1. BI3SS16 Frequency Response 2016/17 - Prof Richard Mitchell

Module: State Space and Frequency Response
Overall aim to consider state-space and frequency response modelling and associated control methods
My lectures: Frequency Response
Review of frequency response of linear systems
Relating frequency response and time domain.
Positive and negative feedback.
System identification from frequency response data.
Designing Controllers using Frequency Response

P1 RJM 27/09/16

Background to course

First given by Peter Fellgett - lots of maths Dave Keating \downarrow maths - emphasise meaning I mould notes, add MATLAB, and research. 2011/12 : course reduced. 2013/4 joined with state space Based on Bode (designed telephone amplifiers) 'The engineer who embarks upon the design of a feedback amplifier must be a creature of mixed emotions. On the one hand, he can rejoice in the improvements in the characteristics of the structure which feedback promises to secure him. On the other hand, he knows that unless he can finally adjust the phase and attenuation characteristics

Rest of Lecture

The rest of the lecture comprises
A reminder of feedback systems
Static Analysis (components are constants)
Dynamic Analysis and Stability (use of calculus, s and $j \omega$)
Systems and Sinusoids
Input and Output Sinusoids
Impact of changing gain and phase shift
What means re Steady State Output
How can assess system stability spontaneously burst into uncontrollable singing none of these advantages can be actually realised.' (1940)
p3 RJM 27/09/16

Assessment

Examination -

Two hour exam : 2 questions on Frequency Response

Assignments

For Frequency Response :
series of tasks related to specific lectures,
make up the three parts of the coursework.
This should help understanding of lectures.
BUT to understand you MUST do extra work
Web Pages to help - you are advised to see if these help
http://www.reading.ac.uk/~shsmchlr/jsfreqresp/index.htm
p2 RJM 27/09/16
BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

General Single Loop Feedback System

$A=$ Forward Transfer Function
$\beta=$ Feedback Transfer Function $A \beta=$ Loop Transfer Function Overall TF : use Forward/1-Loop

If $D=0, \frac{O}{I}=\frac{A}{1-A \beta}$
If $I=0, \frac{O}{D}=\frac{1}{1-A \beta}$

$$
\text { Overall } O=\frac{A}{1-A \beta} * I+\frac{1}{1-A \beta} \star D
$$

If loop gain $A \beta$ big, $O=\frac{A}{-A \beta} * I+\frac{1}{-A \beta} * D=\frac{1}{-\beta} I$
Bode worked on getting maximum possible loop gain However : can't have high loop gain at all frequencies p5 RJM 27/09/16

Feedback Control System

The above is 'general' single loop feedback system
Control Engineers usually want $O=I$; so assume $\beta=-1$

P is 'process' to be controlled by controller C
$A=C P$ and $\beta=-1$; Loop Gain $=-C P$

$$
\frac{O}{I}=\frac{C P}{1+C P} \quad \frac{O}{D}=\frac{1}{1+C P} \quad O=\frac{C P}{1+C P} I+\frac{1}{1+C P} D
$$

Still want high loop gain, $\mathrm{O} \sim$ I ... but cant have at all frequencies
\qquad

Dynamic Systems \& Stability

If loop gain large, O equals I / -feedback value (= I for control)
Implies if I changes O instantaneously changes
BUT, O will take time to change - systems dynamic
As such, O may not reach expected value
it may oscillate away - unstable.
Important to ensure feedback system is stable
In this course will pay much attention to stability both absolute and relative
Relative: O reaches final value - so absolutely stable but, oscillates too much - how quickly oscillations decay?
p7 RJM 27/09/16
BI3SS16 - Frequency Response - Part A I3SS16 - Frequency Response - Par
© Prof Richard Mitchell 2016 Sy

We must model Dynamics

Dynamics is about change ... so can think of calculus
$\frac{d O}{d t}=$ function of O, I, t, etc. Generate Diff Eqn and solve
In State Space, system modelled by many first order DEs
Use Laplace operator $s \equiv \frac{d}{d t}$. Generate transfer function $\frac{O}{I}=F(s)$
Use partial fractions, Look-up tables $\rightarrow O(t)=f(t)$
If I sinusoid $K \sin (\omega t)$, use $\mathrm{j} \omega$ in place of $s: \frac{O}{I}=F(\mathrm{j} \omega)$
Simple way of assessing stability, designing controllers...
P9 RJM 27/09/16
BI3S516 - Frequency Response - Part A © Prof Richard Mitchell 2016 yen

What we can do with Freq. Resp

We can model dynamics
We can see what happens when diff freq sinusoids are input
This is the Frequency response
We can assess whether system unstable
more easily than using Laplace, partial fractions, etc
We can assess how oscillatory a stable system is - relative stability
We can design controllers to
make system stable
Improve response: remove steady state errors; speed it up From freq resp plot, we can work out model of system (identify it)
p10 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Basic Idea on Frequency Response

Uses properties of sinusoids in linear systems

\sim| Lnput |
| :--- |
| \sim |\longrightarrow| Linear |
| :--- |
| System |$\rightarrow K_{i} \sin (\omega t)$

O/p sinusoid same freq as I / p - diff amp - delayed (phase lag)
Find Gain $=\frac{\text { Out Amp }}{\text { In Amp }}=\frac{K_{0}}{K_{i}}$ and Phase $=$ delay In to Out
Model sys as TF in $j \omega: a+j b$, where a and b functions of w

$$
\text { Gain }=\frac{K_{0}}{K_{i}}=|a+j b| \text { and Phase } \phi=\angle(a+j b)
$$

NB If TF $=\frac{a+j b}{c+j d}$; Gain $=\frac{|a+j b|}{|c+j d|}$ Phase $=\angle(a+j b)-\angle(c+j d)$
p11 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Gain and Phase vary with ω
Plots of Sinusoid I and O at $\omega=0.1,0.4$ and $1.2 \mathrm{rad} / \mathrm{s}$

At low f, In ~ Out At higher f,
different amplitude bigger delay I to O Very high f, O/I small

p12 RJM 27/09/16
BI3S516 - Frequency Response - Part A
© Prof Richard Mitchell 2016

Why these values

Graphs are for $\frac{O}{I}=\frac{5}{10 s^{2}+2 s+5}=\frac{5}{-10 \omega^{2}+2 j \omega+5} \quad \begin{aligned} & \text { (b) On } \\ & \text { earlier } \\ & \text { slide }\end{aligned}$
At $\omega=0.1 \frac{O}{I}=\frac{5}{-10^{\star} 0.01+2 j 0.1+5}=\frac{5}{4.9+j 0.2}$
$\left|\frac{5}{4.9+j 0.2}\right|=\frac{|5|}{|4.9+j 0.2|}=\frac{5}{\sqrt{4.9^{2}+0.2^{2} \mid}}=\frac{5}{\sqrt{24.05}}=1.02$
$\angle \frac{5}{4.9+j 0.2}=\angle 5-\angle 4.9+j 0.2$
$=0-\tan ^{-1} \frac{0.2}{4.9}=-2.34^{O}$ or -0.04 rads
$\begin{aligned} & \text { So, yes } O \text { almost same as I } \\ & \text { p13 RJM 27/09/16 } \\ & \text { BI3SS16 - Frequency Response - Part A } \\ & \text { OProf Richard Mitchell 2016 }\end{aligned}$

$$
\begin{aligned}
& \text { At } \omega=0.4 \frac{O}{I}=\frac{5}{-10^{\star} 0.16+2 j 0.4+5}=\frac{5}{3.4+j 0.8} \\
& \left|\frac{5}{3.4+j 0.8}\right|=\frac{5}{\sqrt{\left|3.4^{2}+0.8^{2}\right|}}=\frac{5}{\sqrt{12.2}}=1.43 \\
& \angle \frac{5}{3.4+j 0.8}=-\tan ^{-1} \frac{0.8}{3.4}=-130 \text { or }-0.23 \text { rads } \\
& \text { At } \omega=1.2 \frac{O}{I}=\frac{5}{-10^{\star 1} 144+2 j 1.2+5}=\frac{5}{-9.4+j 2.4} \\
& \left|\frac{5}{-9.4+j 2.4}\right|=\frac{5}{\sqrt{94.12}}=0.52 \\
& \angle \frac{5}{-9.4+\mathrm{j} 2.4}=-\tan ^{-1} \frac{2.4}{-9.4}=-166^{\circ} \text { or }-2.9 \mathrm{rads} \\
& \text { p14 RJM 27/09/16 } \begin{array}{c}
\text { BI3SS16 - Frequency Response - Part A } \\
\text { O Prof Richard Mitchell } 2016
\end{array}
\end{aligned}
$$

How affects Feedback System

$$
\frac{O}{I}=\frac{C P}{1+C P} \quad \frac{O}{D}=\frac{1}{1+C P}
$$

Key point, gains of C and P change with freq
So might have high gain at low freq, so O/I ~1, O/D ~0
But at high freq, gain low, $O / I=$ small; $O / D \sim 1$
Note I and D are signals which may be low and / or high freq
p15 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Consider Aircraft

Directing commercial aircraft \dagger
No quick changes in steering : I is low freq signal
But turbulence - a disturbance - will have higher freq
Fighter aircraft

- need quick changes to avoid missiles - I high freq

So, when designing a system,
need to know what I and D signals are likely to be,
try to arrange loop gain is large at those frequencies.
Then (at steady state) system response is ok.
p16 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
3SS16 - Frequency Response - Part
〇 Prof Richard Mitchell 2016

Delay between I and O-Stability

As freq increases, so delay between I and O changes This delay or Phase shift important ... can affect stability Which we assess by loop transfer function (ie $I=0$)

If O is $\sin (\omega t), E=-\sin (\omega t)=\sin (\omega t-\pi)$ phase lag of 180°
As ω changes, phase between E and O changes Key is to find w such that phase lag of $C^{\star} P$ is 180°
so lag round loop is one complete cycle.
p17 RJM 27/09/16
BI3ss16 - Frequency Response - Part A
SI3SS16 - Frequency Response - Par
© Prof Richard Mitchell 2016

Informal view of stability

$\mathrm{I}=0$

Suppose sinusoid exists s.t. phase $(C P)$ is -180° \& $|C P|=1$
Suppose O is a one period sinusoid starting at $t=0$
By time O completed cycle, sinusoid gone round loop
And hence can continue the sinusoid
$A+O$

Have oscillator

Now Suppose gain not 1

If Gain < 1

Sinusoid getting smaller - stable
NB strictly analysis incorrect : as signals are sinusoids only at steady state - stability about checking transients!
p19 RJM 27/09/16 BI3SS16 - Frequency Response - Part A I3SS16 - Frequency Response - Par
O Prof Richard Mitchell 2016

Key Point

This suggests that (and is true for simple systems) Find w such that phase of $C^{*} P$ is -180° (phase lag 180°) (which means phase lag of loop is 360°)
Find gain of $C * P$ at that freq
If gain >1 then feedback control system is unstable
If gain $=1$ then control system is an oscillator!!!
If gain < 1 then system is stable
Note can also find w such that gain of $C^{\star} P=1$
Then find phase lag of $C^{\star} P$: stable if phase lag < 180°
If stable, how close to being oscillator = relative stability
p20 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell - Par

Summary

In lecture we have introduced the frequency response material Dynamics systems are modelled using ju
Hence transfer function is of form $a+j b$, functions of w Can work out O knowing I is $\sin (\omega t)$ from $|T F|$ and $\angle(T F)$ We note how O/I and O/D vary with ω
We note that stability can be assessed using loop transfer func. Next week we build on this

NB For $\tan ^{-1}(y / x)$ cant just calculate y / x and press $\tan ^{-1}$ key. Use:
If $x=0$, then $\phi=\pi / 2$ else $\phi=\tan ^{-1}\left(\operatorname{abs}\left(\frac{y}{x}\right)\right)$;
If $x<0, \phi=\pi-\phi$;
If $y<0, \phi=2 \pi-\phi ; \quad$ (gives answer in radians)
p21 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Assignment - Part A

Part A of the assignment is associated with lectures 1,2 and 3.
Go via Blackboard to my web page and download the zip file associated with Part A.

This has a word doc into which you will put your work
And an m-file bi3ss1617.m - which you will need from next week
Before next week, reaffirm your knowledge of complex numbers by doing the exercise on the next slide - and on the sheet.
Open the word file, fill in your name and student number, and then find the three gains and phases as stipulated on the next slide and comment on the result.
Save your word file - you will submit it to Blackboard after you have done the exercise associated with the third lecture.
p22 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Exercise - System a)

You are to find the gain and phase at three values of ω :

Find these by hand/calculator: enter in word doc and comment. p23 RJM 27/09/16 BI3Ss16 - Frequency Response - Part A $\begin{gathered}\text { OProf Richard Mitchell 2016 }\end{gathered}$

2 : Frequency Response of Systems

Last week course introduced

We showed that we want High Loop Gain for feedback systems Loop Transfer function (gain \& phase) changes with frequency And we had to worry about Stability
We noted that stability can be assessed by loop transfer function If at a frequency loop gain is 1 and phase lag is $360^{\circ}=$ oscillator System stable only if gain < 1 for that phase lag
For $C P$ control system, test gain when phase lag of $C * P=180^{\circ}$ Such analysis achieved by modelling systems as functions of jw We will explore more, see how MatLab helps. First, complex numbers

[^0]
Reminder On Complex Numbers

$|z|=r=\sqrt{a^{2}+b^{2}}$

r, modulus, $|z|$ is
distance from org
ϕ, argument, is angle
from real axis
$\angle \mathrm{z}=\phi=\tan ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)$

$$
\begin{aligned}
& z=3 \begin{array}{l}
|z|=3 \\
\angle z=0
\end{array} \quad z=\frac{2}{j}=-2 j \begin{array}{l}
|z|=2 \\
\angle z=-90
\end{array} \quad z=\frac{4}{j^{2}}=-4 \quad \begin{array}{l}
|z|=4 \\
\angle z=-180
\end{array} \\
& \begin{array}{l}
\text { p25 RJM 27/09/16 }
\end{array} \begin{array}{l}
\text { BI3SS16 - Frequency Response - Part A } \\
\text { OProf Richard Mitchell 2016 }
\end{array}
\end{aligned}
$$

Four Responses - from last week

(c)

(b)
(a)

Closed loop transfer functions, for graphs (a) .. (d)
$\frac{1}{5 s^{2}+6 s+1} ; \quad \frac{5}{10 s^{2}+2 s+5} ; \frac{5}{10 s^{2}+0.5 s+5} ; \frac{3}{8 s^{3}+6 s^{2}+s+3}$
p26 RJM 27/09/16 $\begin{gathered}\text { BI3S516 - Frequency Response - Part A } \\ \text { OProf Richard Mitchell } 2016\end{gathered}$

Relating to Control System

Suppose $C=1$ and $P=\frac{1}{5 s^{2}+6 s}, \frac{O}{I}=\frac{1^{\star} \frac{1}{5 s^{2}+6 s}}{1-\frac{1}{5 s^{2}+6 s}}=\frac{1}{5 s^{2}+6 s+1}$

$$
\frac{O}{I}(j \omega)=\frac{1}{5 j^{2} \omega^{2}+6 j \omega+1}=\frac{1}{1-5 \omega^{2}+6 j \omega}
$$

$$
\left|\frac{O}{I}\right|=\frac{1}{\sqrt{\left(1-5 \omega^{2}\right)^{2}+(6 \omega)^{2}}}<\frac{O}{I}=0-\tan ^{-1} \frac{6 \omega}{1-5 \omega^{2}}
$$

System a
p27 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

In Loop TF terms

When ω very small Gain $\approx \frac{1}{\sqrt{36 \omega^{2}}}=\frac{1}{6 \omega}$
So, Gain $=\infty$ when $w=0$
Gain $=100$ when $\omega \sim 0.0016 \mathrm{rad} / \mathrm{s}$
At very high freq, LoopGain $\rightarrow 0$
p28 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016
\qquad

$$
s
$$共 -

In terms of Stability

LoopGain $=\frac{1}{\sqrt{25 \omega^{4}+36 \omega^{2}}}$ LoopPhase $=-\tan ^{-1} \frac{6 \omega}{-5 \omega^{2}}$
At very low freq, LoopPhase ~-90
At very high freq, LoopPhase $\rightarrow-180^{\circ}$
Loop phase -180° only at $\omega=\infty$ when gain $=0$ (less than 1)
Therefore, system is stable
Or, Loop Gain is 1 when $25 \omega^{4}+36 \omega^{2}=1$
or $\omega^{2}=0.027$ or $\omega=0.165 \mathrm{rad} / \mathrm{s}$
Then phase $=-97.8^{\circ}$ so phase lag $<180^{\circ}$, so stable
p29 RJM 27/09/16
BI3SS16 - Frequency Response - Part A
I3SS16 - Frequency Response - Part
OProf Richard Mitchell 2016 cyentics

For the Other Systems

Sys b)

$$
\text { If } C=5 \text { and } P=\frac{1}{10 s^{2}+2 s} ; \frac{C P}{1+C P}=\frac{\frac{5}{10 s^{2}+2 s}}{1+\frac{5}{10 s^{2}+2 s}}=\frac{5}{10 s^{2}+2 s+5}
$$

Sys c)

$$
\text { If } C=1 \text { and } P=\frac{5}{10 s^{2}+0.2 s} ; \frac{C P}{1+C P}=\frac{\frac{5}{10 s^{2}+0.2 s}}{1+\frac{5}{10 s^{2}+0.2 s}}=\frac{5}{10 s^{2}+0.2 s+5}
$$

Sys d)

$$
\text { If } C=1 \text { and } P=\frac{3}{8 s^{3}+6 s^{2}+s} ; \frac{C P}{1+C P}=\frac{\frac{3}{8 s^{3}+6 s^{2}+s}}{1+\frac{3}{8 s^{3}+6 s^{2}+s}}=\frac{3}{8 s^{3}+6 s^{2}+s+3}
$$

For freq resp, replace s by jw
p30 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

Showing d) is Unstable System

$$
\begin{aligned}
& \text { For } \frac{O}{I}=\frac{3}{8 s^{3}+6 s^{2}+s+3} \\
& \operatorname{Loop}(\mathrm{j} \omega)=\frac{3}{8 \mathrm{j}^{3} \omega^{3}+6 \mathrm{j}^{2} \omega^{2}+\mathrm{j} \omega}=\frac{3}{-6 \omega^{2}+\mathrm{j}\left(\omega-8 \omega^{3}\right)} \\
& \text { Gain }=\frac{3}{\sqrt{36 \omega^{4}+\left(\omega-8 \omega^{3}\right)^{2}}} \quad \text { Phase }=0-\tan ^{-1} \frac{\omega-8 \omega^{3}}{-6 \omega^{2}}
\end{aligned}
$$

Can show (using MATLAB for instance) that at $\omega=0.3536 \mathrm{rad} / \mathrm{s}$, Phase -180°, Gain $=4$

Thus system is unstable.
p31 RJM 27/09/16
BI3SS16 - Frequency Response - Part A BI3SS16 - Frequency Response - Part
© Prof Richard Mitchell 2016

Using MatLab

In this course we will get MatLab to simulate and analyse Combination of GUIs and code you use - you may write some

In MATLAB:

$5 s^{2}+6 s+1$ represented by polynomial vector [50cc $\left.\begin{array}{lll}5 & 6 & 1\end{array}\right]$
Can 'multiply' polynomials

$$
\begin{array}{ll}
\operatorname{conv}\left(\left[\begin{array}{lll}
1 & 1
\end{array}\right],\left[\begin{array}{lll}
8 & -2 & 3
\end{array}\right]\right) & \text { ie }(s+1)\left(8 s^{2}-2 s+3\right) \\
\operatorname{ans}=\left[\begin{array}{llll}
8 & 6 & 1 & 3
\end{array}\right] & \text { i.e. } 8 s^{3}+6 s^{2}+s+3
\end{array}
$$

Transfer functions: use two polynomials

$$
\text { num = 1; den = }\left[\begin{array}{lll}
5 & 6 & 1
\end{array}\right] ;
$$

$$
\text { Or } \quad \text { num }=5 ; \text { den }=\operatorname{conv}\left(\left[\begin{array}{ll}
2 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 4
\end{array}\right]\right) ;
$$

p32 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Getting Step Response in MatLab

MATLAB's control toolbox has $[y, x, t]=\operatorname{step}(n, d, t)$
Step resp. for n / d over (optional) time \dagger (times/final \dagger)
Returns response in y; x has 'state variables'; \dagger has time
Code for Graphs, ... where assume I is unit step
$\left[y(: 1)\right.$, dummy, \dagger] $=\operatorname{step}\left(1,\left[\begin{array}{ll}5 & 6 \\ 1\end{array}\right], 30\right)$; $\%$ calc a, set \dagger as $0 . .30$
$y(:, 2)=\operatorname{step}\left(5,\left[\begin{array}{lll}10 & 2 & 5\end{array}\right], t\right) ; \quad \%$ calc b, use \dagger
$y(:, 3)=\operatorname{step}\left(5,\left[\begin{array}{lll}10 & 0.5 & 5\end{array}\right], t\right) ; \quad$ \% calc c
$y(: 4)=\operatorname{step}\left(3,\left[\begin{array}{lll}8 & 6 & 1\end{array}\right]\right.$], t); $\quad \%$ calc d
plot ($\left.\dagger, y,[\min (t), \min (t) \max (t)],\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\right) ; \%$ plot graphs + I=step
In above, each column in y has values for one system
p33 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

How Find Frequency Response

Dynamic systems - transfer functions - polynomials in jw. System described by complex number at each ω.
Find Gain and Phase of each.

$$
\begin{array}{ll}
\text { If } P(j \omega)=a+j b, & \text { Gain }=|a+j b|=\sqrt{a^{2}+b^{2}} \\
\text { If } G(j \omega)=C(j \omega) P(j \omega), & \text { Phase }=\angle a+j b=\tan ^{-1} \frac{b}{a}
\end{array}
$$

p34 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Finding and Plotting Freq Response

We find, analyse and often plot how Loop TF varies with ω Suppose LoopTF defined by two polys num / den
RJM's Matlab Function to evaluate num/den at ang freqs in ω :

> function resp = doFreq (num, den, w);
\% RESP = DOFREQ(NUM, DEN,W)
\% calc freq resp of NUM/DEN for all ang freqs in W by RJM
resp $=\left(\right.$ polyval $\left(n u m, j^{*} w\right) . /$ polyval $\left(d e n, j^{*} w\right)$);
NB $[x 1 \times 2 x 3] . /\left[\begin{array}{lll}y 1 & y 2 & y\end{array}\right]=\left[\begin{array}{lll}x 1^{\star} y 1 & x 2^{*} y 2 & x 3^{\star} y 3\end{array}\right]$
Get gain and phase by: abs(resp) \& angle(resp) $180 / \pi$
If w a vector (diff freqs), resp is (complex) vector
Plot how gain and phase vary with w: Bode or Nyquist ... Here Nyquist
p36 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

Nyquist Diagram

Strictly plot of $A \beta$ or $C P$ (ie - Loop TF) on Argand diagram
Calc gain \& phase of $A \beta(\mathrm{j} \omega)$ or $C P(\mathrm{j} \omega)$
At each frequency, gain round loop is r, phase lag is ϕ :

In Cartesian terms: $x=r \cos (\phi), y=r \sin (\phi)$
Do such calcs at lots of frequencies...
multiplicatively spaced ie at $\omega, \omega^{\star} f a c, \omega^{\star} f \mathrm{fac}^{2}, \ldots$ fac>1
p37 RJM 27/09/16 BI3SS16 - Frequency Response - Part A BI3SS16 - Frequency Response - Part
© Prof Richard Mitchell 2016

Nyquist - Gain vs Phase One Graph

Or Nyquist Command - \& Draw Lines

Convention : draw lines between points - get smooth 'locus' [rp ip] = nyquist ([2], [1051]); \%nyquist works out suitable w's plot (rp, ip, 'k-' , [-1,3], [0 0], 'k-', [0 0], [-2 1], 'k-'):

If just call nyquist:
get plot for both +ve and -ve freqs
(and not
show axes)

Our First Example System (a)

$$
\begin{aligned}
& \text { Loop }(\mathrm{j} \omega)=\frac{1}{5 \mathrm{j}^{2} \omega^{2}+6 \mathrm{j} \omega} \\
& \text { High freq } \omega \rightarrow \frac{1}{5 \mathrm{j}^{2} \omega^{2}}=0 \angle-180 \\
& \text { Low freq } \omega \rightarrow \frac{1}{6 \mathrm{j} \omega}=\infty \angle-90
\end{aligned}
$$

[rp ip] = nyquist ([1], [5 600$]$); \%nyquist works out suitable w's plot (rp, ip, 'k-' , [-1.2,1], [0 0], 'k-', [0 0], [-17 1], 'k-'); set(gca, 'xlim', [-1.2 1], 'ylim', [-17, 1]); \% set range of graph p41 RJM 27/09/16

And On Unstable System (d)

[rp ip] = nyquist ([3], [8 610 l]):
\%nyquist works out suitable w's
plot (rp, ip, 'k-' , [-20,5], [0 0], 'k-' , [0 0], [-20 5], 'k-'); << with similar set command »>
p42 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

Assessing Stability on Nyquist

Find where locus meets -ve Re axis (phase -180)
If < 1 from origin, then stable
Find where meet unit circle (gain is 1)
If phase lag < 180, then stable

p43 RJM 27/09/16

Summary

In this second lecture we have
Looked more at frequency response
Examples of loop transfer function and assoc closed loop TF Both as functions of s or of $j \omega$
We have seen can calculate gain and phase at diff ang freq
We have seen how MatLab can represent transfer functions and calculate gain and phase at different angular frequencies and plotted Nyquist diagrams - where can see if system unstable Next week we look at Bode diagrams - for showing same info

Exercise

Extract the bi3ss1617.m from the zip file you downloaded last week and store in a folder MatLab can access.
It returns systems with parameters set by your student number. Log into MatLab and enter the 8 digits of your student number by: >> mystnum = ' $x x x x x x x x$ '; \% replace $x x x x x x x x$ by your number. >> resp = bi3ss1617 (1 , mystnum)
This returns a struct resp where fields resp.cnum, resp.cden, resp.pnum, resp.pden are polynomials for controller C and Process P
Find the low and high frequency gains and phases for $C * P$ and the gain and phase at $\omega=1 \mathrm{rad} / \mathrm{s}$.
Write commands to plot the Nyquist diagram for $C^{\star} P$.
Paste your work as instructed into the doc for later submission
p45 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

Bode Diagrams Key Points

Instead of one graph, have two
one shows how gain varies with ω, one how phase varies with ω
Different way of representing SAME info you see on Nyquist
So can also see if system is unstable
Can also approximate graphs by series of straight lines
These are called asymptotes
Very useful for estimating aspects of system
By looking at both graphs can derive model of system
So called System Identification
You will use two of my GUIs for plotting and identification

Lecture 3. Bode Diagrams

Have seen that systems can be modelled as functions of $j \omega$ Frequency response is seeing what happens as w varies By looking at the transfer function of a feedback loop we can assess whether feedback system is stable Is gain < 1 when phase lag round loop is 360° ?
(for Control System, $\left|C^{*} P\right|<1$ when $\angle C^{\star} P$ is $=180^{\circ}$)
Last week we saw how could plot frequency response
on Argand Plane - as a Nyquist Diagram
and assess stability
This week we show how Bode diagrams can be used.
p46 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Log Scales and Bode Diagrams

Over large frequency range, eg 10^{1} to 10^{4}, BUT SYSTEM DEPENDENT Info in each decade just as relevant - so need same space on graphs Thus plot the graphs with logarithmic scales for frequency

Means same size when go from freq f to f^{*} constant (multiplicative)
Gain also varies over large range, so
Plot $\log _{10}$ (Gain) vs $\log _{10}$ (Freq) sometimes $20 \log _{10}$ (Gain) (in dB)
And Phase is plotted linearly vs $\log _{10}$ (Freq)
Bode used $\log _{e} \ldots$ gain in nepers ...

MATLAB Code for Bode Diagram

function SimpleBode;
\% MATLAB code to do simple Bode diagram of system
\% uses RJMs doFreq function ... cf with code for Nyquist $\%$ whose loop transfer function is $2 /\left(10 s^{\wedge} 2+5 s+1\right)$
$w=$ logspace $(-2,1)$; $\quad \% 50$ ang freqs from 0.01 to
resp $=\operatorname{doFreq}\left(2,\left[\begin{array}{lll}10 & 5 & 1\end{array}\right], w\right) ; \%$ denom $=10 s^{\wedge} 2+5 s+1$
subplot($2,1,1$); $\quad \%$ plot gain ($\& G=1$) on one graph
$\log \log (w, a b s(r e s p), ~ ' x ',[\min (w), \max (w)],[11], ~ ' k ')$;
subplot($2,1,2$): $\quad \%$ plot phase ($\& P=180^{\circ}$) on other
semilogx (w, angle(resp)*180/pi, ' x ', ...
[min(w), max(w)], [-180-180], 'k');
\% note 180/pi so in degrees
p49 RJM 27/09/16 $\begin{gathered}\text { BI3S516 - Frequency Response - Part A } \\ \text { O Prof Richard Mitchell } 2016\end{gathered}$

Note - is same info as on Nyquist - diff format p50 RJM 27/09/16

BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Or using MatLab's Bode command

Again more conventional to join dots
$[m, p, w]=\operatorname{bode}(2,[10,5,1]) ; \quad$ \% Better use bode find w
subplot $(2,1,1)$; $\quad \%$ set $1^{\text {st }}$ of 2 rows of plots
$\log \log (w, m,[\min (w), \max (w)],[1,1], ~ ' k ') ;$
set(gca, 'ylim', [0.001, 10], 'ytick', [0.001, 1, 10]);
subplot(2,1,2);
semilogx (w, p, [min(w), max(w)], [-180-180], 'k'):
set(gca, 'ylim', [-190, 10], 'ytick', [-180, -90, 0]);
Use set command for scale (ylim) \& labels (ytick) of axis Can do $[m, p, w]=$ bode(num,den) finds suitable values of ω
p51 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016 yeveris

Relationship Bode to Nyquist

Plots at $\left[\begin{array}{lllll}0.02 & 0.08 & 0.2 & 0.5 & 0.8\end{array}\right] \mathrm{rad} / \mathrm{s}$ $\begin{array}{ll}\text { p53 RJM 27/09/16 } & \begin{array}{c}\text { BI3SS16 - Frequency Response - Part A } \\ \text { O Prof Richard Mitchell } 2016\end{array}\end{array}$

\qquad Cyen cyevetis

Stabilising the System

We have analysed the above system where $C=1$
It is unstable, when phase lag of $C * P$ is 180 , gain ~ 4
What is simplest way of stabilising it?
p57 RJM 27/09/16
BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Bode Plots for $C=1,0.1,0.01$

p58 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Closed Loop Step Response

None that good!
p60 RJM 27/09/16
BI3ss16 - Frequency Response - Part A
O Prof Richard Mitchell 2016

Strategy for Simple P Controller

So we can reduce C to make system stable, but to what? One strategy is to design so O overshoots final value by 20% Often: set loop gain $=1$ when loop phase is -135° : (explain later) Suppose P under control defined by polynomials num/den Then do the frequency response

$$
[m, p, w]=\text { bode (num, den); }
$$

Look in p vector : find location where phase is -1350
Find corresponding location in m : is P gain when phase -135°
As want gain C * $P=1$ then, so $C=1 /$ gain.
p61 RJM 27/09/16
BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Example

[m, p, w] = bode(num, den);
$c=1 /$ interp1 (p, m, -135 , 'spline');
[y, dum, \dagger] $=$ step(num * $c,[000$ num * $c]+$ den): \%CLOSED LOOP $\operatorname{plot}\left(\dagger, y,[\min (\dagger) \max (\dagger)],\left[\begin{array}{ll}1 & 1\end{array}\right)\right.$
$C=1 / 17.9373$
$=0.0557$
Note labels for
Peak and Steady state values, and peak time and settling time

How find ...

But

m, p, w are vectors with 50 gains, phases and ang freqs
Probably not have phase $=-135$:in fact at locations $15,16,17$:

m	p	ω
27.3134	-123.1113	0.1000
21.4863	-129.7019	0.1219
16.3012	-137.8965	0.1509

To find m where p is -135 , MatLab has interpolate function >> interp1($p, m,-135$, 'spline') \% fits curve (spline) to p

$$
\text { ans }=\quad 17.9373
$$

Looks in p for $p[$ index] closest to -135 , but notes value not -135
Then finds m[index], but first spline curve to estimate m wanted
$\% \mathrm{nb}$ strictly p vector be monotonic ... we investigate this later
p62 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
BI3SS16 - Frequency Response - Par
@ Prof Richard Mitchell 2016

How found key values of y and t

y and t are vectors: y has output values at times in t yss found using $c^{*} P(0) /\left(1+c^{\star} P(0)\right) \quad P(0)=$ num(end) $/$ den(end) yss $=\left(\right.$ num $\left.(\text { end })^{\star} c\right) /(\text { num(end })^{\star} c+\operatorname{den}($ end $\left.)\right)$
$y p k=\max (y) ; \quad \dagger p k=\dagger(y==\max (y))$;
NB $y==\max (y)$ returns locations in y where $\max (y)$ stored
$\% o / s$ is 100^{*} (ypk - yss) / yss
Settling time : scan y vector, find max time where $y>2 \%$ from $y s s$
Hint use max of $\dagger((a b s(y-y s s)>2 \%$ of $y s s))$
Assumes y reached steady state .. Might need to run step longer? Can mark on plot: set(gca, 'xtick', [0, tpk, tset]); set (gca, 'ytick', sort (unique(([yss, 1, ypk]));
In these set commands the vectors must be in ascending order

$$
\begin{array}{ll}
\text { p64 RJM 27/09/16 } & \text { BI3SS16 - Frequency Response - Part A } \\
\text { OProf Richard Mitchell 2016 }
\end{array}
$$ © Prof Richard Mitchell 2016

Summary

We have looked further into Frequency Response
using Bode plots \log gain vs $\log w$ and phase vs $\log w$
we have seen how to assess stability
and how to stabilise by having simple controller
Next week, will investigate Bode plots further Estimating low/high freq response Approximating response by straight lines Key to work in the course

Exercise - Lecture 3

Do the following, adding to the word document you have been using. First run resp = bi3ss1617(1, mystnum); to get the system whose Nyquist plot you found. Now plot the Bode diagram.
Next run resp $=$ bi3ss1617(2, mystnum); to get a $3^{\text {rd }}$ order system.
Follow instructions in the word document to use MatLab to design a Proportional controller (so $C^{\star} P$ has phase -135° when its gain is 1) :

Here you load resp.cnum with the value of the controller gain
Then use resp $=$ bi3ss1617(0, mystnum, resp)
Sets resp fields clnum, clden with the closed loop transfer function Plot the resultant step response, labelling peak value, time to peak and settling time. Copy your code and the graph to the doc.

4: Frequency Responses Asymptotes

We have seen how MatLab can be used for frequency response assessment of stability, and simple design

Similarly could have system as
As dynamic, C and P are functions of $j \omega$

Gain $=\left|C^{\star} P(j \omega)\right|$
Phase $=\angle C * P(j \omega)$

Gain $=|A \beta(j \omega)|$
Phase $=\angle A \beta(j \omega)$

Graduate engineers need to be able to do more than use MatLab So will plot approximate responses and do system identification p67 RJM 27/09/16 BI3SS16 - Frequency Response - Part A I3SS16 - Frequency Response - Part
© Prof Richard Mitchell 2016

Key Points on Systems

If no D : high loop gain, O set by β; low loop gain, O set by A
Loop gain high at low freqs only: loop gain $\rightarrow 0$ as $\omega \rightarrow \infty$
I and D are signals with frequency content
Aim for frequencies in I and D, loop gain is high So lets start thinking about loop transfer function at diff freqs
p68 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Estimating/Approximating Responses

Fundamental concept - for both plotting and later identification Divide frequency range suitably - starting from low freqs Can then estimate / approximate in these ranges
How divide - use 'corner frequencies' ...
Consider $\frac{K}{1+j \omega / C F}$; Gain $=\frac{K}{\sqrt{1+\omega^{2} / C F^{2}}} ;$ Phase $=-\tan ^{-1}(\omega / C F)$
If $\omega / C F \ll 1 ;$ Gain $\approx \frac{K}{\sqrt{1+\text { buggerall }^{2}}}=K$ Phase $\approx-\tan ^{-1}(b a)=0$
If $\omega / C F \gg 1 ;$ Gain $\approx \frac{K}{\sqrt{\omega^{2} / C F^{2}}}=\frac{K}{\omega / C F}$ Phase $\approx-\tan ^{-1}($ big $)=-90$
Corner Freq, where $\omega / C F=1$ or $\omega=C F$
p69 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Hence - asymptotes

So we approximate TF before and after CF
Before CF, $1+j \omega / C F=1 ; \quad$ After CF: $1+j \omega / C F=\omega / C F$
Plots for
$\frac{3}{1+j \omega / 0.5}$

Actual plot moves between asymptotes Equations for asymptotes:

$$
\begin{aligned}
\omega<0.5, \mathrm{TF} & \approx \frac{3}{1} \quad G=3 ; \mathrm{P}=0 \\
\omega>0.5, \mathrm{TF} & \approx \frac{3}{\mathrm{j} \omega / / 2.5}=\frac{1.5}{\mathrm{j} \omega} \quad G=\frac{1.5}{\omega} ; \mathrm{P}=-90 \\
\text { p70 RJM 27/09/16 } & \begin{array}{r}
\text { BI3SS16 - Frequency Response - Part } \\
\text { O Prof Richard Mitchell 2016 }
\end{array}
\end{aligned}
$$

$$
\text { At } w=0.5
$$

$$
\text { Gain = } 3
$$

$$
\text { or } \quad 1.5 / 0.5=3
$$

Works with Multiple Poles ...

We model each pole/zero in form 1+jw/CF in two halves,
before $\omega=C F$ it is 1 : so gain is 1 ; phase is 0°
after it is $j \omega / C F$: so gain is $\omega / C F$; phase is -90°
e.g. $T F=\frac{1}{\left(1+\mathrm{j} \frac{\omega}{0.5}\right)\left(1+\mathrm{j} \frac{\omega}{20}\right)}=\frac{1}{1+\mathrm{j} \frac{\omega}{0.5}} \star \frac{1}{1+\mathrm{j} \frac{\omega}{20}}$
if $\omega<0.5$: TF $\approx \frac{1}{(1)(1)}=1$; gain is 1 , phase is 0
$0.5<\omega<20:$ TF $\approx \frac{1}{j \frac{\omega}{0.5}} \star 1$; gain is $\frac{0.5}{\omega}$, phase is -90
if $\omega>20: T F \approx \frac{1}{\mathrm{j} \frac{\omega}{0.5}} * \frac{1}{\mathrm{j} \frac{\omega}{20}}=\frac{10}{\mathrm{j}^{2} \omega^{2}}$; gain is $\frac{10}{\omega^{2}}$, phase is -180
p71RJM 27/09/16
BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

Example with Zero and Poles
$H=\frac{4\left(1+j \frac{\omega}{20}\right)}{\left(1+j \frac{\omega}{0.5}\right)\left(1+j \frac{\omega}{300}\right)}$
$\omega<0.5: H \approx \frac{4^{\star} 1}{1 * 1}=4$
$0.5<\omega<20: H \approx \frac{4^{\star} 1}{j \frac{\omega}{0.5} 1}=\frac{2}{j \omega}$
$20<\omega<300: H \approx \frac{4^{\star} \frac{\omega}{20}}{j \frac{\omega}{0.5}{ }^{\star}}=0.1$

Key Point

We take a transfer function
We note the corner frequencies,
and so divide the frequency range
For each frequency range :
TF approxed as $K^{*}(j \omega)^{n}$
n could be negative
So Gain $=K^{\star} \omega^{n}$
and Phase $=n * 90^{\circ}$ or $n^{\star} \frac{\pi}{2} \mathrm{rad}$
When plot gain, plot $\log (K)+n \log (\omega)$ vs $\log (w)$
ie is straight line of gradient (slope) n
p78 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
BI3SS16 - Frequency Response - Pa
@ Prof Richard Mitchell 2016
© Prof Richard Mitchell 2016
Cuty

On Gain Asymptotes

Consider gain asymptote of the form $K \omega^{m}$ (often m is negative)
Suppose asymptote from ω_{1} to ω_{2} and gain is G_{1} at ω_{1}
What is gain at ω_{2} ?

$$
\begin{array}{cc}
G_{1} \\
G_{2} \prod_{\omega_{1} \omega_{2}}^{\text {Slopem }} & \left.\begin{array}{l}
\log \left(G_{2}\right)-\log \left(G_{1}\right)=m\left(\log \left(\omega_{2}\right)-\log \left(\omega_{1}\right)\right) \\
\log \left(G_{2} / G_{1}\right)
\end{array}\right)=m \log \left(\omega_{2} / \omega_{1}\right)=\log \left(\omega_{2} / \omega_{1}\right)^{m} \\
\frac{G_{2}}{G_{1}}=\left(\frac{\omega_{2}}{\omega_{1}}\right)^{m}
\end{array}
$$

So if gain 5 at 0.1, when slope -2 , gain at 0.5 is $5^{\star}\left(\frac{0.5}{0.1}\right)^{-2}=0.2$
p79 RJM 27/09/16
BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Estimating $\boldsymbol{\omega}$ where gain unity
This is often needed ... important for stability, transients, etc

$$
\begin{aligned}
|A \beta(\mathrm{j} \omega)| & =\left|\frac{15}{(2 \mathrm{j} \omega+1)(3 \mathrm{j} \omega+1)(4 \mathrm{j} \omega+1)}\right| \\
& =\frac{15}{\sqrt{\left(1+4 \omega^{2}\right)\left(1+9 \omega^{2}\right)\left(1+16 \omega^{2}\right)}}
\end{aligned}
$$

To find where gain is unity solve

$$
15=\sqrt{\left(1+4 \omega^{2}\right)\left(1+9 \omega^{2}\right)\left(1+16 \omega^{2}\right)}
$$

Can do in MatLab, using interps, - but in an exam?
Can approximate ... using asymptotes
p80 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
OSS16 - Frequency Response - Pa Cren

Use Asymptote Models

Use models in each range and see if answer consistent with range

$$
\frac{1}{4} \leq \omega \leq \frac{1}{3} \text { Gain }=\left|\frac{15}{4 \mathrm{j} \omega}\right|=\frac{15}{4 \omega} ;=1 \text { when } \omega=\frac{15}{4} \text {; out of range }
$$

$$
\frac{1}{3} \leq \omega \leq \frac{1}{2} \text { Gain }=\frac{15}{12 \omega^{2}} ;=1 \text { when } \omega=\sqrt{\frac{15}{12}} ; \text { out of range }
$$

$$
\frac{1}{2} \leq \omega \text { Gain }=\frac{15}{24 \omega^{3}} ;=1 \text { when } \omega=\sqrt[3]{\frac{15}{24 \omega^{3}}}=0.855 ; \text { in range }
$$

p81 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Iteration - for better estimate

Actual Gain at 0.8550 is 0.7719 (In fact Gain 1 at 0.7707) Can iterate to get better estimate : use gains at asymptote ends

p82 RJM 27/09/16 BI3SS16 - Frequency Response - Part A

$$
\begin{array}{lr}
\text { p82 RJM 27/09/16 } & \begin{array}{r}
\text { BI3SS16 - Frequency Response - Par } \\
\text { O Prof Richard Mitchell } 2016
\end{array} \\
\hline
\end{array}
$$

Estimate is 0.784
A
\qquad Syen vetics

Another Example - from earlier

Est where gain $=1$, solve $\left|\frac{10}{j^{2} \omega^{2}}\right|=1$ ie $\omega=\sqrt{10}=3.16$
Gain at 3.16 is actually 0.9468 ; so iterate

$$
\text { Solve } \frac{1}{0.9468}=\left(\frac{\omega}{3.16}\right)^{-2} \text { ie } \omega=3.077 \quad \begin{aligned}
& \text { Gain then } 0.9971 \\
& \text { Iterate } \omega=3.0725
\end{aligned}
$$

Summary

Have looked more at plotting frequency responses
In particular have seen how asymptotes can be used to approximate Bode graphs and to estimate key freqs.
Important you understand - will use in course a lot, so look at http://www.reading.ac.uk/~shsmchlr/jsfreqresp/index.htm It also helps for identification ..

Working out from Bode plot the structure of the system
Deducing relevant corner frequencies, gains, etc.
This is introduced in two weeks.
Next week we look at second order poles and zeros

Exercise - Lecture 4

This is start of Part B of assignment. Runs for next few weeks. Download the zip file for Part B. This has two files for the plotting GUI : FreqAsymPlot.m and FreqAsymPlot.fig. Put in suitable folder.
Also included is Word file for Part B. Load your name etc.
Go to MatLab and run >> FreqAsymPlot
In the GUI enter your student number
Use the GUI to draw the asymptotes for system 1. When done, press Done, and copy to the word doc.
Repeat for systems 2, 3, 4 and 5.
For system 5, you also have to identify the asymptote where the gain is 1 , and hence estimate ω where this happens.
Follow instructions in the word file on finding the actual value. p85 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

5 : More On Bode Plots

We have looked at
Plotting Freq Resp of Loop TF - using Bode/Nqyuist
Assessing absolute and relative stability
Seen how to design a Proportional Controller
You have plotted asymptotes - using a GUI
You have estimated freq where gain unity
In this lecture we will
Look at Bode Plots some more - more examples
Better Phase asymptotes
And Second Order Elements
And you will use the GUI in a different mode
p86 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
OP16 - Frequency Response -
© Prof Richard Mitchell 2016

Asymptotes for First Order System

$\frac{K}{1+S T} \quad$ Gain at $\omega=\frac{K}{\sqrt{1+\omega^{2} T^{2}}} \quad$ Phase at $\omega=-\tan ^{-1} \omega T$
Asymptote model $=K$ for $\omega<\frac{1}{\mathrm{~T}}$ and $\frac{\mathrm{K}}{\mathrm{j} \omega \mathrm{T}}$ for $\omega>\frac{1}{\mathrm{~T}}$
So low freq: Gain $=K$, phase $=0$; high freq, Gain $=\frac{K}{\omega T}$, phase $=-90$

Here where $T=1$
Corner Freq, CF $=1 / T$
Here CF = 1
Gain asyms ok, but step change in phase problematic
So ...
p87 RJM 27/09/16 $\begin{gathered}\text { BI3S516 - Frequency Response - Part A } \\ \text { O Prof Richard Mitchell } 2016\end{gathered}$

For better phase sketches

Books recommend phase asymptote from CF/10 to $C F^{\star} 10$ But slope is wrong at corner freq:

But why 4.8? If interested, look at next few slides (also on my web page with demonstrations of freq resp)
Note - analysis finds freq range 4.8^{2} which equals e^{π} ! p88 RJM 27/09/16 BI3SS16 - Frequency Response - Part A © Prof Richard Mitchell 2016

Finding slope for better asymptote

For $\frac{K}{1+j \omega T}$; phase $\phi=-\tan ^{-1} \omega T \quad$ So $\frac{d \phi}{d \omega}=-\frac{T}{1+(\omega T)^{2}}$
But use logarithmic scales for ω

$$
\begin{aligned}
& \text { As } \frac{\mathrm{d} \ln (\omega)}{\mathrm{d} \omega}=\frac{1}{\omega} ; \frac{1}{\mathrm{~d} \ln (\omega)}=\omega \frac{1}{\mathrm{~d} \omega} \text { so } \frac{\mathrm{d} \phi}{\mathrm{~d} \ln (\omega)}=\omega \frac{\mathrm{d} \phi}{\mathrm{~d} \omega} \\
& \frac{\mathrm{~d} \phi}{\mathrm{~d} \ln (\omega)}=\omega \frac{\mathrm{d} \phi}{\mathrm{~d} \omega}=-\frac{\omega \mathrm{T}}{1+(\omega \mathrm{T})^{2}}=-\frac{1}{2} @ \omega \mathrm{~T}=1
\end{aligned}
$$

But use \log based 10: $\log (x)=\ln (x)^{*} \log (e)$

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} \log (\omega)}=\omega \frac{\mathrm{d} \phi}{\mathrm{~d} \omega} \frac{1}{\log (e)}=-\frac{1}{2 * \log (e)} \quad @ \omega \mathrm{~T}=1
$$

p89 RJM 27/09/16 BI3SS16 - Frequency Response - Part A

Continued

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} \log (\omega)}=-\frac{1}{2^{*} \log (e)} \quad \varrho \mathrm{T}=1
$$

NB: Phase linear, w logarithmic
So $\frac{0-\frac{\pi}{2}}{\log (r)}=-\frac{1}{2 * \log (e)}$
Thus $\frac{\pi}{\log (r)}=\frac{1}{\log (e)}$
Or $\pi \log (e)=\log (r)$
So $\log \left(e^{\pi}\right)=\log (r)$ or $r=e^{\pi}$
Defines slope of line.
Phase goes 0 to $-\pi / 2$
ω goes $C F / / r$ to $C F^{*} / r$
p90 RJM 27/09/16 BI3SS16 - Frequency Response - Part A
© Prof Richard Mitchell 2016

BI3SS16 - Frequency Response - Part A

Second Order Pole and Asymptotes

Here corner freq is $w=\omega_{n}$. Asymptotes before/after meet at ω_{n} For $\omega_{n}^{2}-\omega^{2}+j 2 \zeta \omega_{n} \omega$, before ω_{n} is ω_{n}^{2} : after ω_{n} is $-\omega^{2}=(\mathrm{j} \omega)^{2}$ So asym for $\omega<\omega_{n}$ is $\frac{K}{\omega_{n}^{2}}$ so Gain constant $\cong \frac{K}{\omega_{n}^{2}}$; Phase is = 0 Asym for $\omega>\omega_{n}$ is $\frac{K}{j^{2} \omega^{2}}$ and so Gain is $\frac{K}{\omega^{2}}$; Phase is -180° p97 RJM 27/09/16 SE3SI11 - Frequency Response - Part A © Prof Richard Mitchell 2012 yontres

Asymptotes and Actual Response

$\frac{K}{s^{2}+2 \zeta s \omega_{n}+\omega_{n}^{2}} \zeta$ affects response:
$\zeta>1$ den $=\left(1+s / \omega_{1}\right)\left(1+s / \omega_{2}\right):$
two separate corner freqs
$\zeta=1$, factorises as $\left(1+s / \omega_{n}\right)^{2}$
one corner freq at ω_{n}
$\zeta<1$, den not factorise,
but has corner freq at ω_{n}
Smaller ζ peakier response
If $\zeta<\delta 1122$ Gain Peaks at $\omega_{n} \delta\left(1-2 \zeta^{2}\right)$

Smaller ζ, quicker phase change Extra asym range is $e^{\zeta \pi}$

Why 'Extra' Phase Asymptote Range $=\boldsymbol{e}^{\zeta \pi}$

Example with single + quadratic poles

Another Example with Second Order

Plotting Asymptotes GUI

So far, the plotting GUI has required you define asymptote as

$$
K^{\star}(j \omega)^{n} \text { from } w_{\text {start }} \text { to } w_{\text {end }}
$$

But, particularly for phase of second order elements, it is useful to specify the range around the corner frequencies: e^{π} or $e^{\zeta \pi}$ So GUI also operates in mode where define Corner Freqs You specify overall $\omega_{\text {start }}$ to $\omega_{\text {end }}$ and then at these freqs and CFs ω; asymptotic Gain at w; change in Phase at w; and Phase Range On calculating asymptotic gain, either use $K^{*}(j \omega)^{n}$ at $\omega_{C F}$, or If gain G at $\omega_{\text {start }}$, the slope is n, then at $\omega_{\text {end }}$

$$
\text { gain is } G^{\star}\left(\frac{\omega_{\text {end }}}{\omega_{\text {start }}}\right)^{n}
$$

p102 RJM 27/09/16
SE3SI11 - Frequency Response - Part A
© Prof Richard Mitchell 2012

Application Second Order Filter

$$
F(s)=\frac{2\left(s^{2}+s+0.25\right)}{s^{2}+0.01 s+0.5} \quad \begin{aligned}
& \text { d.c gain is } \\
& \text { high } f \text { gain is }
\end{aligned}
$$

Asymptotes: gain: 1 until numerator corner freq $0.5 \mathrm{rad} / \mathrm{s}$
slope is +2 until denom corner freq $0.707 \mathrm{rad} / \mathrm{s}$, then 2.
Num overdamped, den very underdamped Diff of |denom| ${ }^{2} \mathrm{wrt} \omega$ is 0 at $0.7 \mathrm{rad} / \mathrm{s}$, so |F(jw) |max then: $|F(j 0.7)| \sim 200$ Hence high gain at one freq

If D at that freq, reduce its effect by:

Summary

We have looked more at Bode diagrams and asymptotes, specifically extra asymptotes for phase - help sketching second order elements - extra asymptotes helpful Next week we will move on to
looking at the Bode plot and identifying the system Recommend look at web page FreqRespSeparate.html FR plotted, but can include/exclude elements from it

Exercise - Lecture 5

Return to the plotting GUI, but use it in 'corner frequency' mode. Follow instructions in word doc to plot the specified systems

[^0]: p24 RJM 27/09/16
 BI3SS16 - Frequency Response - Part A
 © Prof Richard Mitchell 2016

