1 at $\omega=0.3127 ;$ CLGain Max at $\omega=0.3117$
$\frac{5}{(3 s+1)(2 s+1)(s+1)}$ Gain = 1 at $\omega=0.7091 ;$ CLGain Max at $\omega=0.7733$
$\frac{5}{s(5 s+1)}$ Gain =1 at $\omega=0.9901 ;$ CLGain Max at $\omega=0.9899$
$\frac{5}{s(s+1)(2 s+1)}$ Gain =1 at $\omega=1.212 ; \quad$ CLGain Max at $\omega=1.103$
Why
CIGain $=\frac{A}{1+A \beta}$ When $|A \beta|=1, \angle A \beta \rightarrow-180,|1+A \beta| \rightarrow 0, C L G a i n$ max
P37 RJM 27/09/16 BI3SS16 - Frequency Response - Part B

NB This is sensitivity function - relates to Max (S) circle At low freq, graph < 1 :reducing effect of D on O

Experiment - Old Educational Servo

Closed Loop : diff to move Output slowly - til max torque Step resp; note freq of osc : easy to move O at that freq Open loop - very easy to move Output slowly Diff to move O at speed of closed loop response p39 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Using Simple Linear Model of Servo

Open Loop: $\quad \frac{O}{I}=\frac{O}{E}=\frac{K}{s(1+s T)} \quad \frac{O}{D}=1$ Open loop : no feedback so $I=E$
Closed Loop:

$$
\frac{O}{I}=\frac{\frac{K}{s(1+s T)}}{1+\frac{K}{s(1+s T)}}=\frac{K}{s^{2} T+s+K} \quad \frac{O}{D}=\frac{1}{1+\frac{K}{s(1+s T)}}=\frac{s^{2} T+s}{s^{2} T+s+K}
$$

Low freq, s (ie jw) negligible

$$
\text { Low Freq } O L \frac{O}{I}=\infty, \quad \frac{O}{D}=1 ; \quad C L \quad \frac{O}{I}=1, \quad \frac{O}{D}=0
$$

Confirms easy to move output when OL, diff CL
p40 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Why easy to add high freq D ?

Graph below shows how O responds to input step

The a value - sets how quickly sinusoid decays - more later $\omega_{r t}$ is angular freq of the sinusoid

That is freq we wish to add as disturbance

Higher Frequency Test

$$
\begin{array}{ll}
\text { Can show } \omega_{r t}=\frac{\sqrt{T K-0.25}}{T} & \text { Suppose } K=9, T=0.5 \\
\text { Then } \omega_{r t}=4.12 \mathrm{rad} / \mathrm{s} \\
\text { Then }\left|\frac{O}{E}\right|=\frac{K T}{\sqrt{(T K-0.25)(T K+0.75)}} & \left|\frac{O}{E}\right|=\frac{4.5}{\sqrt{22.3}}=0.953 \\
\text { C.L. }\left|\frac{O}{I}\right|=\frac{K T}{\sqrt{T K-0.1875}} & \left|\frac{O}{I}\right|=\frac{4.5}{\sqrt{4.3125}}=2.17 \\
\text { C.L. }\left|\frac{O}{D}\right|=\sqrt{\frac{(T K-0.25)(T K+0.75)}{T K-0.1875}} & \left|\frac{O}{D}\right|=\frac{\sqrt{22.3}}{\sqrt{4.3125}}=2.27
\end{array}
$$

At this freq, sinusoid D is amplified - confirm test

BI3SS16 - Frequency Response - Part B

8 : Relating Time and Freq Domain

This week we seek to relate frequency domain with time domain Do this by finding exact relationship for second order system Then assess how well applies to other systems:

Can find $O(t)$ if I is a step - thence $O_{s s}, T p k \% o / s$, etc Will also assess loop TF, find PM etc - then find how relate p45 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Relationships on Bode, CLGain, Step

Show $M_{p f}$ and $P M$ related to ζ and $o / s ; \quad \omega_{\text {rf }}, \zeta$ give $T_{p k}, T_{\text {set }}$ In lecture, show what do - not go through all - left to you
p46 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Time Domain Step Responses

$$
\begin{aligned}
& \text { BI3SS16 - Frequency Response - Par } \\
& \text { © Prof Richard Mitchell } 2016
\end{aligned}
$$

$$
\begin{aligned}
& O(s)=\frac{1}{s} \times \frac{K \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{K}{s}-\frac{K\left(s+2 \zeta \omega_{n}\right) \omega_{n}^{2}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{n}^{2}\left(1-\zeta^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { p47 RJM 27/09/16 BI3SS16 - Frequency Response - Part B }
\end{aligned}
$$

Peak Value - when $d O / d t=0$

$$
\begin{array}{r}
\dot{O}(s)=\frac{K \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{K \omega_{n}^{2}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{n}^{2}\left(1-\zeta^{2}\right)} \\
\text { So } \dot{O}=\frac{d O}{d t}=\frac{K \omega_{n}}{\sqrt{1-\zeta^{2}}} e^{-\zeta \operatorname{sen}_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} t\right)
\end{array}
$$

Zero at $\sin (r \pi)$, first peak when $\sin (\pi)$, next at $\sin (3 \pi)$

Settling Time, $T_{\text {set }}$

$O_{T}(t)=K^{\prime} e^{-\zeta \omega_{n} \dagger} \sin \left(\omega_{r t} \dagger+\phi\right)$
O settles within 2% of $O_{s s}$ when $K^{\prime} e^{-\zeta \omega_{n}{ }^{\dagger}}$ within 2% of K
$T_{\text {set }}$ is t when $\frac{K}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} \dagger}<0.02 \mathrm{~K}$

$$
t=T_{\text {set }} \geq \frac{-\ln \left(0.02 \star \sqrt{1-\zeta^{2}}\right)}{\zeta \omega_{n}} \approx \frac{4}{\zeta \omega_{n}}
$$

$\{$ For $0.3<\zeta<0.7,3.96<$ numerator $<4.25\}$
p49 RJM 27/09/16
BI3SS16 - Frequency Response - Part B I3SS16 - Frequency Response - Par
© Prof Richard Mitchell 2016

Frequency Response: Max Gain $M_{p f}$

$$
G(\mathrm{j} \omega)=\frac{\mathrm{K} \omega_{n}^{2}}{\omega_{n}^{2}-\omega^{2}+\mathrm{j} 2 \zeta \omega_{n} \omega} \text {; so } M=|G(\mathrm{j} \omega)|=\frac{\mathrm{K} \omega_{n}^{2}}{\sqrt{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\left(2 \zeta \omega_{n} \omega\right)^{2}}}
$$

Want ω where M max : when diff of square of denom is 0 Straightforward to show $\omega_{\mathrm{rf}}^{2}=\left(1-2 \zeta^{2}\right) \omega_{n}^{2}$

Thus max gain, $M_{p f}=\frac{\mathrm{K}}{2 \zeta \sqrt{1-\zeta^{2}}}=\frac{O_{s s}}{2 \zeta \sqrt{1-\zeta^{2}}}$

$$
\text { Rearranging, gives } \zeta^{2}=0.5-0.5 \sqrt{1-\frac{\sigma_{o_{s}^{2}}^{2}}{\omega_{t}^{2}}}
$$

ζ negative if system unstable
p50 RJM 27/09/16 BI3SS16 - Frequency Response - Part B虑

On $T_{p k}$
Can use $\omega_{r f}=\omega_{n} \sqrt{1-2 \zeta^{2}} ; \quad T_{p k}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}}=\frac{\pi}{\omega_{r f}} \frac{\sqrt{1-2 \zeta^{2}}}{\sqrt{1-\zeta^{2}}}$
Fine if $2 \zeta^{2}<1$, or $\zeta<0.707$. If not, use closed loop bandwidth ...

$$
G(\mathrm{j} \omega)=\frac{\omega_{n}^{2}}{-\omega^{2}+\mathrm{j} 2 \zeta \omega_{n} \omega+\omega_{n}^{2}} ; \text { Find } \omega \text { where }|G(\mathrm{j} \omega)|=\frac{1}{\sqrt{2}}
$$

i.e. $\frac{\omega_{n}^{4}}{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\left(2 \zeta \omega_{n} \omega\right)^{2}}=\frac{1}{2} \quad \omega_{b w}^{2}=\omega_{n}^{2}\left(1-2 \zeta^{2}+\sqrt{4 \zeta^{4}-4 \zeta^{2}+2}\right)$

So $\mathrm{T}_{\mathrm{pk}}=\frac{\pi}{\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}}=\frac{\pi \sqrt{1-2 \zeta^{2}+\sqrt{4 \zeta^{4}-4 \zeta^{2}+2}}}{\omega_{\mathrm{bw}} \sqrt{1-\zeta^{2}}}$
p51 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Loop Transfer Function for PM

Loop TF $\quad L(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s}$
$|L(\mathrm{j} \omega)|=\frac{\omega_{\mathrm{n}}^{2}}{\omega \sqrt{\omega^{2}+\left(2 \zeta \omega_{\mathrm{n}}\right)^{2}}}$
$\angle \mathrm{L}(\mathrm{j} \omega)=-90-\tan ^{-1} \frac{\omega}{2 \zeta \omega_{n}}$
Want ω where $|L(\mathrm{j} \omega)|=1$
Form quadratic in ω^{2} from $|L|^{2}=1$. Solve: $\omega^{2}=\omega_{n}^{2}\left(-2 \zeta^{2}+\sqrt{4 \zeta^{4}+1}\right)$
PM $=180+$ Phase $=180-90-\tan ^{-1} \frac{\omega}{2 \zeta \omega_{n}}=90-\tan ^{-1} \frac{\omega}{2 \zeta \omega_{n}}$
$=\tan ^{-1} \frac{2 \zeta \omega_{n}}{\omega}=\tan ^{-1} \frac{2 \zeta}{\sqrt{-2 \zeta^{2}+\sqrt{4 \zeta^{4}+1}}} \quad \begin{gathered}10 \\ \text { PM }\end{gathered}$
Ugg - but for $\zeta<0.6$ good approx PM $=100 \zeta$
p52 RJM 27/09/16 BI3SS16 - Frequency Response - Part B O Prof Richard Mitchell 2016

Summary

$\zeta \approx$ PM / 100 : from PM can estimate ζ.
Or if know peak closed loop freq: using $M_{p f}$ and $\omega_{r f}$

$$
\zeta^{2}=0.5-0.5 \sqrt{1-\frac{O_{o s}^{2}}{M_{\rho f}^{2}}} \quad \omega_{n}=\frac{\omega_{\mathrm{rf}}}{\sqrt{1-2 \zeta^{2}}}
$$

Settling time, $T_{\text {settle }} \approx \frac{4}{\zeta \omega_{n}} \quad$ overshoot $=e^{-\frac{c_{t}}{\sqrt{1-\sigma^{2}}}}$
Time to Peak, $T_{p k}=\frac{\pi}{\omega_{r t}}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}}=\frac{\pi \sqrt{1-2 \zeta^{2}+\sqrt{4 \zeta^{4}-4 \zeta^{2}+2}}}{\omega_{b w} \sqrt{1-\zeta^{2}}}$
We can use these to numerically estimate step resp from bode data
p53 RJM 27/09/16
BI3SS16 - Frequency Response - Part B
© Prof Richard Mitchell 2016 ser

Predicting Response from Bode data

Suppose have [m, p,w] that gives Bode plot of loop TF At each w, have $m \cos (p)+j m \sin (p)$: But need closed loop gain

$$
\begin{aligned}
\left|\frac{m \cos (p)+j m \sin (p)}{1+m \cos (p)+j m \sin (p)}\right| & =\frac{\sqrt{m^{2} \cos ^{2}(p)+m^{2} \sin ^{2}(p)}}{\sqrt{1+2 m \cos (p)+m^{2} \cos ^{2}(p)+m^{2} \sin ^{2}(p)}} \\
& =\frac{m}{\sqrt{1+m^{2}+2 m \cos (p)}}
\end{aligned}
$$

$m c=m . / \operatorname{sqrt}\left(1+m .^{\wedge} 2+2^{\star} m .^{*} \operatorname{cosd}(p)\right) ; \%$ closed loop gain $m p f=\max (m c)$;
$\mathrm{wrf}=\mathrm{w}(\mathrm{mc}==\mathrm{mpf}) ;$
$\mathrm{yss}=m c(1) ;$
\% find Mpf : max cl gain
\% w where max cl gain
$y s s=m c(1)$;
$\%$ steady state = dc gain
zeta $=\operatorname{sqrt}\left(0.5-0.5{ }^{\star} \operatorname{sqrt}\left(1-y s s^{\wedge} 2 / m p f^{\wedge} 2\right)\right) ; \%$ and ζ
Thence can estimate $\omega_{n}, \omega_{\text {rt }}$, Overshoot, Tpk, Tset ...
p54 RJM 27/09/16
BI3SS16 - Frequency Response - Part B
© Prof Richard Mitchell 2016

Step Response of 2nd Order System

This is first example where we try these ideas out

Applying These

$M_{p f}=2.179$ and $\omega_{\mathrm{rf}}=0.687 \mathrm{rad} / \mathrm{s}$;
So $\zeta=0.2243$ and $\omega_{r t}=0.706 \mathrm{rad} / \mathrm{s}$;
Actual Step response:
peak of 1.40 @4.47 s and $1.06 @ 13.4 \mathrm{~s}$;
Tset $($ settling time $)=23.3 \mathrm{~s}$
Predictions from Freq Domain
peaks at $\pi / 0.706=4.45 ; \quad$ that $+2 \pi / 0.706=13.3 \mathrm{~s}$
Peak from formula $(20 / 21) *(1+0.486)=1.41 \mathrm{~s}$
Tset $=23.9 \mathrm{~s}$
Quite close - not exact as loop tf not in form $\mathrm{K} / \mathrm{s}(1+s T)$
p57 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Another Example

num $=37.58$;
den $=(s+1)(s+2)(s+5)$
$M_{p f} 1.394 \omega_{r f}=1.682$
$\zeta=0.2968 \omega_{n}=1.853$

Tpk ~ 1.776 Tpk $=1.395$
\%os ~ $37.67 \% o s=37.01$
Tset ~ 5.714 Tset $=5.23$

Predictions are ok

p58 RJM 27/09/16 BI3SS16-Frequency Response - Part B © Prof Richard Mitchell 2016

Now try on an Unstable System

$n=10 ; \quad d=(1+s 5)(1+s 8)(1+s 10) ;$
Step resp, Closed Loop Freq resp, Nyquist $+M=M_{p f}$
$M_{p f}=16.1 ; \quad \omega_{r f}=0.251 ; \quad \zeta=-0.028 ; \quad \omega_{r t}=0.251$ Actual Peak 1.76 at 14.96 s ; Next at 38.9 s Predict as 1.90 at $\pi / \omega_{r t}=12.5 \mathrm{~s}$; Next at $3 \pi / \omega_{r t}=37.6 \mathrm{~s}$ p59 RJM 27/09/16 BI3SS16-Frequency Response - Part B BI3SS16 - Frequency Response - Par
© Prof Richard Mitchell 2016

Increase n to 20: More Oscillatory

Step resp, Closed Loop Freq resp, Nyquist $+M=2.995$

$M_{p f}=2.995 ; \quad \omega_{r f}=0.311 ; \quad \zeta=-0.161, \quad \omega_{r t}=0.315$
Actual Peak 2.22 at 11.6 s ; Next at 31.3 s Predict as 2.54 at $\pi / \omega_{r t}=10.0 \mathrm{~s}$; Next at $3 \pi / \omega_{r t}=29.9 \mathrm{~s}$
P60 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

If locus touch $M=1.3$ circle, often 20\%o/s. Here Mpf is 2.179, so locus touch touch
$M=2.179$ circle at $\omega_{\text {rf }}$
[m p w] = bode ($n,[00 n]+d$); \% calc closed loop freq resp plot (w, m, ' k-' $)$; \quad \% plot magnitude vs freq p56 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Now consider this system

$M_{p f}=4.85 ; \quad \omega_{r f}=2.43 ; \quad \zeta=0.104 ; \quad \omega_{r t}=2.44$
First peak 1.73 @ 1.14 s ; Next 1.37 @ 3.70 s ; Settle by 14.2 s Predict as 1.72 at $\pi / \omega_{r t}=1.29 \mathrm{~s} ; 3 \pi / \omega_{r t}=3.86$; Tset: 15.7 s p61 RJM 27/09/16 © Prof Richard Mitchell 2016

Same System, But K down To 100

$M_{p f}=11.1 ; \quad \omega_{r f}=0.846 ; \quad \zeta=-0.045, \quad \omega_{r t}=0.847$
Peak pred as 2.15 at $\pi / \omega_{r t}=3.71 \mathrm{~s} \quad 3 \pi / \omega_{r t}=11.1 \mathrm{~s}$
First peak 2.04 at 3.68 s ; Next at 11.0 s
p62 RJM 27/09/16 BI3SS16 - Frequency Response - Part B
BI3SS16 - Frequency Response - Par
@ Prof Richard Mitchell 2016 Cren

Nyquists for These Two Systems

When $K=100$, curve encircles the $-1, j 0$ point - so unstable. When $K=1000$, resonant freq where phase $<180^{\circ}$, so stable Conditionally stable system - increase gain to stablise it Although gain > 1 when phase $=-180^{\circ}$ system not unstable Because freq of oscillation of transient where CL gain max
p63 RJM 27/09/16
BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

On Conditionally Stable Systems
So system unstable if gain > 1 when phase -180° not always true can have conditionally stable systems
In such cases reduce gain to make system unstable!

p64 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

9. Frequency Response Designs

We have considered the analysis of systems in the freq domain We can determine stability, plot responses, estimate time response We have seen how to Design P
In this lecture

$$
\text { We remind ourselves of } P \text { control }
$$

and consider Phase Lead Control, P +I and PID control
We will also look at how these controllers change Bode plots

BI3SS16 - Frequency Response - Part B

More Complicated Example

$P(s)=\frac{36(s / 11+1)}{(s / 71+1)(s / 30+1)(s / 222+1)}$
Set $P M=45^{\circ} ; C=0.0491$

Mpf 1.396 Wrf 245.5 zeta 0.2353 wn 260.3

Tpk : \%os: Tse \dagger
Est $0.012: 46.7: 0.051$ Act $0.014: 65.9: 0.183$

Pred ok.
Controller Naff

Controler

p69 RJM 27/09/16
BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Phase Lead Control - for speed up

Speed of response set by $\omega_{\text {rf }}$, which is near where loop phase - 180 To speed response, have Phase Lead instead of P control:

$$
C(s)=K_{p}\left(\frac{1+s T e}{1+s T a}\right)
$$

$\mathrm{Te}>\mathrm{Ta}$, phase ^ at low freqs So phase -180 at higher freq
 Phase max α at $\omega=\frac{1}{\sqrt{T e^{\star} T a}}$ Then $\alpha=\tan ^{-1} \sqrt{\frac{T e}{T a}}-\tan ^{-1} \sqrt{\frac{T a}{T e}}$ Can show $\alpha=\frac{\pi}{2}-2 \tan ^{-1} \sqrt{\frac{T a}{T e}}$

p70 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Phase Lead Controller

To speed by fac n, if phase $-180+P M$ at ω_{x}.
design so phase - $180+\mathrm{PM}$ at $n^{\star} \omega_{\mathrm{x}}$
$C(s)=K_{p}\left(\frac{1+s T e}{1+s T a}\right)$

$$
\mathrm{pn}=\angle \mathrm{P}\left(\mathrm{n}^{\star} \omega_{x}\right)
$$

$\alpha=-180+\mathrm{PM}-\mathrm{pn}$
(must be < 90)
Let $G=\tan \left(\frac{90-\alpha}{2}\right)$
$T e=\frac{1}{n^{\star} \omega_{\star}{ }^{*} G}$
$T a=\frac{G}{n^{\star} \omega_{x}}$
Then Kp to meet PM
p71 RJM 27/09/16
BI3ss16 - Frequency Response - Part B I3SS16 - Frequency Response - Par
OProf Richard Mitchell 2016

Results - speed up by 2

$P(s)=\frac{36(s / 11+1)}{(s / 71+1)(s / 30+1)(s / 222+1)(s / 448+1)}$

p72 RJM 27/09/16
BI3SS16 - Frequency Response - Part B
OProf Richard Mitchell 2016

BI3SS16 - Frequency Response - Part B

Example for a Type 1 System

$$
P(s)=\frac{70}{s(s / 6+1)(s / 35+1)} ; C p=0.0836 ; C p l=0.154\left(\frac{1+s 0.176}{1+s 0.067}\right)
$$

p73 RJM 27/09/16
BI3SS16 - Frequency Response - Part B SS16 - Frequency Response -
© Prof Richard Mitchell 2016

$\boldsymbol{c}=$	P	PhL
Tpk	0.616	0.308
TSet	1.47	0.70
\%os	23.3	23.5
Oss	1	1

PL Speeds up. Here Oss =1...

Details

$$
C(\mathrm{j} \omega)=\mathrm{K}_{\mathrm{p}} \frac{1+\mathrm{j} \omega T_{\mathrm{i}}}{\mathrm{j} \omega T_{\mathrm{i}}} \quad \angle C\left(\mathrm{j} \omega_{c}\right)=\tan ^{-1} \omega_{c} T_{i}-\frac{\pi}{2}
$$

Want $\angle C\left(\mathrm{j} \omega_{c}\right) \star P\left(\mathrm{j} \omega_{c}\right)=-\pi+\mathrm{PM}$
So $\angle C\left(\mathrm{j} \omega_{C}\right)=-\pi+\mathrm{PM}-\angle \mathrm{P}\left(\mathrm{j} \omega_{C}\right)=\phi$
$\phi=\tan ^{-1} \omega_{C} T_{i}-\frac{\pi}{2} \quad \square T_{i}=\frac{1}{\omega_{C}} \tan \left(\phi+\frac{\pi}{2}\right)$
$\left|C\left(j \omega_{c}\right)\right|=k_{p} \frac{\sqrt{1+\left(\omega_{C} T_{i}\right)^{2}}}{\omega_{C}}=K_{p} \frac{\sqrt{1+\tan ^{2}\left(\phi+\frac{\pi}{2}\right)}}{\omega_{C} T_{i}}=\frac{K_{p}}{\omega_{c} T_{i} \cos \left(\phi+\frac{\pi}{2}\right)}$
As $\left|C\left(\mathrm{j} \omega_{c}\right)\right|\left|P\left(\mathrm{j} \omega_{c}\right)\right|=1 ; \frac{K_{\mathrm{p}}}{-\omega_{C} T_{i} \sin \phi}|P(\mathrm{j} \omega)|=1 ;$ so $K_{\mathrm{p}}=-\frac{\omega_{c} T_{i} \sin \phi}{\left|P\left(\mathrm{j} \omega_{C}\right)\right|}$
P75 RJM 27/09/16 BI3SS16 - Frequency Response - Part B
© Prof Richard Mitchell 2016

P + I Controller

For Type 0 system, to ensure $O_{s s}$ is $1 \mathrm{C}(\mathrm{s})$ includes an integrator eg a P+I controller

$$
C(s)=K_{p}\left(1+\frac{1}{s T_{i}}\right)=K_{p}^{\prime}\left(\frac{1+s T_{i}}{s T_{i}}\right)
$$

The integrator adds 90° phase lag, the associated lead adds some phase lead - which can help

> As we shall see, can design for this, but system slow.

Aim, choose a working freq, ω_{c}, and find Ti and Kp so that system has unity gain and phase -1800 + PM.

Note ω_{c} typically near where plant has phase lag of $\sim 90^{\circ}$
This is lower than that used for phase lead, so system slow...

Example - on same plant

$P(s)=\frac{1}{(s+5)(s+1)(s+2)} \mathrm{PM}=45^{\circ} ; C_{p}=37.58 ; C_{p i}=12.45\left(1+\frac{1}{0.894 s}\right)$

 $\angle P(j \omega)=-90$ at $\omega=1.118$ $\phi=-180+45--90=-45$ $\tan (45) / 1.118=0.894$

$\boldsymbol{C}=$	\mathbf{P}	$\mathrm{P}+\mathbf{I}$
Tpk	1.4	2.58
TSet	2.5	5.86
\%os	37	23.6
Oss	0.787	1

Better: Oss 1, but slow
p76 RJM 27/09/16 BI3SS16 - Frequency Response - Part B p76 RJM 27/09/16 $\begin{gathered}\text { BI3SS16 - Frequency Response - Par } \\ \text { OProf Richard Mitchell } 2016\end{gathered}$

Estimating Time Response from Asyms

Confirmation : How to do in an Exam

$$
C^{\star} P(s)=\frac{12.45(0.894 s+1)}{0.894 s} \star \frac{1}{(s+5)(s+1)(s+2)}
$$

Corner Freqs $1 ; 1 / 0.894=1.2 ; 2$ and 5
Before 1: TF $=\frac{12.45}{0.894 j \omega} * \frac{1}{(5)(1)(2)}=\frac{1.39}{j \omega}$ Gain $=1$ at $w=1.39$

$$
\begin{aligned}
& \text { 1.1.2 } \mathrm{TF}=\frac{1.39}{\mathrm{j} \omega} * 0.894 j \omega=1.24 \text { Gain not equal } 1! \\
& \text { 1.2..2 TF }=1.24 * \frac{1}{j \omega}=\frac{1.24}{j \omega} \text { Gain }=1 \text { at } \omega=1.24
\end{aligned}
$$

This is in range 1.2 ..4, so this is a good estimate of $|C P|=1$ Which itself is an estimate of where CL Gain maximum

BI3SS16 - Frequency Response - Part B

Modified Ziegler Nichols PID

To speed up, add to controller a term prop to differential of error Results in most common type of industrial controller - PID

$$
C(s)=K_{p}\left(1+\frac{1}{s T_{i}}+s T_{d}\right)=K_{p}\left(\frac{1+s T_{i}+s^{2} T_{i} T_{d}}{s T_{i}}\right)
$$

Numerous ways to find parameters - Modified Ziegler Nichols common Choose a partic freq, ω_{c}, design controller for desired PM

$$
\text { ie } C^{\star} P \text { has gain } 1 \text { and phase }-180^{\circ}+P M \text { at } \omega_{c}
$$

Can be done by $P+I$ controller $-K_{p}$ and T_{i} define operation. For PID, suggest $T_{d} \leq 0.25^{*} T_{i}$ so $C(s)$ has two real zeros

Here set $T_{d}=0.25{ }^{*} T_{i}$ as it makes Maths easier p79 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

PID Controller	
Want $\angle C\left(j \omega_{c}\right)^{* P}\left(\mathrm{j} \omega_{c}\right)=-\pi+$ PM	
So $\angle C\left(\mathrm{j} \omega_{C}\right)=-\pi+\mathrm{PM}-\angle \mathrm{P}\left(\mathrm{j} \omega_{C}\right)=\phi$	
$T_{\mathrm{i}}=\frac{2}{\omega_{c}} \tan \left(\frac{\phi+\frac{\pi}{2}}{2}\right)=\frac{2}{\omega_{c}} \frac{\sin \left(\phi+\frac{\pi}{2}\right)}{1+\cos \left(\phi+\frac{\pi}{2}\right)}=\frac{2}{\omega_{c}} \frac{\cos \phi}{1-\sin \phi}$	

Continued

$$
\begin{aligned}
\mathrm{T}_{\mathrm{i}}= & \left.\frac{2}{\omega_{c}} \frac{\cos \phi}{1-\sin \phi} \quad C\left(\mathrm{j} \omega_{c}\right) \right\rvert\,=K_{\mathrm{p}} \frac{1+\left(0.5 \omega_{c} \mathrm{~T}_{\mathrm{i}}\right)^{2}}{\omega_{c} T_{\mathrm{i}}} \\
C\left(\mathrm{j} \omega_{c}\right) \mid & =K_{\mathrm{p}} \frac{1+\left(\frac{\cos \phi}{1-\sin \phi}\right)^{2}}{\frac{2 \cos \phi}{1-\sin \phi}}=K_{p} \frac{(1-\sin \phi)^{2}+\cos ^{2} \phi}{2 \cos \phi(1-\sin \phi)} \\
& =K_{p} \frac{1-2 \sin \phi+\sin ^{2} \phi+\cos ^{2} \phi}{2 \cos \phi(1-\sin \phi)}=K_{\mathrm{p}} \frac{2(1-\sin \phi)}{2 \cos \phi(1-\sin \phi)}=\frac{K_{p}}{\cos \phi}
\end{aligned}
$$

$$
\text { As }\left|C\left(\mathrm{j} \omega_{c}\right)\right|\left|P\left(\mathrm{j} \omega_{c}\right)\right|=1 ; \Rightarrow \frac{K_{p}}{\cos \phi}\left|P\left(j \omega_{c}\right)\right|=1 ;
$$

$$
\text { so } K_{p}=\frac{\cos \phi}{\left|P\left(j \omega_{c}\right)\right|}
$$

p81 RJM 27/09/16
BI3SS16 - Frequency Response - Part B
© Prof Richard Mitchell 2016

On Same Plant
Plant has phase -180° at $4.12 \mathrm{rad} / \mathrm{s}$ - this can be ω_{c} set PM 45° $T_{i}=\frac{2}{4.12} * \frac{\cos 45}{1-\sin 45}=1.17 ;|P(j 4.12)|=0.0079 ; \mathrm{Kp}=\frac{\cos (45)}{0.0079}=89$

On Asymptotes

$C(\mathrm{j} \omega)=\frac{\mathrm{Kp}}{\mathrm{j} \omega \mathrm{Ti}} *\left(1+\mathrm{j} \omega \frac{\mathrm{T}}{2}\right)^{2}=\frac{76}{\mathrm{j} \omega} *(1+\mathrm{j} \omega 0.58)^{2} ; P(\mathrm{j} \omega)=\frac{1}{(\mathrm{j} \omega+5)(\mathrm{j} \omega+1)(\mathrm{j} \omega+2)}$

Clearly $|C P|=1 \sim 5$
Is est for wrf
PM design at $45, \zeta=0.45$
$\mathrm{Tpk} \sim \frac{\pi}{\omega_{r t}}=\frac{\pi}{\omega_{r f}} \sqrt{\frac{1-2 \zeta^{2}}{1-\zeta^{2}}}$
Estimate is $0.5 s$
Actual is 0.7 s
p83RJM 27/09/16

Again - estimate by Asymptote

$$
C(\mathrm{j} \omega)^{\star} P(\mathrm{j} \omega)=\frac{76}{\mathrm{j} \omega} \star(1+\mathrm{j} \omega 0.58)^{2} \star \frac{1}{(\mathrm{j} \omega+5)(\mathrm{j} \omega+1)(\mathrm{j} \omega+2)}
$$

CFs $1,1 / 0.58=1.72,2,5$;
1.72 v close to 2 , so replace 1.72 and 2 by ~ 1.9
$(1+j \omega 0.58)^{2}$ * $\frac{1}{(j \omega+2)} \approx 1+j \omega / 1.9=\frac{j \omega+2}{1.9}$

$$
\text { So } C(\mathrm{j} \omega)^{\star} P(\mathrm{j} \omega) \approx \frac{40(\mathrm{j} \omega+1.9)}{\mathrm{j} \omega(\mathrm{j} \omega+5)(\mathrm{j} \omega+1)}
$$

Asyms

$$
\begin{array}{cccc}
<1 & 1.1 .9 & 1.9 .5 & >5 \\
\frac{16}{\mathrm{j} \omega} & \frac{16}{(\mathrm{j} \omega)^{2}} & \frac{8}{\mathrm{j} \omega} & \frac{40}{(\mathrm{j} \omega)^{2}}
\end{array}
$$

Gain $=1$ in last asym, at $\sqrt{ } 40=6.3$ similar to est of 5 from figure p84 RJM 27/09/16 BI3SS16 - Frequency Response - Part B BI3SS16 - Frequency Response - Par
OProf Richard Mitchell 2016

BI3SS16 - Frequency Response - Part B

Summary

We have seen how to design, in the frequency domain
P, Phase Lead, P+I and PID controllers
P is simplest - often not acceptable in type 0 systems For type 1 systems, Oss $=1$, so P ok, but Phase Lead speeds up For type 0 systems, an integrator needed for Oss $=1$ P+I ok, but slow, so PID often used - most common in industry One method has been shown - there are others.

Next week we finish the course by considering
Positive and Negative Feedback
Estimating frequency response from time domain samples

Assignment

You are now in a position to complete the assignment
See the sheet for details, but essentially you will
Design P, Phase Lead, P+I and PID controllers for systems based on your student number using another GUI
Copy relevant code, results, etc., into the Word doc
Submit by deadline onto Blackboard

10 : Final Topics

In this lecture we finish the course
We look into concept of negative and positive feedback
Consider definition and claims
and relate this to the frequency domain
We also look at estimating the freq resp from time samples

Positive and Negative Feedback

Various views and erroneous comments exist.
Here give sensible definition and consistent claims for effect.
Bode's colleague Black's Change in Gain due to Feedback Bell System Technical Journal, Vol XIII, pp1-18, Jan 1934

Amplification (or Gain) without feedback $=|A|$
with feedback $|G|=\frac{|A|}{|1+A \beta|}$

Positive Feedback if $|G|>|A|$; that is $|1+A \beta|<1$ But note, $A \beta$ is a function of frequency ...
p88 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

BI3SS16 - Frequency Response - Part B

Claims for Negative Feedback

1) It reduces error (or errors) in the system
many books not define what error is
2) It reduces the effects of disturbances
sometimes disturbances are not defined
3) It reduces effects of changes in the forward path gain
this is a useful effect in electronics, for instance, as gain change, as well as in other systems
4) It reduces the magnitude of the system gain

Black's claim - often ignored by control engineers
Let us investigate these claims - doing 2,3 and then 1.

91 RJM 27/09/16 BI3SS16 - Frequency Response - Part B CR

On Changes in Forward Path Gain, A

$\frac{O}{I}=\frac{A}{1+A \beta}$
Define $G=\frac{A}{1+A \beta}$

What is effect on G of changing A, assuming β is constant?
$\frac{d G}{d A}=\frac{(1+A \beta)^{\star} \frac{d A}{d A}-A^{\star} \frac{d(1+A \beta)}{d A}}{(1+A \beta)^{2}}=\frac{(1+A \beta)-A \beta}{(1+A \beta)^{2}}=\frac{1}{(1+A \beta)^{2}}$
p93 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Investigating This

$\begin{aligned} & \text { Change in } G \text { on its own not useful, the } \\ & \text { relative change in } G \text { better, ie } d G / G\end{aligned} \quad d G=\frac{d A}{(1+A \beta)^{2}}$

$$
\text { So } \frac{d G}{G}=\frac{\frac{d A}{(1+A \beta)^{2}}}{G}=\frac{\frac{d A}{(1+A \beta)^{2}}}{\frac{A}{(1+A \beta)}}=\frac{d A}{A} \frac{1}{1+A \beta}
$$

So proportional change in $G=$ prop. change in $A^{*} \frac{1}{1+A \beta}$
For effect of change in A to be reduced by feedback

$\left\|\frac{1}{1+A \beta}\right\|<1$	i.e. if system has negative feedback
p94 RJM 27/09/16	BI3SS16 - Frequency Response - Part B @ Prof Richard Mitchell 2016

What About Changing β ?

$\frac{\mathrm{d} G}{\mathrm{~d} \beta}=\frac{(1+A \beta)^{\star} 0-A^{\star} \cdot A}{(1+A \beta)^{2}}=\frac{A^{2}}{(1+A \beta)^{2}}=G^{2}$
$\frac{\mathrm{d} G}{\mathrm{G}}=\mathrm{G} \mathrm{d} \beta=\frac{\boldsymbol{A} \beta}{1+\boldsymbol{A} \beta} \frac{\mathrm{d} \beta}{\beta}$
So cant say, if negative feedback, effect of changing β reduced.
In fact, if have (as want) high loop gain:

$$
\frac{\mathrm{d} G}{G} \approx+\frac{\mathrm{d} \beta}{\beta}
$$

However, usually, more likely that A changes, not β.
Overall - definition pretty consistent with claims.

Negative Feedback Reduces Error

```
'Desired Output' = -I / \(\beta\), what is actual output?
Open Loop, \(\quad\) Actual Output \(=A\) * \(I\)
Closed Loop \(\quad\) Actual Output \(=\frac{A}{1+A \beta} * I\)
Output Error \(=\) Desired Output - Actual Output
But, size of error affected by output size: define Error Ratio :
\(E R=\frac{\text { Output Error }}{\text { Desired Output }}\)
\(E R=\frac{\text { Output Error }}{\text { Desired Output }}=\frac{\text { Desired Output - Actual Output }}{\text { Desired Output }}\)
```


Error Ratio

Closed Loop: $E R=\frac{I / \beta^{-A I} / 1+A \beta}{I / \beta}=1-\frac{A \beta}{1+A \beta}=\frac{1}{1+A \beta}$
Open Loop: $\mathrm{ER}=\frac{\mathrm{I} / \beta^{-A I}}{\mathrm{I} / \beta}=1-A \beta$
Feedback has reduced the size of the error if:

$$
\left|\frac{1}{1+A \beta}\right|<|1-A \beta| \quad \text { or } \quad 1<|1-A \beta||1+A \beta|
$$

Not negative feedback definition - but similar Let's show the regions on the Argand Plane: p97 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

$2{ }^{\text {nd }}$ Order System no Positive Feedback
Loop TF $\frac{1+2 s}{s^{2}}$
$C L: \frac{1+2 s / s^{2}}{1+1+2 s / s^{2}}=\frac{1+2 s}{1+2 s+s^{2}}$
High F, LoopTF ~2/s, up imag axis

Re no +ve feedback, look at | denom |
Open Loop: ω^{2}
Closed Loop: $\sqrt{1-2 \omega^{2}+\omega^{4}+4 \omega^{2}}$
$=\sqrt{1+2 \omega^{2}+\omega^{4}}=1+\omega^{2}$

Second Order Correlations On This

Comparing $\frac{1+2 s}{1+2 s+s^{2}}$ and $\frac{1}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{1}{s^{2}+s+1}$
Dominant mode of this system too different.
p100 RJM 27/09/16 BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

How to get Transfer Function?

In Laplace Domain: $Y(s)=G(s) * U(s)$
In Freq domain: $Y(j \omega)=G(j \omega) * U(j \omega)$

$$
G(\mathrm{j} \omega)=\frac{\mathrm{Y}(\mathrm{j} \omega)}{U(\mathrm{j} \omega)}
$$

So an estimate of the power spectrum of G is found by

$$
G_{P S}(\mathrm{j} \omega)=\frac{Y_{P S}(\mathrm{j} \omega)}{\operatorname{UPS}(\mathrm{j} \omega)}
$$

p102 RJM 27/09/16
BI3SS16 - Frequency Response - Part B
O Prof Richard Mitchen
© Prof Richard Mitchell 2016

Frequency Resp from Time Domain

MatLab has the tools to do this. Uses structs for data
Basic algorithm
$y=$ output, $u=$ input, over time $=\dagger$
dat = iddata(y, u, t(2)-t(1)) \% form time domain data
datd $=\operatorname{detrend}(\mathrm{dat}) \quad \%$ remove best straight line fit \% removes mean value
idplot(ze) \% plot in and out
$f r=s p a(d a t d) \quad \%$ finds spectral response
bode(fr)
$\%$ plot it as bode plot

Persistently Exciting Input

Important that the system is 'persistently excited'
step signal not enough, as output over small freq range
'random' pulse train better
also called pseudo random binary sequence
Eg to generate 1000 bit sequence, $u(t)=$ randomly $u(t-1)$ or $1-u(t-1)$
$r=\operatorname{rand}(1000,1)$;
$u=r ; u(1)=1$;
for $\mathrm{ct}=2$: length (u),
if $r(c t)<0.8, u(c t)=u(c t-1)$; else $u(c t)=1-u(c t-1)$; end; end;

p104 RJM 27/09/16
BI3SS16 - Frequency Response - Part B SS16 - Frequency Response - Par
© Prof Richard Mitchell 2016

Do Spectral Analysis

[ma, pa, wa] = bode(50, [1 8 50]): \% get actual bode to test $f r=s p a(d a t d)$; \quad \% now do spa [$m, p, w]=$ bode($f r$); $m m=$ squeeze (m); $p p=$ squeeze (p); $w w=$ squeeze(w);
mm is $1,1, \mathrm{n}$ matrix
squeeze so $1, n$ vector
Plot m and $m m ; p$ and $p p$
Results from spa close to actual, until high freqs
p106 RJM 27/09/16
BI3SS16 - Frequency Response - Part B © Prof Richard Mitchell 2016

Summary

In this lecture

Looked at positive and negative feedback
Have a definition consistent with claims
Showed that systems often have both +ve and -ve
Also, briefly introduced Spectral Analysis
For finding frequency response of plant from I/O data Note, I must persistently excite system
Overall, in these lectures
Have considered how to find and plot frequency responses
To identify and control systems using the frequency response
To find frequency response from time domain data

