

		Aı	nd thei	1	
If we then	present t	he data se	et, these a	re sets of ins, targ	et & out
0.0000	0.0000	0.0000	0.5625		
0.0000	1.0000	0.0000	1.0063		
1.0000	0.0000	0.0000	1.1125		
1.0000	1.0000	1.0000	1.5563	SSE = 1.1676	
We then 'le	earn' data	again and	again: afte	r 20 'epochs'	
0.0000	0.0000	0.0000	-0.1260		
0.0000	1.0000	0.0000	0.2730		
1.0000	0.000	0.0000	0.3329		
1.0000	1.0000	1.0000	0.7319	SSE = 0.3441	
Note, if as	sume outp	ut < 0.5 =	0 and outp	ut >= 0.5 = 1, have	earnt!
This, for li	near activ	ation, is a	bout as goo	od as we get, so	
See <u>http:/</u>	/www.read	ling.ac.uk/	~shsmchlr	/jsann/OnNeuron.ł	<u>itml</u>
p13 RJM 17/08	/16	C52NN16 Ne © Prof Ric	ural Networks - :hard Mitchell 2	Part A 016	Cybernetics

If	Do For OR Function	
Back to Linear Activa	tion	
Learn OR data 100 tii	nes from initial weights;	
weights become 0.	2769 0.4451 0.4729	
If test the result (sh	ow input, target and actual output)	
0.0000 0.0000	0.0000 0.2769	
0.0000 1.0000	1.0000 0.7498	
1.0000 0.0000	1.0000 0.7220	
1.0000 1.0000	1.0000 1.1949	
SSE down to	0.3086	
If threshold is 0.5 sa	y, have learnt OR function	
p15 RJM 17/08/16	CS2NN16 Neural Networks - Part A © Prof Richard Mitchell 2016	Cybernetic

Now Do The XOR Function					
After 100 epochs SSE high at 1.2345					
If we test the result (show input, target, actual output)					
0.0000 0.0000 0.0000 0.5544					
0.0000 1.0000 1.0000 0.4997					
1.0000 0.0000 1.0000 0.4441					
1.0000 1.0000 0.0000 0.3894					
Clearly we have failed to learn the XOR problem					
If you keep on learning, still cant succeed					
If use Sigmoidal activation, still not work					
Also on http://www.reading.ac.uk/~shsmchlr/jsann/OnNeuron.html					
p16 RJM 17/08/16 CS2NN16 Neural Networks - Part A © Prof Richard Mitchell 2016 <u>Steerens</u>					

		Data S	Sets		
Need data Also store Also post	sets, with the output process out	multiple sets of ts so calculated. tputs (eg conver	f inputs and a Then can als t to Logic 0/2	ssociated tar <u>g</u> o compute err 1)	gets Pors
Inputs		Target	Output	Processed	
0.0000	0.0000	0.0000	0.2769	0	
0.0000	1.0000	1.0000	0.7498	1	
1.0000	0.0000	1.0000	0.7220	1	
1.0000	1.0000	1.0000	1.1949	1	
Functions	s - to load o	data from file, c	irray		
To returi	n, for nth i	tem in set, input	s, targets, er	rors	
To store	calculated	outputs or prin	t results		
p27 RJM 17/0	8/16	CS2NN16 Neural Netw	vorks - Part A	[Reg

For Sigmoidal Activation

	Varvii	na Lea	rnina	Rate	- AN	D
At this sto	age - com	ment on vo	arying lear	ning rat	e	-
On the AN	ID proble	m : when L	earning R	ate is 0.	1	
Apply date	a set learn	ning 20 tin	nes, sse at	each of	f 20 epoch	is is
1.1676	0.8152	0.7096	0.6551	0.6123	0.5741	0.5400
0.5097	0.4831	0.4599	0.4397	0.4221	0.4069	0.3937
0.3822	0.3723	0.3637	0.3562	0.3497	0.3441	
Then wher	n present	data, shov	v have lear	rnt (to a	n extent)	
x_1	x ₂	Target	Actual	Scaled		
0.0000	0.0000	0.0000	-0.1260	0		
0.0000	1.0000	0.0000	0.2730	0		
1.0000	0.000	0.0000	0.3329	0		
1.0000	1.0000	1.0000	0.7319	1		
p63 RJM 17/0	08/16	CS2NN16 N © Prof Ri	eural Network chard Mitchel	s – Part A Il 2016		Cybernetics

	Continued					
One would then present	whole training set again, and again					
Often items from trainir	ng set selected in random order.					
After 2000 times, sum of square of errors down to 0.0216						
Then the weights are						
w ₂ (0,1) = 1.916; w ₂ (1,	1) = -5.199; w ₂ (2,1) = -5.223;					
w ₂ (0,2) = 5.794; w ₂ (1	1,2) = -3.922; w ₂ (2,2) = -3.920;					
w ₃ (0,1) = -3.130; w ₃ (1	1,1) = -7.398; w ₃ (2,1) = 6.903					
The inputs and calculated	d outputs for the training set are					
0.0000 0.0000	0.0632					
0.0000 1.0000	0.9304					
1.0000 0.0000	0.9299					
1.0000 1.0000	0.0877 but taken 2000 epochs					
p100 RJM 17/08/16 CS	2NN16 Neural Networks - Part A © Prof Richard Mitchell 2016 <u>Cyberhetics</u>					

		C	ontinue	d
Inp	uts	Taraets	Actuals	Rescaled
0	0:	0:	0.0265 :	0
0	1:	1:	0.972 :	1
1	0:	1:	0.972 :	1
1	1:	0:	0.0354 :	0
Mean Su	m Squar	e Errors 0.0	000892 % C	orrect Classifications 100
NB wher In an ep	training	g SSE calculo ghts change t at end of a	ated by sum as present e	ning Err^2 as present data ach item in data
So SSE as SS SSE o	E as con t last tr	nputed when raining 0.000	data set th)894, but 0.0	n learning may not be same en presented D0892 when present data

