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1. BI3SS16 Frequency Response 
2016/17 - Prof Richard Mitchell

Module : State Space and Frequency Response
Overall  aim to consider state-space and frequency response modelling 

and associated control methods
My lectures: Frequency Response

Review of frequency response of linear systems
Relating frequency response and time domain.    
Positive and negative feedback. 
System identification from frequency response data.   
Designing Controllers using Frequency Response
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Assessment
Examination –

Two hour exam : 2 questions on Frequency Response
Assignments

For Frequency Response :
series of tasks related to specific lectures,
make up the three parts of the coursework.

This should help understanding of lectures.
BUT to understand you MUST do extra work

Web Pages to help – you are advised to see if these help
http://www.reading.ac.uk/~shsmchlr/jsfreqresp/index.htm
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Background to course

Based on Bode (designed telephone amplifiers) 'The
engineer who embarks upon the design of a feedback
amplifier must be a creature of mixed emotions. On the one
hand, he can rejoice in the improvements in the
characteristics of the structure which feedback promises
to secure him. On the other hand, he knows that unless he
can finally adjust the phase and attenuation characteristics
around the feedback loop so the amplifier will not
spontaneously burst into uncontrollable singing none of
these advantages can be actually realised.' (1940)

First given by Peter Fellgett – lots of maths

Dave Keating ↓ maths - emphasise meaning

I mould notes, add MATLAB, and research.

2011/12 : course reduced. 2013/4 joined with state space
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Rest of Lecture

The rest of the lecture comprises

A reminder of feedback systems

Static Analysis (components are constants)

Dynamic Analysis and Stability (use of calculus, s and jω)

Systems and Sinusoids

Input and Output Sinusoids

Impact of changing gain and phase shift

What means re Steady State Output

How can assess system stability
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General Single Loop Feedback System

A = Forward Transfer Function

 = Feedback Transfer Function

A = Loop Transfer Function

Overall TF : use Forward/1-Loop

O
D

I
A




O AIf D = 0,  =  
I 1 - A 

O 1If I = 0,  =  
D 1 - A

 
A 1Overall O =  * I  +   * D

1 - A 1 - A


  

A 1 1If loop gain A  big, O =  * I  +   * D = I
- A  - A - 

Bode worked on getting maximum possible loop gain
However : can’t have high loop gain at all frequencies
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Feedback Control System

The above is ‘general’ single loop feedback system

Control Engineers usually want O = I; so assume β = -1

P is ‘process’ to be controlled by controller C

A = CP  and β = -1; Loop Gain = -CP

O
D

I
C

E
P

O CP=  
I 1 + CP

O 1=  
D 1 + CP

Still want high loop gain, O ~ I … but cant have at all frequencies

CP 1O = I  + D 
1 + CP 1 + CP
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Dynamic Systems & Stability

If loop gain large, O equals I / -feedback value (= I for control)

Implies if I changes O instantaneously changes

BUT, O will take time to change – systems dynamic

As such, O may not reach expected value

it may oscillate away – unstable.

Important to ensure feedback system is stable

In this course will pay much attention to stability

both absolute and relative

Relative: O reaches final value – so absolutely stable –

but, oscillates too much – how quickly oscillations decay?

0 5 10 15 20 25 30-2

-1

0

1

2

3
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Four Different Responses

Overdamped – (a) output not exceed final value

Underdamped - (b) output oscillations decay – poss ok

- (c) oscillations take very long time to decay

Unstable – (d) output oscillates away from final value

(a)

(c)

(b)

(d)
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We must model Dynamics
Dynamics is about change … so can think of calculus

In State Space, system modelled by many first order DEs

Use partial fractions, Look-up tables -> O(t) = f(t)

Simple way of assessing stability, designing controllers…

dO  = function of O, I, t, etc.  Generate Diff Eqn and solve
dt


d OUse Laplace operator s . Generate transfer function  = F(s)
dt I

  OIf I sinusoid Ksin( t), use j  in place of s:  = F(j )
I

p10 RJM 27/09/16 BI3SS16 – Frequency Response – Part A
© Prof Richard Mitchell 2016

What we can do with Freq. Resp

We can model dynamics

We can see what happens when diff freq sinusoids are input

This is the Frequency response

We can assess whether system unstable

more easily than using Laplace, partial fractions, etc

We can assess how oscillatory a stable system is – relative stability

We can design controllers to

make system stable

Improve response: remove steady state errors; speed it up

From freq resp plot, we can work out model of system (identify it)
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Basic Idea on Frequency Response
Uses properties of sinusoids in linear systems

O/p sinusoid same freq as I/p – diff amp – delayed (phase lag)

Model sys as TF in jω : a + jb, where a and b functions of ω

Output

System

Input
Linear


i

o

In = K  sin (ωt)
Out = K  sin (ωt+ )
ω = 2πf  f = freq

o
i

Out Amp KFind Gain =  =   and  Phase = delay In to Out
In Amp K

 o
i

KGain =  = a + j b   and  Phase  = (a +j b)
K

 
a + j ba + j bNB If TF = ; Gain =   Phase = (a +j b) - (c +j d)

c + j d c + j d

Gain and Phase vary with ω
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-1

0

1At low f, In ~ Out 

At higher f, 

different amplitude 
bigger delay I to O

Very high f, O/I  small

Plots of Sinusoid I and O at ω = 0.1, 0.4 and 1.2 rad/s
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Why these values
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0 50 100
-2

0

2

So, yes O almost same as I

(b) On 
earlier 
slide 

    2 2
O 5 5Graphs are for  =   =  
I 10s 2s 5 -10 2 5j


 

O 5 5At  = 0.1  =  = 
I -10*0.01 2 0.1 5 4.9+j0.2j

2 2

55 5 5 =  =  =  = 1.02
4.9+j0.2 4.9+j0.2 24.054.9 +0.2

  

-1 O

5  = 5 - 4.9+j0.2 
4.9+j0.2

0.2= 0 - tan  = -2.34  or -0.04 rads
4.9

For other two frequencies
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0 10 20 30
-2

0

2

0 5 10
-1

0

1
 

O 5 5At  = 1.2  =  = 
I -10*1.44 2 1.2 5 -9.4+j2.4j

5 5=  = 0.52
-9.4+j2.4 94.12

 -1 O5 2.4= - tan  = -166  or -2.9 rads
-9.4+j2.4 -9.4


 

O 5 5At  = 0.4  =  = 
I -10*0.16 2 0.4 5 3.4+j0.8j

2 2
5 5 5=  =  = 1.43

3.4+j0.8 12.23.4 +0.8

-1 O5 0.8= - tan  = -13  or -0.23 rads
3.4+j0.8 3.4



How affects Feedback System
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O
D

I
C

E
P


O CP =  
I 1 CP 

O 1=  
D 1 CP

Key point, gains of C and P change with freq

So might have high gain at low freq, so O/I ~1, O/D ~0

But at high freq, gain low, O/I = small; O/D ~ 1

Note I and D are signals which may be low and / or high freq

Consider Aircraft
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Directing commercial aircraft 

No quick changes in steering : I is low freq signal

But turbulence – a disturbance – will have higher freq

Fighter aircraft 

– need quick changes to avoid missiles – I high freq

So, when designing a system, 

need to know what I and D signals are likely to be, 

try to arrange loop gain is large at those frequencies.

Then (at steady state) system response is ok.

Delay between I and O - Stability
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As freq increases, so delay between I and O changes

This delay or Phase shift important … can affect stability

Which we assess by loop transfer function (ie I = 0)

OI
C

E
P

If O is sin(ωt), E = -sin(ωt) = sin(ωt-π)    phase lag of 180O

As ω changes, phase between E and O changes

Key is to find ω such that phase lag of C*P is 180O 

so lag round loop is one complete cycle.

Informal view of stability
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OI=0
C

E
P

Suppose sinusoid exists s.t. phase(CP) is -180O & |CP| = 1

Suppose O is a one period sinusoid starting at t=0

By time O completed cycle, sinusoid gone round loop

And hence can continue the sinusoid 

At O Have 
oscillator
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Now Suppose gain not 1
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At O

NB strictly analysis incorrect : as signals are sinusoids only at 
steady state - stability about checking transients! 

Sinusoid getting bigger – unstable

At O

Sinusoid getting smaller – stable

If Gain > 1

If Gain < 1

Key Point
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This suggests that (and is true for simple systems)

Find ω such that phase of C * P is -180O (phase lag 180O)

(which means phase lag of loop is 360O)

Find gain of C * P at that freq

If gain > 1 then feedback control system is unstable

If gain = 1 then control system is an oscillator!!!

If gain < 1 then system is stable

Note can also find ω such that gain of C*P = 1

Then find phase lag of C*P : stable if phase lag < 180O

If stable, how close to being oscillator = relative stability

Summary
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In lecture we have introduced the frequency response material
Dynamics systems are modelled using jω
Hence transfer function is of form a + jb, functions of ω
Can work out O knowing I is sin(ωt) from |TF| and (TF)
We note how O/I and O/D vary with ω
We note that stability can be assessed using loop transfer func.
Next week we build on this

NB For tan-1(y/x) cant just calculate y/x and press tan-1 key. Use:

 

 
 

y-1
xIf x = 0, then  = π/2 else  = tan (abs ( ));

If x < 0,  = π - ; 
If y < 0,  = 2π - ;                  (gives answer in radians)

Assignment – Part A
Part A of the assignment is associated with lectures 1, 2 and 3.

Go via Blackboard to my web page and download the zip file 
associated with Part A.

This has a word doc into which you will put your work

And an m-file bi3ss1617.m – which you will need from next week

Before next week, reaffirm your knowledge of complex numbers by 
doing the exercise on the next slide – and on the sheet.

Open the word file, fill in your name and student number, and then 
find the three gains and phases as stipulated on the next slide 
and comment on the result.

Save your word file – you will submit it to Blackboard after you have 
done the exercise associated with the third lecture.
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Exercise – System a)
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0 50 100
-1

0

1

0 50 100
-1

0

1

0 10 20 30
-1

0

1
0 50 100

-1

0

1

0 5 10
-1

0

1

  2
O 1Here  =   
I -5 6 1j




O OFind  and  at
I I

 = 0.1, 0.4 and 1.2 rad/s

Find these by hand/calculator: enter in word doc and comment.

You are to find the gain and phase at three values of ω :

p24 RJM  27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

2 : Frequency Response of Systems

Last week course introduced

We showed that we want High Loop Gain for feedback systems

Loop Transfer function (gain & phase) changes with frequency

And we had to worry about Stability

We noted that stability can be assessed by loop transfer function

If at a frequency loop gain is 1 and phase lag is 360O = oscillator

System stable only if gain < 1 for that phase lag

For C P control system, test gain when phase lag of C * P = 180O

Such analysis achieved by modelling systems as functions of jω

We will explore more, see how MatLab helps. First, complex numbers
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Reminder On Complex Numbers
r, modulus, |z| is 
distance from org

, argument, is angle 
from real axis

    
 

-1 bz =  = tan
a

-2

3 -4

Re(z)

Im(z)

b z = a + j b


r

a

2 2z  = r = a  + b


z  =

z = 3 
z = 

3
0 

z  =2z =  = -2j 
z = j

2
-90 2

z  =4z =  = -4 
z = j

4
-180 
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Four Responses – from last week

        2 2 2 3 2
1 5 5 3;     ;    ;     

5s 6s 1 10s 2s 5 10s 0.5s 5 8s 6s s 3

Closed loop transfer functions, for graphs (a) .. (d)

(a)

(c)

(b)

(d)

0 5 10 15 20 25 30-2

-1

0

1

2

3

Relating to Control System
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O
D

I
C

E
P

2

2

1
5s  + 6s

2 1 2
5s  + 6s

1 *1 O 1Suppose C = 1 and P =  ,  =  = 
I 1 -  -5s  + 6s 5s  + 6s + 1

2 2 2
O 1 1(j ) =  = 
I 5j  + 6j +1 1-5  + 6j


   

   

-1
22 22

O 1 O 6 =      =  0  -  tan
I I 1-51-5  + 6



 



System a
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In Loop TF terms

O
D

I
1

E
2
1

5s 6s
2 2

2

(-)LoopTF 
1  = 

5j  + 6j
1  = 

-5  + 6j

 

 
4 2

1LoopGain =  
25  + 36 

So, Gain =  when ω = 0 

Gain = 100 when  ω ~ 0.0016 rad/s

At very high freq, LoopGain → 0

2
1 1When  very small Gain   = 

636





In terms of Stability
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-1
24 2

1 6LoopGain =     LoopPhase = - tan
-525  + 36



 

At very low freq, LoopPhase ~-90O

At very high freq, LoopPhase → -1800

Loop phase -180O only at ω = ∞ when gain = 0 (less than 1)

Therefore, system is stable

Or, Loop Gain is 1 when 25 ω4 + 36 ω2 = 1   

or ω2 = 0.027 or ω = 0.165 rad/s 

Then phase = -97.8O so phase lag < 180O, so stable

For the Other Systems
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2
2 2

2

5
1 CP 510s +2sIf C = 5 and P = ; = =51+CP10s +2s 10s +2s+51+

10s +2s

Sys b)

2
2 2

2

5
5 CP 510s +0.2sIf C = 1 and P = ; = =51+CP10s +0.2s 10s +0.2s+51+

10s +0.2s

Sys c)

3 2
3 2 3 2

3 2

3
3 CP 38s +6s +sIf C = 1 and P = ; = =31+CP8s +6s +s 8s +6s +s+31+

8s +6s +s

Sys d)

For freq resp, replace s by jω
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Showing d) is Unstable System


     

 

  



  

   




 

3 2

3 3 2 2 2 3

31
24 3 2

O 3For  = ,
I 8s 6s s 3

3 3      (j ) =  = 
8j 6j j -6 j( 8 )

3 8Gain =     Phase = 0 tan
-636 ( 8 )

Loop

Can show (using MATLAB for instance) that 

at ω = 0.3536 rad/s, Phase -180O, Gain = 4

Thus system is unstable.
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Using MatLab

In MATLAB: 

5s2 + 6s + 1 represented by polynomial vector [5  6  1]

Can ‘multiply’ polynomials

conv( [1 1], [8  -2  3]) ie (s + 1)(8s2 – 2s + 3)

ans = [8 6 1 3] i.e. 8s3 + 6s2 + s + 3

Transfer functions : use two polynomials

num = 1; den = [5 6 1]; 

Or num = 5; den = conv([2 1], [1 3 4]);

In this course we will get MatLab to simulate and analyse

Combination of GUIs and code you use – you may write some
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Getting Step Response in MatLab
MATLAB’s control toolbox has   [y,x,t] = step (n, d, t)

Step resp. for n/d over (optional) time t (times/final t)

Returns response in y;  x has ‘state variables’; t has time

Code for Graphs, … where assume I is unit step

[y(:,1), dummy, t] = step(1, [5 6 1], 30); % calc a, set t as 0..30

y(:,2) = step(5, [10  2  5], t); % calc b, use t

y(:,3) = step(5, [10  0.5  5], t); % calc c

y(:,4) = step(3, [8 6 1 3], t); % calc d

plot (t,y, [min(t), min(t) max(t)], [0 1 1]);   % plot graphs + I=step

In above, each column in y has values for one system
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How Find Frequency Response
Dynamic systems – transfer functions - polynomials in jω.

System described by complex number at each ω.

Find Gain and Phase of each.





n(j )If G(j ) = , 
d(j )


 


 

2 2

-1 b
a

Gain = a jb  = a b
If P(j ) = a jb,               

Phase = a jb = tan

  If G(j ) = C(j )P(j ), 


   


  

n(j )G(j )  =    G(j ) = n(j ) - d(j )
d(j )

       G(j )  = C(j ) P(j )     G(j ) = C(j ) + P(j )
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Using MATLAB for Freq Resp
>> polyval([5 6 1], j*w) returns -5w2 + 6jw + 1 = 1-5w2 + 6jw

Returns a number if w number, or a vector if w a vector

Functions abs and angle return gain and phase (in rads)

>> r = polyval([5 6 1] ,j*1)
r =

-4.0 + 6.0i

>> [ abs(r) angle(r)*180/pi ]
ans =

[7.2111      123.6901] %phase +ve as lead

NB Phase in range -180O to + 180º

1So Gain & Phase  @ 1 rad/s = 
[5 6 1] 1/7.2111   -123.6901

-4

6
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Finding and Plotting Freq Response
We find, analyse and often plot how Loop TF varies with ω

Suppose LoopTF defined by two polys num / den

RJM’s Matlab Function to evaluate num/den at ang freqs in ω:

function resp = doFreq (num, den, w);
% RESP = DOFREQ(NUM, DEN,W)
% calc freq resp of NUM/DEN for all ang freqs in W  by RJM
resp = (polyval(num, j*w) ./ polyval(den, j*w));

NB  [x1  x2  x3] ./ [y1  y2  y3] = [x1*y1   x2*y2   x3*y3]

Get gain and phase by :   abs(resp)   &   angle(resp)*180/π

If w a vector (diff freqs), resp is (complex) vector

Plot how gain and phase vary with w:  Bode or Nyquist ... Here Nyquist



BI3SS16 – Frequency Response – Part A

© Prof Richard Mitchell, 2016 7

p37 RJM  27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

Nyquist Diagram
Strictly plot of A or CP (ie – Loop TF) on Argand diagram

Calc gain & phase of A(j) or CP(j)

At each frequency, gain round loop is r, phase lag is ;

In Cartesian terms: x = r cos (), y = r sin () 

Do such calcs at lots of frequencies… 

multiplicatively spaced  ie at ω, ω*fac, ω*fac2, …  fac>1
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Nyquist – Gain vs Phase One Graph
resp = doFreq (2, [10 5 1], logspace (-2, 1));
plot (real(resp), imag(resp), 'x', …

[-1,3], [0 0], 'k-', [0 0], [-2 1], 'k-');

-1 0 1 2 3
-2

-1

0

1

plots real 
vs imag -
crosses at 
each freq; 
+ axes

Calc at log spaced
(multiplicative) 
ω’s from 10-2 .. 101
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Or Nyquist Command – & Draw Lines
Convention : draw lines between points – get smooth ‘locus’

[rp ip] = nyquist ([2], [10 5 1]);   %nyquist works out suitable w’s

plot (rp, ip, 'k-', [-1,3], [0 0], 'k-', [0 0], [-2 1], 'k-');

If just call 
nyquist :

get plot for 
both +ve and 
–ve freqs 

(and not 
show axes)

-1 0 1 2 3
-2

-1

0

1

On High and Low Freq Values
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In all systems have polynomials in jω
For low freq, ω→0, if ω < 0, ω2 smaller, ω3 even smaller etc. 

So just use lowest order polynomial term (may be ω0) 
For high freq, ω→∞, if ω > 0, ω2 bigger, ω3 even bigger, etc

So just use highest order polynomial term

 






 

 

2 2

2 2

2
10j  + 5j  + 1

2  = 2 0
1

2 = 0 -180
10j

Gives start and end of Nyquist plots. May have ω’s in numerator

Low

High
-1 0 1 2 3-2

-1

0

1

Our First Example System (a)
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-1 0 1

-15

-10

-5

0

[rp ip] = nyquist ([1], [5 6 0]);   %nyquist works out suitable w’s

plot (rp, ip, 'k-', [-1.2,1], [0 0], 'k-', [0 0], [-17 1], 'k-');

set(gca, ‘xlim’, [-1.2 1], ‘ylim’, [-17, 1]);      % set range of graph


 









 

 

2 2

2 2

1(j ) = 
5j 6j

1High freq  = 0 -180
5j
1Low freq  = -90

6j

Loop

And On Unstable System (d)
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[rp ip] = nyquist ([3], [8 6 1 0]); 

%nyquist works out suitable w’s

plot (rp, ip, 'k-', [-20,5], [0 0], 'k-', [0 0], [-20 5], 'k-');

<< with similar set command >>

  







 

 

 

3 3 2 2

3 3

3
8j 6j j

3High freq  = 0 -270
8j
3Low freq  = -90
j

-20 -15 -10 -5 0 5-20
-15

-10

-5

0

5
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Assessing Stability on Nyquist
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Find where locus meets –ve Re axis (phase -180)

If < 1 from origin, then stable

Find where meet unit circle (gain is 1)

If phase lag < 180, then stable
-1 0 1

-1

0

1

-2 -1 0 1
-3

-2

-1

0

1

 2 2
1

5j 6j
Gain < 1
PLag < 180

  3 3 2 2
3

8j +6j +j
Gain < 1
PLag < 180

-6 -4 -2 0-10

-8

-6

-4

-2

0

2
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Summary

In this second lecture we have

Looked more at frequency response

Examples of loop transfer function and assoc closed loop TF

Both as functions of s or of jω

We have seen can calculate gain and phase at diff ang freq

We have seen how MatLab can represent transfer functions

and calculate gain and phase at different angular frequencies

and plotted Nyquist diagrams – where can see if system unstable

Next week we look at Bode diagrams – for showing same info

Exercise
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Extract the bi3ss1617.m from the zip file you downloaded last week 
and store in a folder MatLab can access.
It returns systems with parameters set by your student number.
Log into MatLab and enter the 8 digits of your student number by:
>> mystnum = ‘xxxxxxxx’;       % replace xxxxxxxx by your number.
>> resp = bi3ss1617 (1, mystnum)
This returns a struct resp where fields resp.cnum, resp.cden, 
resp.pnum, resp.pden are polynomials for controller C and Process P
Find the low and high frequency gains and phases for C*P and the 
gain and phase at ω = 1 rad/s.
Write commands to plot the Nyquist diagram for C*P.
Paste your work  as instructed into the doc for later submission
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Lecture 3. Bode Diagrams

Have seen that systems can be modelled as functions of jω

Frequency response is seeing what happens as ω varies

By looking at the transfer function of a feedback loop

we can assess whether feedback system is stable

Is gain < 1 when phase lag round loop is 360O?

(for Control System, |C * P| < 1 when  C*P is =180O)

Last week we saw how could plot frequency response

on Argand Plane – as a Nyquist Diagram

and assess stability

This week we show how Bode diagrams can be used.

Bode Diagrams Key Points
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Instead of one graph, have two

one shows how gain varies with ω, one how phase varies with ω

Different way of representing SAME info you see on Nyquist

So can also see if system is unstable

Can also approximate graphs by series of straight lines

These are called asymptotes

Very useful for estimating aspects of system

By looking at both graphs can derive model of system

So called System Identification

You will use two of my GUIs for plotting and identification
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Log Scales and Bode Diagrams
Over large frequency range, eg 101 to 104, BUT SYSTEM DEPENDENT

Info in each decade just as relevant – so need same space on graphs

Thus plot the graphs with logarithmic scales for frequency

Means same size when go from freq f to f * constant (multiplicative)

Gain also varies over large range, so

Plot log10(Gain) vs log10(Freq) sometimes 20log10(Gain) (in dB)

And Phase is plotted linearly vs log10(Freq)

Bode used loge … gain in nepers …

30 10000100 200010 20020 1000
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MATLAB Code for Bode Diagram
function SimpleBode;
% MATLAB code to do simple Bode diagram of system
% uses RJMs doFreq function …   cf with code for Nyquist
% whose loop transfer function is 2/(10s^2 + 5s + 1)
w = logspace (-2, 1);     % 50 ang freqs from 0.01 to 10
resp = doFreq (2, [10 5 1], w);  % denom = 10s^2 + 5s + 1
subplot(2,1,1); % plot gain (& G=1) on one graph
loglog (w, abs(resp), 'x', [min(w), max(w)], [1 1], 'k');
subplot(2,1,2); % plot phase (&P=180O) on other
semilogx (w, angle(resp)*180/pi, 'x', …

[min(w), max(w)], [-180 -180], 'k');
% note 180/pi so in degrees
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Bode Diagram Generated

10
-2

10
-1

10
0

10
1

10
-3

10
0

10
1

10
-2

10
-1

10
0

10
1

-180

-90

0

Note – is same info as on Nyquist – diff format
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Or using MatLab’s Bode command
Again more conventional to join dots

[m,p,w] = bode(2, [10, 5, 1]);     % Better use bode find w

subplot(2, 1,1); % set 1st of 2 rows of plots

loglog(w,m,[min(w), max(w)], [1, 1], 'k');

set(gca, 'ylim', [0.001, 10], 'ytick', [0.001, 1, 10]);

subplot(2,1,2);

semilogx (w, p, [min(w), max(w)], [-180 -180], 'k');

set(gca, 'ylim', [-190, 10], 'ytick', [-180, -90, 0]);

Use set command for scale (ylim) & labels (ytick) of axis 

Can do [m,p,w] = bode(num,den)  finds suitable values of ω
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Resultant Diagram

10
-2

10
-1

10
0

10
1

10
-3

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

-180

-90

0

Low ω

Gain =

Phase =

High ω

Gain =

Phase =

ω

ω

Ga
in

Ph
as

e
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Relationship Bode to Nyquist

Plots at [ 0.02 0.08 0.2 0.5 0.8 ] rad/s

10
-2

10
-1

10
0

10
-2

10
0

10
1

10
-2

10
-1

10
0

-180

-90

0

0 1 2
-2

-1

0

1

2

System a)  … cf with Nyquist
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
 2 2

1(j ) = 
5j 6j

Loop

10
-2

10
0

10
2

10
-5

10
0

10
2

10
-2

10
0

10
2

-180O

-90O

0

-1 0 1

-15

-10

-5

0

Low ω : gain Inf; phase -90
High ω : gain 0; phase -180 ..
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10 -2 10-1 100 10110-4

100

103

10-2 10-1 100 101
-270
-180
-90

0

-20 -15 -10 -5 0 5-20
-15

-10

-5

0

5

And Unstable System  d)
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
   3 3 2 2

3(j ) = 
8j 6j j

Loop

Low F 
→∞-90

High F 
→0-270O

Assessing Stability
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As per Nyquist, find gain when phase -180O or phase when gain 1

Clearly

At ω where 
phase is -180

The gain > 1

So unstable

At ω where 
gain is 1

Phase lag > 180

So unstable

10-2 10-1 100 10110-4

100

103

10-2 10-1 100 101
-270

-180

-90

0

Stabilising the System

p57 RJM  27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

O
D

I
C

E
 3 2

3
8s 6s s

We have analysed the above system where C = 1

It is unstable, when phase lag of C * P is 180, gain ~ 4

What is simplest way of stabilising it? 

Bode Plots for C = 1, 0.1, 0.01
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C changes

Gain plot 
up/down

Phase plot 
unchanged

as phase 
of C is 0

10-2 10-1 100 10110
-4

10
0

10
3

10-2 10-1 100 101-270

-180

-90

0

Nyquist
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C changes

Plot same 
shape

But 
distance 
from 0,0 
changes

-10 -5 0
-14
-12
-10
-8
-6
-4
-2
0
2

-5 -4 -3 -2 -1 0 1 2-3
-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

Closed Loop Step Response
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0 20 40 60 80 100

0

1

1.5

None that good!
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Strategy for Simple P Controller
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So we can reduce C to make system stable, but to what? 

One strategy is to design so O overshoots final value by 20%

Often : set loop gain = 1 when loop phase is -135O : (explain later)

Suppose P under control defined by polynomials num/den

Then do the frequency response

[m,p,w] = bode (num, den);

Look in p vector : find location where phase is -135O

Find corresponding location in m : is P gain when phase -135O

As want gain C * P = 1 then, so C = 1 / gain. 

But 
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m, p, w are vectors with 50 gains, phases and ang freqs

Probably not have phase = -135 :in fact at locations 15, 16, 17:

m p ω
27.3134 -123.1113    0.1000
21.4863 -129.7019    0.1219
16.3012 -137.8965    0.1509

To find m where p is -135, MatLab has interpolate function
>> interp1(p, m, -135, 'spline') % fits curve (spline) to p

ans = 17.9373
Looks in p for p[index] closest to -135, but notes value not -135
Then finds m[index], but first spline curve to estimate m wanted
% nb strictly p vector be monotonic … we investigate this later

Example 
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[m, p, w] = bode(num, den);
c = 1/interp1 (p, m, -135, 'spline');
[y, dum, t]=step(num * c, [0 0 0 num * c]+den);  %CLOSED LOOP
plot(t,y, [min(t) max(t)], [1 1])

C = 1/17.9373
= 0.0557

Note labels for 
Peak and Steady 
state values, and 
peak time and 
settling time

How find … 
0 19.7398 46.5296

1

1.2368
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How found key values of y and t
y and t are vectors:  y has output values at times in t
yss found using c * P(0) /(1 + c*P(0)  )    P(0) = num(end) / den(end)

yss = (num(end)*c) / (num(end)*c + den(end) )
ypk = max(y);   tpk = t ( y == max(y));
NB y == max(y) returns locations in y where max(y) stored

%o/s is 100* (ypk – yss) / yss
Settling time : scan y vector, find max time where y > 2% from yss

Hint use max of t ( ( abs(y – yss) > 2% of yss) )
Assumes y reached steady state .. Might need to run step longer?
Can mark on plot:   set(gca, ‘xtick’, [0, tpk, tset]);

set (gca, ‘ytick’, sort (unique(([yss, 1, ypk]));
In these set commands the vectors must be in ascending order
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Summary

We have looked further into Frequency Response 

using Bode plots log gain vs log ω and phase vs log ω

we have seen how to assess stability

and how to stabilise by having simple controller

Next week, will investigate Bode plots further

Estimating low/high freq response

Approximating response by straight lines

Key to work in the course
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Exercise – Lecture 3
Do the following, adding to the word document you have been using.

First run resp = bi3ss1617(1, mystnum); to get the system whose 
Nyquist plot you found. Now plot the Bode diagram.

Next run resp = bi3ss1617(2, mystnum); to get a 3rd order system.

Follow instructions in the word document to use MatLab to design a 
Proportional controller (so C*P has phase -135O when its gain is 1) :

Here you load resp.cnum with the value of the controller gain

Then use resp = bi3ss1617(0, mystnum, resp) 

Sets resp fields clnum, clden with the closed loop transfer function

Plot the resultant step response, labelling peak value, time to peak and 
settling time. Copy your code and the graph to the doc.
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4: Frequency Responses Asymptotes

Gain = |A  (jω) |

Phase =  A  (jω)

We have seen how MatLab can be used for frequency response –
assessment of stability, and simple design

OI
A



OI
C

E
P

As dynamic, C and P are 
functions of jω:

Gain = |C*P (jω) |

Phase =  C *P (jω)Similarly could have system as

Graduate engineers need to be able to do more than use MatLab

So will plot approximate responses and do system identification

Key Points on Systems
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O
D

I
A



 


 
A 1O =  *I   *D

1 A 1 A





1 1If A  high : O =  *I *D

large

Loop gain high at low freqs only: loop gain → 0 as ω→∞

I and D are signals with frequency content

Aim for frequencies in I and D, loop gain is high

So lets start thinking about loop transfer function at diff freqs

 
A 1If A  low : O =  *I   *D 
1 1

If no D : high loop gain, O set by β; low loop gain, O set by A 

Estimating/Approximating Responses
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Fundamental concept – for both plotting and later identification

Divide frequency range suitably – starting from low freqs

Can then estimate / approximate in these ranges

How divide – use ‘corner frequencies’ …


 

-1
2 2

K KConsider ;   Gain = ;   Phase = -tan ( /CF)
1 j / 1 + /CFCF

-1
2

KIf /  1;   Gain  = K  Phase  -tan ( ) = 0
1 + 

CF ba
buggerall

  




  -1
2 2
K KIf /CF  1;   Gain  =   Phase  -tan ( ) = -90

/CF/CF
big

Corner Freq, where ω/CF = 1 or ω = CF

Hence - asymptotes
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




 



  j
0.5

3 < 0.5, TF               G = 3; P = 01
  3 1.5 1.50.5,TF G = ;P = -90j

Actual plot moves 
between asymptotes

0.1 1 10
0.1

1

10

-90

-45

0
3

0.5 0.1 1 100.5

So we approximate TF before and after CF

At ω = 0.5 

Gain = 3

or       1.5/0.5 = 3



Plots for 
3

1 j /0.5

Equations for asymptotes:

Before CF, 1+jω/CF = 1; After CF: 1+jω/CF = ω/CF

Works with Multiple Poles …
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We model each pole/zero in form 1+jω/CF in two halves, 

before ω = CF it is 1: so gain is 1; phase is 0O

after it is jω/CF : so gain is ω/CF; phase is -90O

0.5 20 0.5 20

0.5

2 2
0.5 20

1 1 1e.g. TF =  = *
(1 + j )(1 + j ) 1 + j 1 + j

1   if  0.5 :  TF  = 1;  gain is 1, phase is 0
(1)(1)

1 0.5   0.5  20 : TF  *1;  gain is , phase is -90
j

1 1 10   if 20 :  TF *  = ;  g
j j j

   



 









 

  

  2
10ain is ,  phase is -180


For this System
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0.1 0.5 20 100

100

0.1 0.5 20 100
-180

-90

0

 











  

 

0.5 20

2 2

1TF = 
(1 + j )(1 + j )

 0.5 :  TF is 1
0.50.5  20 : TF  
j

1020 :  TF
j



 2 2

0.5At  =  0.5: TF  = 1 or  = 1; 
j0.5

0.5 10 1At  = 20 : TF  =   or  = 
j20 40j 20
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Example with Zero and Poles
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20

0.5 300

4(1 + j )
H = 

(1 + j )(1 + j )



 

0.1 0.5 20 300 1
0.01

0.1

1
4
10

0.1 0.5 20 300 1
-90

-45

0

CFs 0.5, 20 and 300

0.5

20

0.5

20

0.5 300

4 *1 0.5 :  H = 4
1 *1

4*1 20.5  20 : H  =
jj *1

4*
20  300 : H  = 0.1

j *1

4* 30300 :  H
jj * j









 











 

  

  

  

Pure Integrator and Pole
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7

3H = 
j (1 + j )

1 7 100

0.0021

0.4286
3

1 7 100
-180

-90

02 2
7

3 7 :  H
j

3 217 :  H =
j * j j

At  = 1, H  = 3;
At  = 7, H  = 3/7
At  = 100, H  = 0.0021







 





 

 
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Example with Close CFs

  
15

(2j +1)(3j +1)(4j +1)

0.1 1/4 1/3 1/2 1

0.5
1

15

0.1 1/4 1/3 1/2 1
-270

-180

-90

0

CFs close, actual resp
far from asymptotes

2 2

3 3

's       Model    Gain
1< 15 Gain = 15
4

1 1 15< Slope -1
4 3 4j
1 1 15< Slope -2
3 2 12j

1 15> Slope -3
2 24j









CFs 1/4, 1/3 and 1/2
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Another Example


  
15(10j +1)

(j +1)(3j +1)(5j +1)

0.03 0.1 0.2 1/3 1 3
1

10
15
30

0.03 0.1 0.2 1/3 1 3
-180

-90

0

90

1
10

1 1
10 5

1 1
5 3

1
3 2 2

3 3

'

< 15 15

 to 150j 15 to 30

150j to 30
5j

150j to 1 30 to 10
15j
150j 101 to 3 10 to 

915j

s approxTF Gain












CFs 1/10, 1/5, 1/3 and 1
Plot from 0.03 to 3

MATLAB GUI To help Learn
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Num 7System   1            = 
Den 1 + s / 5

Select ω range

0.1  100

For each asym K(jω)n

enter ω range, K and n

0.1  5  7  0

5  100 35 -1

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

-90

-45

0

Done
See also, on my web page, FreqRespAsyms.html

Key Point
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We take a transfer function

We note the corner frequencies, 

and so divide the frequency range

For each frequency range :

n

n

O

TF approxed as K *(j )

So Gain = K*

and Phase = n *90  or n*  rad
2






When plot gain, plot log(K) + n log(ω) vs log(ω)

ie is straight line of gradient (slope) n

n could be 
negative
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On Gain Asymptotes

ω ω

G1

G2

Slope m 
  2 1 2 1log(G ) - log(G ) = m log( ) - log( )

      
 

m
2 2 2

1 11
Glog  = m log  = logG

Consider gain asymptote of the form K ωm (often m is negative)

Suppose asymptote from ω1 to ω2 and gain is G1 at ω1

What is gain at ω2?




 
 
 

m
2 2
1 1

G  =  
G

So if gain 5 at 0.1, when slope -2, gain at 0.5 is
-20.55* = 0.2

0.1
 
 
 
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Estimating ω where gain unity

     

 
  

  2 2 2

15A (j )  =  
(2j +1)(3j +1)(4j +1)

15             = 
1+4 1+9 1+16

To find where gain is unity solve

       2 2 215 = 1+4 1+9 1+16

Can do in MatLab, using interps, – but in an exam?

Can approximate … using asymptotes

This is often needed … important for stability, transients, etc

Use Asymptote Models
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0.1 1/4 1/3 1/2 1
0.5

1

15

Use models in each range and see if answer consistent with range

 
 

  1 1
34

15 15 15 Gain = ;  = 1 when  = ;  out of range
4j 4 4

 


 1 1
3 2 2

15 15 Gain = ;  = 1 when  = ;  out of range
1212

 
 

1 32 3 3
15 15 Gain = ;  = 1 when  = = 0.855;  in range

24 24
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0.7719
Slope -3

ω 0.855

Iteration – for better estimate

1/4 1/3 1/2
0.1

1

15

Actual Gain at 0.8550   is 0.7719    (In fact Gain 1 at 0.7707)

Can iterate to get better estimate : use gains at asymptote ends

  
 
 

31Next Est use  = 
0.7719 0.855

Actual gain 
not return 
to last 
asymptote 
til later ω

Estimate is 0.784

Another Example – from earlier
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
  

15(10j +1)
(j +1)(3j +1)(5j +1)

ω range    approx gain in 
TF        range

3 3
150j> 1 10 and less
15j





0.03 0.1 0.2 1/3 1 3
1

10
15
30


2 2

10Est where gain = 1, solve  = 1   ie  = 10 = 3.16
j

Gain at 3.16 is actually 0.9468;  so iterate

  
 
 

-21Solve   =    ie  = 3.077 
0.9468 3.16

Gain then 0.9971 
Iterate ω = 3.0725
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Summary

Have looked more at plotting frequency responses

In particular have seen how asymptotes can be used to approximate 
Bode graphs and to estimate key freqs.

Important you understand – will use in course a lot, so look at

http://www.reading.ac.uk/~shsmchlr/jsfreqresp/index.htm

It also helps for identification .. 

Working out from Bode plot the structure of the system

Deducing relevant corner frequencies, gains, etc.

This is introduced in two weeks.

Next week we look at second order poles and zeros
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Exercise – Lecture 4
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This is start of Part B of assignment. Runs for next few weeks.

Download the zip file for Part B. This has two files for the plotting 
GUI : FreqAsymPlot.m and FreqAsymPlot.fig. Put in suitable folder.

Also included is Word file for Part B. Load your name etc.

Go to MatLab and run >> FreqAsymPlot

In the GUI enter your student number 

Use the GUI to draw the asymptotes for system 1. When done, 
press Done, and copy to the word doc.

Repeat for systems 2, 3, 4 and 5.

For system 5, you also have to identify the asymptote where the 
gain is 1, and hence estimate ω where this happens. 

Follow instructions in the word file on finding the actual value.
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5 : More On Bode Plots
We have looked at

Plotting Freq Resp of Loop TF – using Bode/Nqyuist
Assessing absolute and relative stability
Seen how to design a Proportional Controller

You have plotted asymptotes – using a GUI
You have estimated freq where gain unity
In this lecture we will

Look at Bode Plots some more – more examples
Better Phase asymptotes
And Second Order Elements

And you will use the GUI in a different mode
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Asymptotes for First Order System


K

1 sT

 




 
1 K 1Asymptote model = K for  and  for 
T j T T

KSo low freq : Gain = K, phase = 0; high freq, Gain = , phase = -90
T


 2 2
KGain at  = 

1 T
  1Phase at  = tan T

Here where T = 1
Corner Freq, CF = 1/T 
Here CF = 1
Gain asyms ok, but 
step change in phase 
problematic
So …

10
-1

10
0 10

10.1

0.7
1

-90

-45

0

10
-1

10
0 10

1
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For better phase sketches
Books recommend phase asymptote from CF/10 to CF*10

But slope is wrong at corner freq: 

But why 4.8? If interested, look at next few slides 

(also on my web page with demonstrations of freq resp)

Note – analysis finds freq range 4.82 which equals eπ !

0.1*CF CF/4.8 CF 10*CFCF*4.8
-90

-45

0
Better asymptote: 
0 : -/2 or 0 : -90 
as  goes from 
CF/4.8 ..CF*4.8

Finding slope for better asymptote
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 


-1KFor ;  phase  = -tan T
1+j T  


  2

d TSo  = -
d 1 T

But use logarithmic scales for 

   
     

d ln( ) 1 1 1 d dAs = ;  =  so = 
d dln( ) d dln( ) d

 
   
   2

d d T 1= = -  = -  @ T = 1
dln( ) d 21 T

But use log based 10:  log(x) = ln(x) * log(e)

  
 

d d 1 1=  = -   @ T=1
dlog( ) d log(e) 2 *log( )e

Continued
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
20 - 1So  =  -

log(r) 2 *log( )e

 1Thus  = 
log(r) log( )e

Or log( ) = log(r)e

 So log( ) = log(r) or r = e e

-90

-45

0

1
T

1 * r
T

1 1*
T r

r

r = 23.14; √r = 4.8 

 


d 1= -   @ T=1
dlog( ) 2 *log( )e

Defines slope of line. 
Phase goes 0 to - /2

ω goes CF/√r to CF*√r
NB: Phase linear, ω logarithmic
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Slope 0 before 1, -1 then til 3, -2 after

Low freq gain found by setting s to 0

Each extra 
lag term

decr slope 
by 1, 

decr phase 
by 90O.

System with Two Lags

10 -1 10 0 10 110-1

100

101

10 -1 10 0 10 1
-180

-90

0

‘extra’ asyms 
help phase 
sketch

Asym Gain 
5/3 at 3rad/s
0.15 at 10rad/s

2 2
15

j


5
j

   
5

1+s 1+s/3

When CFs further apart
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10 -2 10 -1 10 0 10 1 10 210-3

100
101

10 -2 10 -1 10 0 10 1 10 2
-180

-90

0
Here extra 
phase asyms 
dont overlap.

So not 
interacting

Corner freqs in rad/s: 0.2 7

 2 2

Asym Models
1.2 8.46,  ,  
j j

   
6

1+s/0.2 1+s/7

p93 RJM  27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

Lead terms 
increase 

slope by 1 

phase by +90O

Corner freqs in rad/s: 0.4 1 3

System with Two Lags and Lead

10-1 100 10110 -1

10 0

10 1

10-1 100 101
-90

0

 
1.6 4.8Models 4,  ,  1.6, 
j j   


 

4(1 s)
1 s/0.4 1 s/3

Gain = 1.6

Gain = 0.48

Two Similar, CFs in different order
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   


 
2(1 s/0.4)
1 s 1 s/3    


 
6(1 s/3)

1 s 1 s/0.4

10 -1 10 0 10 1100

101

10 -1 10 0 10 1
-90

0

90
10 -1 10 0 10 110-2

100
101

10 -1 10 0 10 1
-180

-90

0

Lead first, so G and P up Lead last, so P < -90 then up 

p95 RJM  27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

Corner frequencies 0.3 0.8 2 6

Another Example

10-1 100 101 10210-4

100
101

10-1 100 101 102
-180

-90

0

  2 2 2 2
0.9 0.72 0.36 2.16Models 3,  ,  , ,
j jj j

asymptotically

ω Gain
0.3 3
0.8 0.9/0.8 = 1.25
2 0.72/4 = 0.18
6 0.36/6 = 0.06

   


  
3(1 s/2)

1 s/0.3 1 s/0.8 (1 s/6)
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What if Infinite d.c. gain

   


 
5(1 s)

s 1 s/0.4 1 s/3

10-1 100 10110-2

100

102

10-1 100 101
-180

-90

0

  2 2 2 2
5 2 2 6Models ,  , ,
j jj j

CFs 0.1, 1, 3

6 @ =3
9

2@ =1
G = 12.5@ =0.4
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Second Order Pole and Asymptotes
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



    

2
n

2
2 nn

K

2 2 2 ssn n

KP(s) =  or 
s 2 s 1

        2 2 2 2 2
n n n n nFor - j2 ,  before  is : after  is -  = (j )  

   

  
    

 
   

 

-1 n
2 22 22 2 nn n

2KP(j )  = ;  P(j ) = -tan
 -  - 2

Here corner freq is ω = ωn. Asymptotes before/after meet at ωn


   2 2

n n

KP(j ) =
- j2

 
  2 2

n n

K KnSo asym for  is  so Gain constant  ;  Phase is = 0

 
  2 2 2

OK Kn j
Asym for  is  and so Gain is ;  Phase is -180

ωn

10
-2

10
-1

10
0

10
1

-180

-90

0
10ωn0.1ωn

ωn 10ωn0.1ωn
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 > 1 den = (1 + s/1)(1 + s/2):

two separate corner freqs

 = 1, factorises as (1 + s/n)2:

one corner freq at n

 < 1, den not factorise,

but has corner freq at n

Smaller  peakier response

If <√½ Gain Peaks at n√(1 - 22)

Asymptotes and Actual Response

2 2
n n

 affects response:
s 2 s

K 
   

Smaller , quicker phase change
Extra asym range is eπ

Why ‘Extra’ Phase Asymptote Range = eπ
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 
 

-1 n
2 2
n

2Phase  = -tan   
  n

d 1Can show  = -  at  = 
d

-180

-90

0

r

ωnωn/√r ωn*√r




0 - 1So  =  -
log(r) *log( )e
Or log( ) = log(r)e

 So log( ) = log(r) or r = e e


2

= 0.5

r = 2.19


2
= 0.25

r = 1.480.1 0.46 2.19 10-180

-90

0

0.1 0.67 1.48 10-180

-90

0

Example with single + quadratic poles
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2 2
400TF = 

(1+s/2) (s  + s*0.5*10 + 10 )

Extra asyms 
help to 
sketch phase.

Shallow 90O

change for 
pole; Steeper 
180O change 
for quadratic

Appreciate 
this for ID0.1 2 10

10*1.48
100

-270

-180

-90

0

2*4.8

2
4.8

10
1.48

 3 3
8 800Models  4  :    :  
j j
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Another Example with Second Order
 

 2
100 1 + s/4

s s  + 5s + 256

Lead at 4 rad/s;

Second order lag at 16 rad/s

10 0 10 1 10 2
10

-3
10

-2
10

-1
10

0

-180

-90

0

10 0 10 1 10 2
Phase 90*slope











 

 2 2

1004     
j *256

254 16   
256
2516      

j

Asym Models

Plotting Asymptotes GUI
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So far, the plotting GUI has required you define asymptote as

K * (jω)n from ωstart to ωend

But, particularly for phase of second order elements, it is useful 
to specify the range around the corner frequencies : eπ or eζπ

So GUI also operates in mode where define Corner Freqs

You specify overall ωstart to ωend and then at these freqs and CFs:

ω; asymptotic Gain at ω; change in Phase at ω; and Phase Range

On calculating asymptotic gain, either use K * (jω)n at ωCF, or

 



 
 
 

start end
n

end
start

If gain G at , the slope is n, then at 

          gain is G * 
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Example
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2 2
400TF = 

(1+s/2) (s  + s*0.5*10 + 10 )

Overall 0.1 .. 100

0.1,4,0,0; 

2,4,-90,23;

10,0.8,-180,2.2; 

100,0.0008,0,0
10 -1 10 0 10 1 10 210-3

100
101

10 10 2-270
-180
-90

0

-1 10 0 10 1

 
 
 

-110G at 2 is 4: at 10 is 4 *  = 0.8
2

 
 
 

-31000.8*
10

0.25e

Applications: Pole+Zero for Notch Filter

p104 RJM 27/09/16 BI3SS16 – Frequency Response – Part A
© Prof Richard Mitchell 2016

10-1 100 101 102
10

0
10

2
10

4

10 10 10 10-1 0 1 2
10

-4
10

-2
10

0

10-1 100 101 102
10

-1

10
0

 2 2
rt rts +2s +

 2 2
rt rt

1
s +0.5s +

 

 

2 2
rt rt

2 2
rt rt

s +2s +

s +0.5s +

Application – Before Loop
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Consider system step response of n/d:

0 5 10 15
0

0.5

1

1.5

2
Normal

+ Notch

pn = [1 0.5*wrt wrt^2]; 

pd = [1 2*wrt wrt^2];

step(conv(pn,n), conv(pn,polyadd(n,d)));

Transient : exp 
damped sinusoid

rt , ang freq of sin, 
is 2.44 rad/s.

Put a notch filter, at 
2.44 rad/s, before loop

OI
C PF

pnn CP = ;  F = 
d 1+CP pd
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Application Second Order Filter
 

 

2

2
2( 0.25)( ) = 

0.01 0.5
s sF s

s s

Asymptotes: gain: 1 until numerator corner freq 0.5 rad/s 

slope is +2 until denom corner freq 0.707 rad/s, then 2.

d.c gain is        2*0.25/0.5 = 1

high f gain is   2*1/1 = 2 

Num overdamped, den very underdamped

Diff of |denom|2 wrt ω is 0 at 0.7 rad/s, 
so |F(jω) |max then : |F(j0.7) | ~ 200

Hence high gain at one freq

If D at that freq,  
reduce its effect by: 

0.5 0.71
2

200

O
D

I
C PF
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Summary
We have looked more at Bode diagrams and asymptotes, specifically

extra asymptotes for phase – help sketching
second order elements – extra asymptotes helpful

Next week we will move on to
looking at the Bode plot and identifying the system

Recommend look at web page FreqRespSeparate.html 
FR plotted, but can include/exclude elements from it

Exercise – Lecture 5
Return to the plotting GUI, but use it in ‘corner frequency’ mode.
Follow instructions in word doc to plot the specified systems


