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CS2NN16 Neural Networks : Part B

In Part B of the course, 

I build on the single layer perceptrons already discussed

Covering Multi-Layer perceptrons

Including learning algorithm and Programming

Give Case Studies

Give alternative learning algorithms

Including an introduction to Genetic Algorithms

Then consider Radial Basis Functions

Finally discuss Weightless Neural Networks

Including Stochastic Diffusion Search
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6 : Implementing MLP and Data

This lecture will address two issues

a) how to complete the implementation of a MLP

b) practical issues surrounding the use of an MLP

For a) we will outline the extra class needed to extend the single 
layer network classes to multi-layer

You will fill in the details in the assignment.

For b) we will consider practicalities associated with using the 
program – data processing; size of network; how to tell when to 
stop learning, etc. 

This should be useful when you apply your network to a real world 
application.
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Implementing MLP

First we will describe how the existing classes can be extended to 
implement a Multi-Layer Perceptron having

Hidden neurons with sigmoid activation

Output neurons with linear or sigmoidal

We already have classes for complete networks

LinearLayerNetwork layer of linear activated neurons

SigmoidalLayerNetwork layer of sigmoidal neurons

We will extend to have 

MultiLayerNetwork layer of hidden sigmoidal neurons

this craftily also has link to the output layer

and hence is a multi layer network
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Class MultiLayerNetwork
This class should inherit from SigmoidalLayerNetwork

Data wise : it will have a pointer to the output layer

It will need a constructor (calling that for SigmoidalLayerNetwork ) 

and which initialises the output layer pointer 

It will need a destructor – to delete the output layer – and itself

It will need its own version of many of the functions – mainly these

will process the neurons in its layer and those in the output layer.

To help the implementation of this, given below are

part of the class declaration

the constructor, ComputeNetwork
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Inheritance

Constructor
Destructor

LinearLayerNetwork 

MultiLayerNetwork 

SigmoidalLayerNetwork 

SetTheWeights

Output Layer

etc

Class
Base

MultiLayerNetwork 

LinearLayerNetwork 

SigmoidalLayer
Network 

p6 RJM  17/08/16 CS2NN16 Neural Networks – Part B
© Prof Richard Mitchell 2016

Part of  Class Declaration

class MultiLayerNetwork : public SigmoidalLayerNetwork {
LinearLayerNetwork *nextlayer;    // link to next layer

virtual void CalcOutputs (vector<double> ins);
public:

MultiLayerNetwork (int numIns, int numOuts, 
LinearLayerNetwork *tonextlayer); // constructor

virtual void SetTheWeights (vector<double> InitWt);
}
Create network with 2 inputs, 2 hiddens and 1 output by

net = new MultiLayerNetwork (2, 2, 
new SigmoidalLayerNetwork (2,1) );

Pass pointer to output layer as third argument.
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Constructor and Destructor

MultiLayerNetwork::MultiLayerNetwork (int numIns, int numOuts, 

LinearLayerNetwork *tonextlayer) 

:SigmoidalLayerNetwork (numIns, numOuts) {

// call inherent constructor to set up this layer

nextlayer = tonextlayer; // then set so point to next

}
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MultiLayerNetwork::~MultiLayerNetwork() {

delete nextlayer;

// remove output layer, then auto-call inherited destructor

}
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Doing these functions

void LinearLayerNetwork ::CalcOutputs(vector<double> ins) {
// calc outputs of network given the inputs ins

SigmoidalLayerNetwork::CalcOutputs(ins);
// call hidden layer CalcOutputs using ins 

nextlayer -> CalcOutputs (outputs);
// calc outputs of next layer : inputs being outputs

}

ChangeAllWeights also processes current and next layers
So has lines like the following

nextlayer -> ChangeAllWeights ( … )    // do output layer
SigmoidalLayerNetwork :: ChangeAllWeights ( … ) // hidden layer
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Other Functions in SigActHidLayer

void MultiLayerNetwork::SetTheWeights (vector<double> initWt) {
vector<double> wthis(initWt.begin(), initWt.begin() + numWeights);
SigmoidalLayerNetwork::SetTheWeights(wthis);
vector<double> wrest(initWt.begin() + numWeights, initWt.end());
nextlayer -> SetTheWeights(wrest);

} // and rest for output layer

SetTheWeights is passed weights of whole net, 
first few weights initialise current layer,  rest are for nextlayer
Achieved by defining subvectors using the begin() and end()

To do ReturnTheWeights vector.insert may be useful
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On Finding Errors

Here need to

Find errors and thence deltas in output layer

Then find errors in hidden layer

These are weighted sum of deltas in the output layer

ie need weights and deltas of the output layer

these are all in output layer

So, add a member function in LinearLayerNetwork

passed the hidden layer’s errors array 

function calcs errors and stores them in this

Then call FindDeltas function so ‘errors’ → deltas
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Debugging

In last week’s lecture values were given for deltas, deltaweights and 
weights when the XOR data were presented 

(starting with ‘Picton’ weights).

If your network does not seem to work properly, then you should 
add to your program code to print out values, which you can 
compare with those.

May be useful to write member functions to return values

vector<double> getdata ();

this could put in data weights, deltas, deltaweights

could be output using the arrout function in the datasets library 
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Data Issues

In principle, your classes will be adaptable to a network with any 
number of inputs, hidden neurons and outputs.

You could thus change the main program so you could use the network 
for any specific application.

However, you can’t just ‘throw’ data at a network & expect it to work 
– there are various considerations to be made

How many inputs are there – you may not want to use all

How many hidden neurons – how do you decide

Is there any data pre-processing needed?

Or post-processing?

Let us investigate
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Under-fitting and Over-fitting
A Neural Network can model data – not exactly.
It must be detailed enough to not only model the training data, but 

also accurately ‘predict’ other data
If too simple wont learn training set - underfitting
A network too complex may fit data ‘noise’ – overfitting
Below predict y, train on x, unseen o
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Network Size
How many neurons in hidden layer? 

How many hidden layers?

If too many relative to training set → over-fitting

No formal methods known to solve this:

‘folklore’ includes Kolmogorov

‘One hidden layer can learn any continuous function’

Two layers can improve matters sometimes

Later we show how Genetic Algorithms can help
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When to Stop Learning

Train ANN to model training data but use on unseen data

As keep learning, SSE on training data down

If learn too much

network fits intricate details (or noise) of training data 
(overfits). 

Errors on unseen data up.

Must stop training before then

How decide?
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Training, Validation & Unseen Sets
Ans: have a data set independent of training set - validation

Thus have three data sets

Training set

Examples used for learning, i.e. to fit paras [weights].

Validation set

Examples used to tune the parameters of a classifier, 

to decide when to stop learning

or to choose number of hidden units in a network

Unseen or Test set

Examples used only to assess the actual performance 
[generalization] of a fully-specified classifier.
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How to Use Validation Set

Set prevValidSSE to high number; Learnt = false
while (not Learnt) and (numepochs < somemax) {

Pass training set to network, adjust weights
if (numepochs > suitable number)

Pass validation set to network, calculate SSE
if (newValidSSE > previousValidSSE)

Learnt = true
else

remember new SSE
}
NB generally better to average ValidSSE over 10 epochs
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On Input Data
Data sets may have many variables: 

which affects output(s) the most? 
Too many inputs slow learning or → overfitting

One can try using different inputs, train a network and see how well 
it performs (using the unseen data)

But, requires many experiments run and evaluated
Can use ‘expert’ knowledge about the problem, 

or Mutual Information, 
Principal Component Analysis, 
Kohonen nets

These can allow you to extract less useful variables



CS2NN16 – Neural Networks – Part B

© Prof Richard Mitchell, 2016 4

p19 RJM  17/08/16 CS2NN16 Neural Networks – Part B
© Prof Richard Mitchell 2016

Can be useful to add Extra Data

Can also be useful to create extra variables –
Suppose time of day used being 0 to 23 for hours.
Possible that output at 23.00 similar to that at 0.00
So introduce cyclic dummy variables

sin(time*2*π)/24 
and 

cos(time*2*π)/24 
Need both
Can similarly apply to months of year / days of year
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Pre-Processing

One point to consider is the range of input variables

If for instance, one variable, a, varied 0..100 and another, b,  0..2, 
and Euclidean distance between two a and two b variables was to 
be found, d = ( (a1-a2)2 + (b1-b2)2 )

Likely that the distance between two a’s would be much greater than 
between two bs and so swamp the b’s.

To solve this it is best to ‘normalise’ –

e.g. to scale data so in range 0..1 or -1 to +1

or to use statistical measures of the data to spread the data 
out and remove outliers

This not so crucial for MLPs … essential for some networks
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Normalisation
Let Dmin and Dmax be min and max of a data variable

Let input range required for the network be Imin to Imax

Then to transform each data value D to an input value I is:

Or, for the more statistically minded

Dmin = mean (data) – k * std (data) (k = 2 is ok)

Dmax = mean (data) + k * std (data)

and then compute I from D with these values  

Possible (sometimes good) to use different normalisation methods for 
different variables. But same method(s) should be used on 
training, validation & unseen data sets

I = Imin + (Imax - Imin) * (D - Dmin) / (Dmax - Dmin)
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Post-Processing

One point worth noting is that it may be appropriate to post-
process the network outputs.

For instance, consider an MLP with sigmoid activation

By definition the output of this will be in the range 0..1

Suppose application has outputs in the range 0..100, then there 
will need to be some scaling of the outputs

Also to be remembered, of course, is that the expected outputs 
in the training/validation/unseen sets will have to be scaled down 
to the range 0..1

Fortunately for you … the datasets class handles this…
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Don’t Use It Once
MLPs are used to generate non linear models
The learning process will mean the network will move (hopefully 

downwards) in the weight error space.
The starting position affects the end position, and whether there 

are local minima where the net may be trapped.
Thus you cant rely on running the network once.
Better to run many times, from different starting points
Then use the best result
Or average over a few results – a technique called bagging
Next week we will look at a test case, and consider alternatives to 

back propagation.
Assignment – plan implementation of MultiLayerNetwork…
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7 : MLP Case Study and Alternatives

In this lecture we cover 

a case study, 

two alternatives to Back Prop 

Chemotaxis and Directed Random Search

and introduce Genetic Algorithms 

and show how they can be used in MLPs.
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Case Study

This brief study is to predict Electricity Demand 

based on data comprising 

temperature, illumination and demand

There are 168 data sets for training (7 days); 72 sets (3 days) for 
validation; and 24 sets (1 day) for (unseen)

The demand values are in the range approximately 18 to 40, not 
achievable with sigmoidal output, so scaled

scaled data = 0.1 + 0.8 * (data – min) / (max – min)

Network: 2 input neurons, 10 hidden neurons and 1 output Trained 
until the validation error averaged over 10 epochs rose .. test 
initiated after 150 epochs.
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SSE of Train & Valid vs Epoch
Stops when after 
200 epochs

SSE train = 
0.00409

SSE valid = 
0.00331

SSE unseen = 
0.0048

Blip in ValidSSE is reason for delaying stopping test

0 50 100 150 200
0

0.01

0.02

0.03

0.04

Epoch

SS
E

p27 RJM  17/08/16 CS2NN16 Neural Networks – Part B
© Prof Richard Mitchell 2016

Tadpole Plot
Plots of 
actual (as 
dots) + lines 
from 
estimates 
to the dots; 
for training, 
validation 
and unseen 
data
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Tadpole Plot when 5 Hidden Neurons

Training 
error is 
0.01134, 

Valid error 
0.01135

Unseen error 
0.01264

After 330 
epochs
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And When 30 Hidden Neurons

Training 
error is 
0.00417,

Valid error 
is 0.00265

Unseen 
error is 
0.00602

After 220 
epochs
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Summary
We have tried different numbers of hidden neurons
Of these tests, having 10 hidden neurons is the best 

– 5 neurons is too few, 30 led to overfitting.
Note, as start with random weights, you cannot say from this one 

test that this is true.
Should do at least 10 tests on each & note average error.
Should also do with different learning rate/momentum.
Better to have more inputs: time, sin(time) etc.
NOTE these when you are doing assignment on the same example 

data, and of course on your application.
You can now finish the first part of the assignment : adapt the main 

program to use three sets of linear data.
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Alternatives to Back Propagation

The delta rule, as it involves the differential of a node’s output, is a 
calculus based learning rule.

A stochastic learning rule has some ‘random’ movements (though not 
completely random) – examples include Chemotaxis and Directed 
Random Search (DRS)

As random, time taken can vary for the same data.

For ‘compact’ data set, stochastic guaranteed to find the global 
minimum weight-error value.

If weight-error surface smooth, calculus prob more efficient.

However, time for one epoch for random << calculus.

Let us now look briefly at these two stochastic methods.
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Chemotaxis –Bacteria Movement

Bacteria move in same direction 
until food concentration stops
going up, when they try a new 
direction selected at random.

By moving in a constant direction 
while concentration increases, 
Chemotaxis applies a ‘directed 
component’ on to a simple 
‘random walk’.

Bremermann HJ & Anderson RW 
(1989) Technical Report PAM-
483 UC Berkeley

Used in recent papers on 
ANNs for finance …
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The Algorithm
Initialise weights to small random values; 
Calc objective func Ek.
while (network not trained ok) 

Generate Wk from Gaussian distribution (mean 0, std 1) 
do 

Tentatively modify weight vector:  tk = W + H  Wk

Re-calculate objective function, Ek + 1

if (Ek + 1 < Ek ) W = tk; // if successful, adopt it
while ( Ek + 1 < Ek )

Automatic Adjustment of H – to speed up
If num consecutive successful moves = n, H := H * Hfac
If num consecutive failures = n, H := H / Hfac

(when change H, reset consecutive count)
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Directed Random Search
Ref Baba N (1989) Neural Networks 2:5 pp367-373

DRS is very similar to Chemotaxis ...
Small random weight vector added to current weights

Objective function re-evaluated
If change improves performance it is made permanent.

The Random Step (The Forward Step)
initial weight vector of uniformly distributed numbers
Delta weight steps (Wk) from mean 0 rand distribution  

biased by a directed component vector,  Ck.
As usual, H, controls the size of the step in weight space.

The Reversal Step
Applied if Forward Step doesn’t improve overall error Ek.

Geometrically analogous to looking in opposite direction..
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The Directed Component Vector
Directed components provide an impetus or direction to search 

(analogous to momentum in Delta Rule)

Reflect history of success / failure for previous steps.

Initialised to zero

Added to random components at each step.

Using directed component provides a dramatic performance 
improvement to the random step or random step with reversals 
techniques: Wk + 1 = W +  Wk +  Ck 

Hence successful steps (either forward or reversal) receive 
reinforcement via the directed component bias to the random 
perturbation vector. 

Unsuccessful steps force this bias to be scaled back.
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DRS Algorithm
W = RND: C0 = [0.0]      // Initialise: RND -> next rand num
Wk = RND // Generate new direction to search
while ( network not trained ok) 

tk = W + H Wk + Ck // Try forward step in this dirn
Ek + 1 calculated
if (Ek + 1 < Ek ) // Forward step successful

W = tk;          Ck + 1 = 0.2 x Ck + 0.4 x Wk; 
else  tk = W - H Wk // Try reverse step

Ek + 1 calculated
if  (Ek + 1 <  Ek ) // if Reverse step successful}

W = tk;          Ck + 1 = Ck - 0.4 x  Wk

else    Ck + 1 = 0.5 x Ck; Wk = RND
H can be adjusted in similar way to Chemotaxis
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Genetic Algorithms – for MLPs

A Genetic Algorithm (GA) is a search technique

The aim is to find the best solution to a problem

GAs are inspired by evolutionary processes

Hence you also see the term Evolutionary Computation

GAs can be used for various tasks, but specifically for ANNs, it has 
been suggested that a GA could

find best network architecture for a given task (ok)

find the weights of an ANN (poor)

select the best input data

Note – although potentially useful in ANN design, they are often 
very computationally expensive – though are used
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Basic Idea
Start with initial ‘population’ of possible solutions. Then

REPEAT

calculate the ‘fitness’ of each in population

use (probabilistically) better members of population to ‘breed’ 
next generation of the population

incorporate ‘children’

UNTIL problem solved, or done enough iterations

How to represent population ? simplest case a series of bits

How to calculate fitness ? problem dependent

How to ‘breed’ ? need suitable genetic operators

How to incorporate next generation ? replace weakest or all
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Encoding Populations &Fitness
Consider using a GA to set the architecture of an MLP, with 3 hidden 

layers with up to 15 neurons in each layer. Encode MLP’s 
architecture as ‘chromosome genotype’ in binary

Genetic search bounded 4 bits - max 15 neurons per layer.
There are n such chromosomes
Fitness of each obtained by configuring an MLP for each, training it as 
usual, and looking at the error on unseen set.
Or, to select which of 6 inputs & num (< 32) in hidden layer

1 1 0 1 0 0 0 1 1 1 0 0

L 1 L 2 L 3

1 0 1 1 0 1 0 1 1 0 1
v1 v2 v3 v4 v5 v6
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Weighted Roulette Wheel Selection
Genetic optimisation is done by 

‘breeding’ from best parents

Select with some randomness, but 
more likely to choose best.

Suppose 5 in population, fitnesses (f) 
of 1, 4, 6, 3 and 2  (total 16)

Form wheel with 16 slots, allocating f 
slots per ‘parent’

Get random number in range 1..16

Choose parent associated with slot

More likely to choose ‘parent’ 3 If R = 4, choose parent 2
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Breeding – On 1 or 2 Chromosomes 
Inversion – swap 2 random bits in chromosome

Mutation – invert one random bit   (use with low prob.)

Crossover – combine parts of two (? split at boundaries)

1 1 0 1 0 0 0 1 1 1 0 0

↕ 1 1 0 1 0 1 1 0 0 1 1 0

0 0 1 0 1 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0

↑ ↑

1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0

↑
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Next Generation
Simple strategy - Kill (say) two with worst fitness

Breed 2 new ones (using the operators) to replace them
Then calculate their fitness

Suppose population fitnesses were
1 4 6 3 2 4

The 1st & 5th are killed off. Suppose now the fitnesses are
3 4 6 3 5 4

The overall fitness has now been increased.
Over time Darwinian evolution ensures survival of fittest, and hence 

over time, best solution to the problem found.
There is much more to GAs – this is a brief summary and shows how 

could be used for MLPs .. & that ends MLPs.
Next week Radial Basis Functions …
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8 : Radial Basis Function Networks

As we have seen, one of the most common types of neural network 
is the multi-layer perceptron

It does, however, have various disadvantages, including the slow 
speed in learning

In this lecture we will consider an alternative type

The Radial Basis Function (or RBF) network

See Broomhead DS and Lowe D, 1988, 
Multivariable functional interpolation and adaptive networks, 
Complex Systems, 2, 321-355.

First we will make a note of fitting models
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Fitting Data Points

In the first figure, a line is set as the best approx for the data
(can be done by minimising the square of errors)

A better solution is a curve: could be done by a series of lines
Each line at an ‘operating point’ – this leads to RBF nets
If 3D have planes, in more dimensions have hyperplanes
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Centres
Basic idea is that there are ‘centres’

At each centre there is a simple model

This model is a ‘basis’ function which processes the input data 
according to its ‘distance’ from the associated centre

Each centre is like a neuron

The basis function is similar to a MLP’s activation function

The output(s) are the weighted sum of the output of each ‘neuron’

Overall, a RBF network has 

an input layer, comprising the inputs to the network 

a hidden layer, comprising the ‘basis’ function neurons, 

an output layer, doing weighted sum of hidden layers
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RBF Network

Outputs

Output Units

Inputs

Hidden Units

RB function processing inputs

Weighted sum of inputs + bias
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Basis Functions
Takes in a scalar number and returns a scalar number which is the 

output of the hidden layer node.

Examples of common basis functions:

Thin Plate Spline:  (x) = x2 log x

Gaussian: (x) = exp (-x2/2w)
where w represents its width.

What happens in a hidden layer node?

Euclidean distance between input and centre vector found.

n dimensional Pythagoras   ( (x1-c1)2 + (x2-c2)2 +.. (xn-cn)2 )

Distance produced is passed through the basis function to produce 
the output of the hidden layer node.
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Let there be m ‘neurons’ in hidden layer and k outputs

Let the input be X = [x1, x2 … xn]

Let the rth centre be Cr = [cr1, cr2 … crn]

Let the basis function be (x)

Let the ‘weight’ of connection from rth neuron to jth output be wrj

Then the jth output is:

Specific Equations

 
n 2

i r ir
r 1

where -  = x c
st
 X C

 
m

j 0j ij i
i=1

y  =  w w *   X C
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Example RBF to evaluate XOR

The Centres are chosen as: C1 = [1 1]T and C2 = [0 0]T

The weights of the output node are w0 = 2.84, w1 = w2 = -2.5

We will use Gaussian basis function exp(-dist2)

The input, let X = [0 1]; For XOR  the desired output is [+1]

Distance Squared of X from C1 [1 1] 
(0 – 1)2 + (1-1)2 = +1

Output of neuron 1 = Gaussian (+1) = e-1 = 0.3679

Distance Squared of X from C2 [0 0]
(0 – 0)2 + (1 -0)2 = +1
Output of neuron 2 = Gaussian (+1) = e-1 = 0.3679

Output = (0.3679*-2.5) + (0.3679*-2.5) + (2.84) = 1.0006
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In MATLAB
function [output, houts] = rbf_calc (rbfnet, input)
% [OUTPUT, HOUTS] = RBF_CALC (RBFNET, INPUT)
% RNFNET is a struct with three fields
%   CENTRES each row of matrix are centres for one neuron
%   RADIUS radius^2 (of Gaussian basis function) of each neuron
%   WEIGHTS the weights (including bias) for OUTPUT
% Prof Richard Mitchell 31/07/03
houts = [1];     % outputs of hidden neurons: first is 'input' to bias = 1
for ct=1:size(rbfnet.centres,2) % for each hidden node

distsq = sum((input'-rbfnet.centres(:,ct)).^2);        % dist squared
houts = [houts, exp(-distsq/(2*rbfnet.radius(ct)))];

end % add to houts, output of basis func
output = dot (houts, rbfnet.weights);       % compute actual output
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Continued and Then…
>>rbfn = struct('centres', [1, 1; 0 0]', 'radius', [0.5 0.5], 

'weights', [2.84 -2.50 -2.50])
>> rbf_calc(rbfn, [0 1])
ans =

1.0006
>> xor=[0 0; 0 1; 1 0; 1 1]; % xor test set
>> for ct = 1:4, xo(ct) = rbf_calc(rbfn, xor(ct,:)); end; xo
xo =

0.0017    1.0006    1.0006    0.0017
So can solve XOR (and hence other ‘hard’ problems)
But – how are centres chosen, radius found and weights set?
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Designing an RBF
How to choose centres

Centres chosen to represent input training data set.
Correct choice of centres is critical for good performance.

The number of centres
Too many or too few leads to inaccuracy.
Now, no rigorous formal method to find optimum number.

Methods for choosing centres:
Simple distribution

Uniform distribution over data space
Gaussian distribution over data space

Distribution related to the data distribution
Eg. Use of clustering algorithms

Cluster
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Group together data points in n-
dimensional space.
Easy in 2D …
If know have k clusters, and have initial 
guess of where are, use K-means 
(McQueen, 1967) 

REPEAT
allocate each point to nearest centre : use Euclidean distance
Centres := Mean (points in cluster)

UNTIL centres don’t move
QError := Mean (distances from centre)
Centres move to where data dense.
If don’t know k. do above with K = 1… til Qerror just better
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Finding ‘Radius’ of Each Centre
Once each centre is found, need to find the radius of the Gaussian 

basis function used on that centre

Radii should be set so the Gaussian from one centre overlaps with near 
centres to a certain extent

This ensures ‘smooth’ transition across the data space.

Picton: for each centre find the P (typically 2) closest centres

If Cj is centre of interest and Cj1..Cjp are closest centres to Cj

Then the radius is set by:

2
j 2

j

xRemember Gaussian is (x) = exp -
2




 
 
  
 

 P
j j

i=1

1 = C Cjp   
P

  
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Training the RBF
Once the centres and their radii are chosen, all that is left is to 

choose the weights.

This is (compared with mlps) very easy

As for mlps, have training set with inputs & expected outputs

For pth item in training set calc output of each hidden node

hip =  (Xp, Ci, Ri)

Xp is pth input set from training set

Ci and Ri are centre of radius 

The network output (whose value we know) is

 p 0 i p i i 0 i ip
i i

 y  = w w * X ,C ,R  = w w *h    
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Thus, For The Training Set We Can Say

y1 = w0 + w1*h11 + ... wn*hn1

y2 = w0 + w1*h12 + ... wn*hn2

: :

ym = w0 + w1*h1m + ... wn*hnm

1 011 n1
112 n2

m n1m nm

y w1 h .. h
y2 w1 h .. h

 =  = : 1 :
y w1 h .. h

    
    
    
    
    

    

Y

More compactly : Y = H W - we want W & know Y and H

If number of items in training set equal number of weights, there 
is an exact solution, if equations are independent
Usually more items in the training set, solve with min. error2

If H has all the H values (including dummy 1s), and Y the expected 
Y values, in MATLAB, W is found simply by

>> W = H \ Y % means matrix div of H into Y
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MATLAB Session

Using the network given earlier, and the XOR test set
>> for ct = 1:4, [a,h(ct,:)] = rbf_calc(rbfn, xor(ct,:)); end,  h
h =

1.0000    0.1353    1.0000
1.0000    0.3679    0.3679
1.0000    0.3679    0.3679
1.0000    1.0000    0.1353

>> rbfn.weights = h\[0;1;1;0] % to find weights
ans =

2.8413
-2.5027
-2.5027 % more accurate than values quoted earlier
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Example: Demand = f(Temp, Illum)

This is same problem as used for MLPs ….

Have Training Set and Unseen Set – cluster training data

For simplicity, radii set of circles which encircle all of cluster

Set RBF network based on cluster centres, with zero weights

Compute the output of the basis functions

Use these and training values of Demand to compute weights

Find Av. Mean Square Error (MSE) of Demand and RBF o/p

Input Unseen Data to trained RBF and compute MSE

Training error is 1.18, Unseen error 1.55 – not bad

Better than MLP, though more work needed on MLP.
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Errors on Trained and Unseen Data
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Comparison with RBFs and MLPs
Differences:

Feature MLP RBF
Variables: Weights and Centres and

Thresholds Coefficients
Speed of Training: Slow Fast(er)

Comp. expensive Less computation
Accuracy: Very good Not as good
Math Description: Difficult Easy

Similarities:
Learn from a set of training data.
Ability to generalise from training data.
Store information in a distributed manner.
Can be implemented using parallel processing.
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9 : Weightless Neural Networks

The standard MLP type network has various drawbacks, one of which 
is the time it takes to learn.

An alternative type of network, almost unique to the UK, is the 
Weightless Neural Network – these are also called 

n-tuple networks or RAM based networks.

These have a very different model of a neuron – a memory

These neurons have no weights – hence ‘weightless’ nets

Learning is also different and much simpler

Being based on memories, are implementable in hardware – WISARD 
was first commercial neural network system

We will investigate the standard system and generalise
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The n-tuple Neuron
Weightless networks arose from Bledsoe & Browning’s work (1959) on 

n-tuples (n bits sampled from binary input)

n-tuple neuron is standard RAM
A n-tuple is put on the input address 
lines of the RAM.
To learn, a value is written into the 
specified address.
To analyse, read from the addressed 
location.

tu
pl

e

A
dd

r

pre-
processed to
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Simple (Impractical) Use
Suppose (as example) we want to recognise images of faces

Initially, clear all locations in RAM

Get a binary image:  learn it by connecting each pixel to RAM input, 
write a ‘1’ at addressed location.

Other images could be learnt also.

When present a new image, if addressed location has a ‘1’, image 
recognised otherwise, the system not learnt it.

But for 256*256 binary image, RAM needs 216=65536 inputs and 
have 265536 locations: MATLAB says is infinite!

System only says yes/no : learnt or not learnt an image

It learns what it is taught, but cannot interpolate 

it cannot generalise.
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Practical Configuration

Analyse: count how many RAM neurons ‘fire’  (output 1)

Have not one but many smaller RAM neurons.
Each RAM is connected to only some of the image
It is responsible for learning/analysing part of the image
Normally each bit in image is an input to 1 RAM only – but it is 
possible to ‘oversample’ to improve classification.

RAM

IMAGE

Response

RAM
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Class Discriminators

A group of RAM Neurons is called a Class Discriminator
Typically many (similar) examples of one pattern class (eg various 

images on one person’s face) are taught 
Then the Discriminator is able to recognise 

an image it has been taught AND
one similar to, but not identical to one already taught.
e.g. RAM 1 might recognise a tuple from image 5

RAM 2 might recognise a tuple from image 8, etc.
In practice an image is ‘recognised’ if number of RAMs which output 

1 exceeds a threshold (say 90% - but depends on amount of noise, 
and accuracy needed).
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Multiple Discriminators

Note can ‘teach’ different classes in one discriminator

e.g. images of two faces can be taught

Then system can say if it recognises an input

but it will not be able to say which face it is

To discriminate between classes, 

Have one discriminator for each class

Teach each class into its own discriminator ONLY

When analyse, count firings of ALL discriminators

Image belongs to discriminator with most ‘fires’
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Memory Requirements

In a Discriminator employing:
Input vector of size R.
k-times over-sampling.
Using a tuple size of n.

Memory of each RAM is defined as Z, where Z = 2n

M RAMs are needed.
Where M = k x R / n. 

The memory requirement of the entire network is thus :
MEMORY  = M (rams) x Z (bits per ram)

e.g. 256*256 image, 8 bit tuples, no over-sampling (k = 1)
M = 1 * 256 * 256 / 8 = 8192  and Z = 28 = 256
MEMORY = 8192 * 256 = 2097152 bits 

p68 RJM  17/08/16 CS2NN16 Neural Networks – Part B
© Prof Richard Mitchell 2016

Generalisation in a n-Tuple Network
How many input patterns will 
result in maximum output of four 
RAMs firing?

Tuple Maps for 4 
RAMS
Used on Images 
1..4

Tuple1 Tuple2 Tuple3 Tuple4
Image 1 1000 0001 0000 1111
Image 2 1000 0001 1000 1111
Image 3 1000 0011 0000 1111
Image 4 1100 0001 0000 1111

Tuples 
learnt 
from 
each 
image
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Hence consider these images (5..8)

Tuple1 Tuple2 Tuple3 Tuple4
Image 5 1100 0001 1000 1111

Each tuple has been learnt, so system will recognise image 5.
Exercise – verify system also recognise images 6..8.
So training set of 4, generalisation set of 8.

These are [2+3], [2+4], [3+4], [2+3+4]
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Choice of Tuple Size
Small tuple size → small memory.
e.g.Tuple size 4    Memory size 16

Tuple size 3    Memory size 8
Smaller memory, fewer different 

tuples can be learnt before the 
memory filled (neuron saturates) 

Then can’t discriminate between 
patterns : o/p always 1

When using a small tuple size, few 
patterns should be learnt into each 
Class Discriminator.

If larger tuple size 
network more sensitive to noise. Noise

Small Tuple

Large Tuple

Response
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Implementation Issues
In principle, could have parallel machine

Each RAM learns/analyses at the same time
For software, and some hardware implementations

Process each RAM in turn; treat all RAMs as one memory
bool array [1..NumRams, 1..2upN]

Tuple Mapping –where in Image should a RAM sample?
NB – each RAM always samples from same locations
Could sequentially map eg RAM n use locations n*8-7..n*8

Can give poor discrimination of vertical/horizontal bars
Better to use random maps (but always in same order)
Usually sample each location in image once only
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Algorithm
First, set all locations in each RAM to 0
Learn (one image)

For all RAMS
Sample n-bits (to form a tuple)

Write ‘1’ in location with address tuple in given RAM
Analyse (one image)

NumFire := 0;
For all RAMs

Sample n-bits (to form a tuple)
If location with address tuple in RAM = 1, INC(NumFire)

IF NumFire > Threshold, Image is Recognised
Let us show some experiments on character data



CS2NN16 – Neural Networks – Part B

© Prof Richard Mitchell, 2016 13

What the characters look like
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8 A’s a B, C, D and E Train on some A’s, test on rest
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Experiments – using MATLAB code
>>[chars, tmap] = www_makedata;  // make data+tuple map
>> discrim = wnn_simple (chars(1), tmap, 4);
>> wnn_simple (chars([1:12]), tmap, 4, discrim)
100   69    81    63    44    50    69    31    25    25    25    25
% Taught 1, recognise it, not good at others
>> discrim = wnn_simple (chars([1:4]), tmap, 4);
>> wnn_simple (chars([1:12]), tmap, 4, discrim)
100  100   100   100    81    88    88    56    38    31    31    31
% Taught 1..4, recog 1..4, ok at 5..7, not recog BCDE
>> discrim = wnn_simple (chars([1:5, 8]), tmap, 4);
>> wnn_simple (chars([1:12]), tmap, 4, discrim)
100  100   100   100   100    94    88   100   38    31   38    31
% Taught 1..5,8; recog all ‘A’s and not BCDE - good
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Now Raise Tuple Size to 8

>> discrim = wnn_simple (chars(1), tmap, 8);
>> wnn_simple (chars([1:12]), tmap, 8, discrim)
100    50    63    38    13    25    50    13     0     0     0     0
% still only recog one taught
>> discrim = wnn_simple (chars(1:4), tmap, 8);
>> wnn_simple (chars([1:12]), tmap, 8, discrim)
100  100  100   100    50    75    75    38    13    13    13    13
% Recog taught, not so good on other A’s as before
>> discrim = wnn_simple (chars([1:5,8]), tmap, 8);
>> wnn_simple (chars([1:12]), tmap, 8, discrim)
100  100  100   100   100    88    75   100   13    13    13    13
% Not so sure non taught A’s – better rejection of BCDE
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What If Use Linear Mapping?

>> discrim = wnn_simple (chars(1), [1:64], 4);
>> wnn_simple (chars([1:12]), [1:64], 4, discrim)
100   75   75    75    50    63    75    38    31    38    50    31
% Poorer at discrimination
>> discrim = wnn_simple (chars([1:4]), [1:64], 4);
>> wnn_simple (chars([1:12]), [1:64], 4, discrim)
100  100   100   100   63   88   75    50    31    63    50    38
% Indeed poorer at discrimination
>> discrim = wnn_simple (chars([1:5,8]), [1:64], 4);
>> wnn_simple (chars([1:12]), [1:64], 4, discrim)
100  100   100   100   100   100   75   100   31    63   50    38
% C is thought to be quite like A!
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Tuple Maps to Optimise Discrimination

From Bishop, Crowe, Minchinton & Mitchell, 1990 (IEE colloq)
Evolutionary Learning to Optimise Mapping in n-tuple networks

e.g. Two 16 bit patterns with four bits different. tsize = 4.
If tuples sampled by columns, 3 of 4 tuples same, so if taught first 

image, second image is 75% like the first.
If tuples sampled by rows, all tuples different.
So the way the tuples are sampled can be significant.
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Optimisation for Max Discrimination
Select, at random, some mapping
Get measure of discrimination
while (insufficient discrimination)

Select other mapping by mutation of bits in mapping
Get measure of discrimination
if (better) adopt this mapping and its measure

Note amount of mutation decays (as in simulated annealing)
Measure of discrimination done by learning class A and class B, 

analysing both and looking at number of fires.
On characters – much better discrim between c & e; i & l.

Next week
Look at other improvements/variations of WNNs
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10. More Weightless Neural Networks

The basic RAM Neuron based Weightless Neural Network has been 
described.

This comprises a discriminator – an array of RAM neurons

One discriminator used for each class of data to be learnt if to able 
to discriminate (ie distinguish between classes)

This week some advances / alternatives will be discussed 

Handling non binary data … 

thermometer codes, CMAC, Minchinton cells

Associative Networks and Pattern Separation

(Briefly) Alternative Configurations

Stochastic Diffusion Search and Weightless Nets
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Handling Non-Binary Input Data

What if images comprise grey levels not just black white
Want to be able to cope with small changes in lighting
Could turn grey level into series of 0s and 1s (say 8 bits)
Then data to process is 256*256*8 bits
But – need more RAMs

a change of grey from 3 to 4 involves 3 bit changes
thus generalisation will be poor

One solution is to use gray code
0 to 7 is:   000   001   011   010   110    111   101   100
So changing 3 to 4 is 010 to 110 just one bit change
But too many RAMs needed still
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Threshold and Thermometer Coding

Simple solution – choose a Threshold
if gray value ≥  threshold, tuple bit = 1 else tuple bit = 0
Image now in effect 256*256*1 so same num of RAMs
But if lighting changes a little and many values near threshold there 
can be quite a large tuple change.

More advanced – multiple thresholds –Thermometer Code
Replace (say) 0..255 by (say) 5 patterns

v < 50 v < 100 v<150 v<200 rest
0000 0001 0011 0111 1111

Image now 256*256*5, so need 5 times as many RAMs
But system less susceptible to lighting changes
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CMAC Coding + Gray Code
Each value in Input, I[x] is processed to produce K values P[1..K]: 

P[j] = Gray ((I[x] + K - 1 - j) / K)

where Gray (v) returns the Gray coded version of integer v. 

If P[j] is r-bits, each value I[x] mapped to K*r bits of data.

NB (I[x] + K - 1 - j) / K produces some values v, some v+1;

These are bits which are sampled so as form the tuples.

Idea, if d = abs (I[x1] - I[x2]) < K, then Hamming distance between 
encoded versions of these values incr’s with d. 

Thus network can cope with small changes in lighting.

But, like Thermometer coding, needs much more memory: 

k * r * InputSize / n RAMs needed
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Minchinton Cells
These are simple processing elements placed between input data 

and the tuple forming elements
Consider as being between input & RAM address inputs
Let I(x) be value at position x in input data I
Simplest cell I(x) > constant    This is thresholding
Type 1 cell I(x1) > I(x2) Compares two random points

If lighting changes, for much of image, grey value change by 
constant amount, so difference unchanged. So type 1 cell makes 
system more tolerant of lighting changes.

Does not increase number of RAMs. Seems best method. 
S Lauria, R.J.Mitchell: "Pre-Processing Grey Level Data for 

Weightless Neural Networks", Proc CESA '98, 671-675
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Weightless Associative Networks

RAMs map input to output.
System taught ‘Archetype’
Archetype and Output same size
Over-sample by tuple size if want 

Output same size as Input.
When learning into rth RAM, store 

the value of rth pixel in 
‘archetype’ image.

When analyse, values output from 
RAMs should be archetype (or 
close to it). Associative n-tuple network

0
1

Archetype

1
0
0
1
0
1
1

Want System to do
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Pattern Separation – Binary Images

D Aitken J.M.Bishop R.J.Mitchell S Pepper : Pattern Separation in 
Digital Learning Nets", Elec Lett, 25:11, pp: 685-686 (1989)

For storing archetypes of many classes in a discriminator
But one archetype may want 1 in a location, another a 0.
So define RAMs to have four states

GROUND – not learnt
State 0 – equivalent to a ‘0’
State 1 – equivalent to a ‘1’
CLASH – where tried to override a ‘1’ with a ‘0’.

Initially all RAMs are in GROUND state.
Here want Output of same size as Input, so oversample
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Learning and Analysis

Learning - for storing value at address ‘tuple’ in rth RAM.
IF RAM (tuple) = GROUND THEN 

RAM (tuple) = INPUT(r)
ELSEIF RAM (tuple) ~= INPUT(r) THEN

RAM (tuple) = CLASH
Analyse - for getting value from addres tuple in rth RAM

IF RAM (tuple) = ‘0’ OR ‘1’ 
THEN value = RAM (tuple)
ELSE value = INPUT (r)

ie if don’t know rth value (as RAM does not have rth value of the 
archetype), best guess is rth value in input.

Auto-associative Network
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An autoassociative network
Archetype is the ‘noise free’ version

Train by showing different versions of RJM, storing the archetype

So, if then show an image, should get something like archetype
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Then Use Feedback
But, the output is, hopefully, closer 

to the archetype than the input

Can do colour/greyscale, by having states 0..n (for colour/grey) as 
well as GROUND and CLASH, but basically operation same.

So now show the output to the MLP -
feedback

Output should be even closer … etc
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Other Types of Weightless Networks
Note, other types exist

P-RAMs and PLNs - Probabilistic Neurons
neuron stores the probability that it will fire.
These are used in feedback circuits

G-RAMs - Generalised Neurons (Igor Aleksander)
ADAM - a different form of associative network

- this is the work of Jim Austin at York.
- it is a two stage network

In addition, have hybrid systems 
So consider WNN + Stochastic Diffusion Search (SDS)
SDS – started by Mark Bishop (ex Cyb); also Slawek
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Stochastic Diffusion Search - SDS

“Global optimal search via stochastic communication in a population of 
discerning agents.”

Each ‘agent’ is a potential solution to part of the problem, 
(Contrast, GAs have solutions to whole problem)
Each can discern whether it has a partial potential solution

Agents communicate their solutions to others
Dynamic cluster of agents stabilises round the best fit

If noise free data, find solution else x% of agents have best soln
Related in a way to a colony of ants searching for resource 

initially ants embark on random walk
if ant not found resource but encounters another 

if other has found resource, ant joins it
else ant goes on randomly.
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Application – and Basic Algorithm
Suppose look for ‘fred’ in search space ‘bertfredfraneddy’
Solution is ‘fred’ is at position 4   (strings start from 0). 
The features are letters; agents define possible positions.
S is structured set of features defining search space

and T is structured set of features defining the target
Agents are population of independent cells: map T to S

The ‘vanilla’ SDS algorithm
Initialise (Agents)
while (! Terminate(Agents) ) % while not terminated

Test (Agents, T, S)    % are agents at possible soln
Diffuse(Agents) % update their states
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Initialisation
Each agent is assigned a possible solution (mapping)
In string example, it is a potential position in the string

If no prior knowledge choose randomly (cf ant walk)
But can employ a-priori knowledge to continue search

Termination
Simplest case – stop if the largest number of agents with correct 
mapping constant over time
In noise – stop if num correct agents > threshold
‘Strong halting criteria’ (Nasuto & Bishop 1999) guarantees 

convergence to global optimum position
If ‘fred’ not exist in S, but ‘fre’ did, search stabilises with (an almost 
constant ~75%) number of agents testing ok.
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Test Phase – For Each Agent

Each agent has possible position and tests a random selected 
feature from the target T

Illustrate this with respect to string search example
S = ‘bertfredfraneddy’
T = ‘fred’, a 4 letter string, so a feature is offset 0..3

Assume an agent is at position 7 and feature offset is 2
The test here will be to see whether S[7+2] = T[2]

i.e. S[9] = ‘f’; T[2] = ‘e’ so agent does not match solution
If, however, agent is position 10; S[10+2] = ‘e’ as is T[2]

so agent is at a possible solution (though not global one)
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Diffusion Phase

If an agent has a possible solution, 
a) it maintains that possible solution
b) next time it will test another feature

(so if solution not global, next time test may return false)
If an agent does not have a possible solution

It selects at random another agent
if (other agent has a possible solution )

agent takes that solution
else   agent selects a new mapping at random 

{ compares well with ant search method }
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Time Complexity and Alternatives

‘Vanilla’ SDS extended (Nasuto) to offer different balance re 
exploration of search space & exploitation of solns
In diffusion phase positive agent randomly selects another
In ‘Context Free SDS’

if other agent also active, selector becomes inactive
In ‘Context Sensitive SDS’

if other agent active same mapping, selector set inactive

 
1
N-1

1
N-1

M 1c N log N

M  search space size;  N  num of agents

NIf M   t   O  else O 
N 1

 

    
 

Convergence Time tc of SDS (in Bishop & Nasuto 1998)
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Application : Finding Eyes in Faces

This was our entry into a BT ‘competition’
S is image of a face, T is weightless NN trained on eyes

T is thus trained on a series of images of parts of faces.
Each feature of T is RAM Neuron with assoc tuple positions
When testing agent, choose one of the RAM neurons in T

Get tuple from S as normal, by sampling at ‘tuple’ 
positions offset by position of agent

Test to see if associated RAM has ‘1’ at ‘address’ tuple
Used on gray scale images, so Minchinton cells used.
Worked reasonably well at finding positions
Concept can be extended for rotations, scaling and 3D

Here endeth the course – you complete the assignment


