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CS2NN16 Neural Networks : Introduction
CS2NN16 covers some Artificial Neural Networks (ANNs)

10 Lectures : Basic ANNs and their programming (in C++)
Module builds on lectures given in SE1FC15

Assessment 100% Coursework – implement ANN in C++
The resit for the module will be an Exam

The aims of the course are to
describe some Artificial Neural Networks (ANNs) & applications
show how some can be implemented
give a case study in object oriented programming

By the end of the course, students should be able to
implement an ANN for an application
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Books
Neural Networks - Phil Picton – Palgrave ; A simple intro to the 
subject. better if included algorithms.

Neural Networks: A Comprehensive foundation - Haykin –
Prentice-Hall ; Thorough, mathematical, text on the subject. Useful 
also for courses in Parts 3 & 4. 

A Guide to Neural Computing Applications -Tarassenko – Arnold ; 
Good text with tips and pitfalls of using ANNs.

Object Oriented Neural Networks in C++ Joey Rogers Academic 
Press – ok book on implementing nets in C++

Neural Computing: an Introduction - R. Beale & T. Jackson -
Adam Hilger ; A good text, with algorithms

Artificial Intelligence, Rob Callan, Palgrave; 

Excellent book on many aspects of AI – some of book relevant here.
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Neural Computing

Neural Computing or Connectionism defines a mode of computing that 
seeks to include the style of computing used within the brain.

A style of computing based on learning from experience as opposed 
to classical, tightly specified, algorithmic methods.

The brain has simple processing elements (neurons), which can fire

They are connected together: connections can be excitory (help 
neuron fire) or inhibitory. Strengths of connections can be learnt

A Definition (Alexander and Morton):

“Neural computing is the study of networks of adaptable nodes 
which, through a process of learning from task examples, store 
experiential knowledge and make it available for use.”

When do this we generate artificial neural networks : ANNs
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What Can ANNs do ?

Classification – for given inputs 
say is in class A or B

Association – see input and map 
or associate to output 

Prediction – for given inputs 
calculate output(s)

RJM / 

Cyb Prof

Time, 
Weather

Electric 
Demand

Control – either make model of system based on data, or 
generate control signal

NB can produce ‘non linear’ models
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Artificial Neural Networks History

1940’s McCulloch and Pitts … first model : Hebb .. Hebbian learning

1950s…: Minsky, Widrow (delta rule) & Rosenblatt (over the top)

1969 Minsky & Papert’s book ‘Perceptrons’ : cant do ‘hard’ problems

1974 Werbos, Backpropagation –multi layer perceptrons – ignored

1960s & 1970s Igor Aleksander (et al) n-tuple or Weightless ANN

Teuvo Kohonen : Kohonen Nets for Speech recognition

Amari, Hopfield, Fukushima, Grossberg (ART) did work

1982 Hopfield’s paper; 1985 Rumelhart and McClelland (Eds) wrote 
Parallel Distributed Processing – Neural Nets back again

1988 Broomhead and Lowe produced Radial Basis Function network

Also SVMs, Boltzmann machines, ALNs, CMAC, Bayesian nets, etc
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First Model of Neuron (MCP Cell)

Connections modelled by weights; being >0 excitory, for instance 

Inputs (inc Bias) multiplied by weights, and summed

Output, O, set to 1 (neuron fires) if sum ≥ T , else O = 0

So neuron fires if Σ (xi * wi) + w0 ≥ T

For modern systems T = 0, & use bias instead

McCulloch and Pitts

(early Cybernetists)
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Learning

In a typical ANN, weights, thresholds and bias must be set.

A practical ANN may have thousands : must learn automatically 

First rule – Donald Hebb: Hebbian learning

When 2 neurons both fire, incr. strength (weight) of connection

‘Perceptron’ learning rule: use output (O) and target (T) o/ps

Δwr = η * (T – O) * xr = η δ xr …. called ‘delta’ rule

change in rth weight = learning rate * error * rth input   : δ = ‘error’

wr = wr + Δwr change weight

Delta rule with ‘momentum’ – which can speed up / avoid local mins

Δwr = η δ xr + α Δwr    change as above + momentum * last change
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Let’s Look At A Simple Linear Neuron

Training set for AND problem :
Inputs            Target
x1 x2 T
0 0 0
0 1 0
1 0 0
1 1 1

MCP but no threshold

O = k * ( Σ (xi * wi) + w0 )
k often 1 : ‘linear’ activation

For each line
Present inputs
Calc O, T-O, change Ws

Then do again, and again..

k Output

In
pu

ts

x
n

x
2

x
1

w
n

w
1 bias, w0

w
2

p9 RJM  17/08/16 CS2NN16 Neural Networks – Part A
© Prof Richard Mitchell 2016

Example – Two Input AND

Suppose 2 weights initialised as w1 = 0.1, w2 = -0.2 and assume no w0

x1 x2 w1 * x1 w2 * x2 Target      Output O       Error
0 0 0 0 0 0 0.0
0 1 0 -0.2 0 -0.2 +0.2
1 0       +0.1 0 0 +0.1 -0.1
1 1       +0.1 -0.2 1 -0.1 +1.1

As Errors +ve and –ve, often calc. Sum of Squares of Errs

Thus initial SSE of Weight-Error for w1 = +0.1; w2 = -0.2 is:

= 0.0 2 + (+0.2) 2 + (-0.1) 2 + (+1.1) 2= 1.26

For different weights there will be a different error.

So we can find & plot values of error for different values of weights
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Graph of Sum Squared Error vs Ws
This is ‘weight - error’ space: in general multi-dimensional

NB if include 
w0 need four 
dimensions!

But principle 
the same.

Note 

min SSE > 0
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Steepest Gradient Descent
Need weights so error minimised – want to find quickly

so follow steepest path down weight - error space

where gradient the steepest

Simple Delta Rule achieves this (see appendix to lecture).

Specifies change of weights after presentation of one set of 
inputs and expected output (T) : Algorithm

O = Σ (xi * wi) + w0 % actual O = weighted sum of x

Δ wi = η (T – O) xi = η δ xi % change on i’th weight

η (eta) is learning rate, T - O is error or delta δ, xi is input

[For changing w0, the associated input is 1. ie x0 = 1]

[NB in this example, not using momentum]
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Investigation – including wo
This was done using MATLAB   Weights are : 0.05, 0.1, -0.2

x1 x2 Target   Actual
0.0000   0.0000    0.0000    0.0500
0.0000   1.0000    0.0000   -0.1500
1.0000   0.0000    0.0000    0.1500
1.0000   1.0000    1.0000   -0.0500   SSE = 1.15

Assume lrate is 0.5.  Apply 0 0, output is 0.05, so delta is -0.05
Change in weights delta * lrate * input  =  -0.0250         0         0
Thus weights become 0.0250    0.1000   -0.2000
Row 2, delta = 0.1750, change in weights = 0.0875    0    0.0875
So weights become 0.1125     0.1000     -0.1125
After doing rows 3 and 4, weights are 0.5625    0.5500    0.4438
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And then
If we then present the data set, these are sets of ins, target & out

0.0000    0.0000    0.0000    0.5625
0.0000    1.0000     0.0000    1.0063
1.0000    0.0000     0.0000    1.1125
1.0000    1.0000     1.0000     1.5563 SSE = 1.1676

We then ‘learn’ data again and again: after 20 ‘epochs’ 
0.0000    0.0000    0.0000   -0.1260
0.0000    1.0000     0.0000    0.2730
1.0000     0.000      0.0000    0.3329
1.0000     1.0000    1.0000     0.7319 SSE = 0.3441

Note, if assume output < 0.5 = 0 and output >= 0.5 = 1, have learnt!
This, for linear activation, is about as good as we get, so …
See http://www.reading.ac.uk/~shsmchlr/jsann/OnNeuron.html

Sigmoidal Activation
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i i

i i

- x *w

Output  = Sig( x *w ) 
1            = 

1 e 





O  was linear function of Σ (xi * wi), now

Inputs                  Target    Output
0.0000   0.0000   0.0000    0.0008
0.0000   1.0000    0.0000    0.0812
1.0000   0.0000    0.0000    0.0815
1.0000    1.0000    1.0000    0.9041

Train, so much 
closer to 0 0 0 1

BUT more epochs

Will say more later
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If Do For OR Function
Back to Linear Activation

Learn OR data 100 times from initial weights; 

weights become 0.2769    0.4451    0.4729

If test the result (show input, target and actual output)

0.0000    0.0000    0.0000    0.2769

0.0000    1.0000    1.0000    0.7498

1.0000    0.0000    1.0000    0.7220

1.0000    1.0000    1.0000    1.1949

SSE down to 0.3086

If threshold is 0.5 say, have learnt OR function
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Now Do The XOR Function

After 100 epochs SSE high at 1.2345

If we test the result (show input, target, actual output)

0.0000    0.0000     0.0000    0.5544

0.0000   1.0000     1.0000    0.4997

1.0000    0.0000     1.0000    0.4441

1.0000    1.0000     0.0000    0.3894

Clearly we have failed to learn the XOR problem

If you keep on learning, still cant succeed

If use Sigmoidal activation, still not work
Also on http://www.reading.ac.uk/~shsmchlr/jsann/OnNeuron.html
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Linear Separable Problems
A two input MCP cell can classify any function that can be separated 

by a straight dividing line in input space

These are 
‘linearly 
separable 
problems’.

XOR
x1 AND x2 XOR not.

If add extra 
dimension,   
x1 AND x2, 
linear plane 
will separate
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It Works! After 100 epochs:
x1 x2 x1 & x2 Target   Actual
0.0000    0.0000    0.0000    0.0000    0.1578
0.0000    1.0000    0.0000    1.0000    0.9218
1.0000    0.0000    0.0000    1.0000    0.9107
1.0000    1.0000    1.0000    0.0000    0.0346            SSE = 0.0476

It has worked … and much better than OR and AND!

But we have in a way cheated by adding the extra input.

In general better to have multiple layers, as realized in 1969

But how to learn ?

Know Target for output, don’t know that for ‘middle’ layer .. 

That held up work in Neural Networks until 1984.
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Summary
We have introduced module and this course

We have consider what ANNs can do

We have looked at a simple model of a neuron (linear activation)

We have seen how it can learn, to an extent AND/OR

Can do slightly better with sigmoidal activation

But not XOR, which like PARITY, Minsky & Papert called Hard

(though easy to compute using standard algorithmic methods)

Can add extra inputs (to form hyperplane) to make separable
Better – have multi-layer network 

Try http://www.reading.ac.uk/~shsmchlr/jsann/OnNeuron.html

Next week – start to consider how to program an ANN
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Appendix : Why δ Rule Does Gradient Descent

For interest only : we will show Delta Rule does indeed perform 
steepest gradient descent over error space 

For pth item in training set we calculate the actual output, Op

Op = Σ (xi * wi) NB xo = 1

Then, each weight is changed by amount (no momentum)

Δ wi = η (Tp – Op) xip = η δp xip

η (eta) is learning rate, Tp-Op is error or delta δp, xi is input

We must define the error space, and use square of errors

Ep = (Tp-Op)2 and overall    E = Σ Ep

Note, if there are j outputs Ep = Σ (Tpj – Opj)2 where, for instance, 
Tpj is target for output node j, for pattern p
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Proof That Does Gradient Descent

p
p ip i

i

E
i.e. must show  = k x   being proportional to w

w







Using the chain rule

Ep = (Tp - Op)2  p
p p p

p

E
So  = 2 T  - O  = k 

O







To show Simple Delta Rule performs gradient descent, we must show
derivative of the error measure with respect to each weight is 
proportional to weight change dictated by Simple Delta Rule : 

ie going in right direction.

We find two halves of this as follows

p p p

i p i

E E O
 = 

w O w
  
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Continued

For linear neurons, p i ip
i

O  = w *x

(xip is input i for test pattern p, x0p = 1 for bias weight)

p 0 0p 1 1p 2 2p

p 0 0p 1 1p 2 2p
2p

2 2 2 2

eg O  =  w x w x w x
O w x w x w x

    =  = 0 0  x
w w w w

 

   
   
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p
ip

i

O
So  = x

w




p p p
p ip

i p i

E E O
Thus  =  = k x

w O w


  

  
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So

p

i ip

EENow, for whole training set,  = 
w w




 

So net change in wi after one complete training cycle (one epoch) is 
proportional to this derivative so Delta Rule does perform gradient 
descent in Weight-Error Space.

NB. If (which happens for computational reasons), weights are 
updated after each pattern presentation this will depart from pure 
gradient descent.

However if learning rate  is small, departure is negligible and this 
version of the delta rule still implements a very close approximation 
to true gradient descent.
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2 : On Programming Networks

Seen simple networks: stated need multiple layer networks 
We now program them - the topic of the assignment 
We will start with a simple network and then build it up

a) to have different types of activation
b) to have a one layer network with many outputs
c) to have a multi layer network

For this we will 
develop libraries, for use in different programs
use the heap, so network size set at run time
use objects to encapsulate neuron data and functionality
use a class hierarchy for handling different activation.

In notes – comments not shown – commented code is on Bb
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Object Oriented Programming

Key : encapsulate data & functions which use data : Object

In C++ a ‘class’ is the type of an object

An object is a variable whose type is the specific class.

For the neural network programs we use various classes

A class for data sets – storing, processing and printing

Classes for a neuron (linear and sigmoidal activation)

Classes for single and multiple layers of neurons

Sigmoidal activated class shares much with that of linear

Use object ‘inheritance’ so write very little for new class 

Generates ‘hierarchy’ of neurons
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Object Member Data / Functions

Object Name

Private or 
Protected Data 
and Functions

Public Functions 
includes 
Constructor 
Destructor

And others 

Provides interface –
shows how object used

So data cannot be 
accidentally corrupted

Also hides unneeded details 
of how works

For initialisation

For tidying when finished 
with object

Data in object processed by object’s functions

Data Sets
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Need data sets, with multiple sets of inputs and associated targets

Also store the outputs so calculated. Then can also compute errors

Also post process outputs (eg convert to Logic 0/1)

Inputs Target Output Processed

0.0000    0.0000 0.0000    0.2769 0
0.0000    1.0000    1.0000    0.7498 1
1.0000    0.0000    1.0000    0.7220 1
1.0000    1.0000    1.0000    1.1949 1

Functions – to load data from file, array

To return, for nth item in set, inputs, targets, errors

To store calculated outputs or print results
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Class DataSets for Network data

This is a class designed for holding a data set

Contains inputs and targets (in general have multiple outputs)

Can put in it calculated outputs, as found by network

Can compute errors (targets – outputs)

Can print these, and calc/print Sum Square Errors, % classified ok

Can also handle pre- and post- scaling of data

Load with all inputs and targets for training set, 

from an array or from named datafile.

All defined in header file mlpdata.h implemented in mlpdata.cpp
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Object for DataSet

Constructor 
(filename)

Load data from 
file

Destructor
Tidy Up

a = GetNthInputs(n)
a = inputs[n]

SetNthOutputs(n, outs)
outputs[n] = outs

a = DeScale (n)
a = outputs[n]

if ar>0.5 ar = 1 else ar = 0

Constructor 
(array)

Load from array

DataSet

inputs
outputs
targets

e = GetNthErrors(n)
e [n] = targets[n]-

outputs[n]
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Using Functions In It

dataset data (2, 1, 4, logdata);   
creates object data with 4 sets of 2 inputs & 1 output, in logdata 

dataset data (“logdata.txt”);   ditto but loaded from named file
can also specify that data is logic, normal, classifier
can also scale inputs and outputs

data.GetNthInputs(n) // returns vector of nth set of inputs 
data.SetNthOutputs(n, outputs);  

// stores in data vector of outputs for nth item in data set
data.GetNthErrors(n) // returns vector of nth set of errors (T–O)
data.numData(); // return num items in data set
data.printdata (1) ; // print ins/targets/outs/SSE
Dataset variables are passed as arguments in Neuron classes
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Now work on Programming Neurons
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w1 bias, w0
w2 Output, O

If present one set of inputs, x1..xn, with known target T

Calculate output O =  Σ (xi * wi)       (x0 = 1)

Change weights :

Δwr = η * (T – O) * xr + α Δwr = η δ xr + α Δwr

wr = wr + Δwr

Object for Linear Activated Neuron
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Constructor
Initialise 
variables

Destructor
Tidy Up

CalcOutput(x)
O =  Σ (xi * wi)

CalcDelta(Error)
δ = Error

ChangeWts(x, η, α)

Δwr = η δ xr + α Δwr

wr + Δwr

SetWeights (iw)
w = iw

LinearNeuron
output
delta

weights
changeInWeights

+ few other 
functions
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Advanced Information
Above ok for Neurons with ‘Linear Activation’

output = Σ xi * wi delta = error = target minus output

Next will be Neurons with ‘Sigmoidal Activation’ (lecture 4)

output = Sigmoid (Σ xi * wi ) delta = error*output*(1-output)

We will move to objects for Layers of Linear or Sigmoidal neurons

Then we will have multiple layer neurons, 

error for non output neurons is not target minus output

Three types of object – in a hierarchy – inheriting data/functions

allows outputs, deltas/errors to be found easily

data sharing handled by them being ‘protected’ not ‘private’

For Sigmoidal Activation
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Constructor
Call Linear Con

Destructor
Call Linear Des

CalcOutput(x)
O =  Sig(Σ(xi*wi))

CalcDelta(Error)
δ = Error*(1-O)*O

LinearNeuron

output
delta

weights
changeInWeights

SigmoidalNeuron

Same data and some functions as Linear – just ‘inherit’ them 

Need diff versions of CalcOutput and Delta  (and constructor)

Other functions (eg ChangeWeights) inherited from LinearNeuron
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Dynamic Data
Neuron objects will be in a library, for use in different programs, 

so number of inputs, weights, etc vary depending on application

Cant use fixed sized array for weights

So neuron data implemented as vectors

these are dynamic arrays with range checking

e.g. weights

weights[0] weights[1]

When neuron constructed, suitable space is created for each vector

When neuron no longer required, memory returned to heap

Vectors handle this automatically
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In C++
So, in definition of neuron, have variable called

vector<double> weights;      // weights defined as vector

In constructor  (for neuron with given number of inputs)

weights.resize(numInputs+1);      // get space for enough doubles

In principle, to calculate output, given array of inputs

output = weights [0]; // initialise to bias

for (ct = 0; ct < numInputs; ct++)

output += weights[ct+1] * inputs[ct];     // add wi * xi

// note although weights a pointer, use as if an array

In destructor

// does nowt as vector class automatically returns to heap
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Class for Linear Activated Neuron
class LinearNeuron { // class for neuron with linear activation
protected:

int numInputs;
double output, delta;
vector<double> weights;
vector<double> changeInWeights;

virtual void CalcOutput (vector<double> ins);  
virtual void StoreOutput (int n, dataset &data); 
virtual void FindDelta (double error);   
virtual void ChangeAllWeights (vector<double> ins,

double learnRate, double momentum);

// ‘private’ functions

// (not private, because in hierarchy)

// ‘private’ variables
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And the Public Functions are
public:

LinearNeuron (int numIns); 
virtual ~LinearNeuron ();
virtual void ComputeNetwork (dataset &data);
virtual void AdaptNetwork (dataset &data, 

double learnRate, double Momentum)
void SetTheWeights (vector<double> initWt[]);
void int HowManyWeights (void);
vector<double> ReturnTheWeights ();

};
Note minimise interface by having private functions
Note LinearNeuron is ‘base class’ in what will be hierarchy
The above is in file slplib.h; its implementation in slplib.cpp

construct num input neuron

Destructor – return to heap
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Using This Neuron Object

slp is pointer to base class; 
get space for one from heap 
and initialise object, 2 inputs

As later will allow linear or sigmoidal activated neurons:  
LinearNeuron *slp;
slp = new LinearNeuron(2);

Then 
slp -> ComputeNetwork (data);

calculates and stores output 
(uses dataset data) for ins and outs

calcs delta etc and changes weights

Then 
slp -> AdaptNetwork (data, lrate, mmtm)

At end   
delete slp;

return memory to heap 
(calls destructor which does this)
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Code Implementing LinearNeuron
LinearNeuron::LinearNeuron (int numIns) {

// construct node - given number of inputs
numInputs = numIns;
weights.resize(numInputs + 1);
changeInWeights.resize(numInputs + 1); 
for (int ct=0; ct<= numInputs; ct++) {

weights[ct] = myrand();  
changeInWeights [ct] = 0;

} 
output = 0;
delta = 0;

}

Get space 
from heap

Initialise variables :

Some to 0

weights randomly

p41 RJM  17/08/16 CS2NN16 Neural Networks – Part A
© Prof Richard Mitchell 2016

Destructor  and  ComputeNetwork

LinearNeuron::~LinearNeuron() {
// destructor ... 
// normally return to heap, but vectors do this

}

void LinearNeuron::ComputeNetwork (dataset &data) {
// pass training set to net and calculate

for (int ct=0; ct<data.numData(); ct++) {
CalcOutput (data.GetNthInputs(ct)); 
StoreOutput (ct, data); 

}
}

Return memory to 
heap

For each item in set
calc nth o/p using 

nth set of inputs
store it in data
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CalcOutput, StoreOutput
void LinearNeuron::CalcOutput(vector<double> ins) {

// calculate sum of weighted inputs
output = weights[0];
for (int ct=0; ct<numInputs; ct++) 

output += ins[ct] * weights[ct+1];
}

Initialise to 
w[0] * 1

Now for each input

Add product of ct’th input 
and next weight

void LinearNeuron::StoreOutput (int n, dataset &data) {
// put calculated output into nth item in data

data.SetNthOutput (n, output);
}     // call data sets class to store output there
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AdaptNetwork and FindDelta
void LinearNeuron::AdaptNetwork (dataset &data, 

double learnRate, double momentum) {
for (int ct=0; ct<data.numData(); ct++) {

CalcOutput (data.GetNthInputs(ct));
StoreOutput (ct, data);
FindDelta (data.GetNthError(ct));
ChangeAllWeights (data.GetNthInputs(ct), learnRate, momentum); 

}
}

For all in data set
Calc & Store O/p
Find δ from error 
change weights

void LinearNeuron::FindDelta (double error) {
delta = error;   // delta = error

}
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Changing Weights

void LinearNeuron::ChangeAllWeights (vector<double> ins, 
double learnRate, double momentum]) {

// calculate change in weights = prev * momentum + lrate*in*delta
// then change all weights by these amounts
double thein; // for noting input

for (int wct = 0; wct < numInputs+1; wct++) { // for each weight 

if (wct == 0) thein = 1.0; else thein = ins[wct-1];

changeInWeights[wct] = thein * delta * learnRate

+ changeInWeights[wct] * momentum;

weights[wct] += changeInWeights[wct];

}
Δw = i*δ*η + Δw*α

Change weight
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Initialising / Returning Weights
void LinearNeuron::SetTheWeights (vector<double> initWt) {

// initialise weights using values in initWt
weights = initWt;

}

int LinearNeuron::HowManyWeights (void) {
// return the number of weights in layer
return numInputs+1;

}

vector<double> LinearNeuron::ReturnTheWeights () {
// copy the layer's weights into theWts
return weights;

} 

// copy values in initWt to weights
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Summary
Have simple object for neuron with linear activation.

Note there are many short functions. Good Practice.

This has been written such that it can be extended.

It can ‘learn’ simple linearly separable problems

But only to an extent (recall results in lecture 1)

Later we will show how sigmoidally activated neurons can learn these 
problems better

We will then show how what we have done can be extended easily, 
using object inheritance, to cope.

However, for the assignment, we use neurons in layers – next week 
we will investigate, so you can start work.
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3 : Layer(s) of Perceptrons

An object can be defined to implement a single perceptron network 
which can solve simple problems.

For hard problems need multiple layers of perceptrons.

This can be achieved by having multiple single perceptrons but this 
requires numerous pointers.

A simpler approach uses an object for a layer of neurons

We will produce LinearLayerNetwork, extension of LinearNeuron, 

with similar functions (CalcOutput → CalcOutputs, etc)

and data (output → outputs, etc)

Used in the assignment which you can now consider.
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Key Part of The Main Program
datasets data (“logdata.txt”);
LinearLayerNetwork *net;
net = new LinearLayerNetwork (data.numins());
net -> ComputeNetwork (data);
data.printdata (1); 
for (ct = 1; ct < emax; ct++) {

net -> AdaptNetwork (data, learnRate, momentum);
data.printdata (0);

} 
net -> ComputeNetwork (data); 
data.printdata (1); 
delete net;

set up data class

create network (layer)

For all in data

print in/out/target/SSE

Learn emax times : print SSE

test taught network
print results and tidy up



CS2NN16 – Neural Networks – Part A

© Prof Richard Mitchell, 2016 9

p49 RJM  17/08/16 CS2NN16 Neural Networks – Part A
© Prof Richard Mitchell 2016

Neurons to Layers
Concepts in LinearNeuron extend to LinearLayerNetwork

e.g. instead of an output number, have array of outputs

So CalcOutput becomes CalcOutputs having a for loop, 

for each neuron, output[ct] = sum (inputs * weights)

Instead of a vector of weights for one node we have a (bigger) 
vector of weights for many nodes 

first n weights for first node,  

next n weights for next...

etc

As well as numInputs, have numNeurons

(for convenience also have numWeights)

WN1

WN2
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LinearLayerNetwork – m neurons, same i/ps

Also w20..w2n, ..wm0..wmn

Constructor
Destructor

weights, changeInWeights
outputs, deltas

numInputs, Neurons, Weights

LinearLayerNetwork

Local functions for calculating 
deltas, and changing weights

ComputeNetwork
AdaptNetwork
SetTheWeights
ReturnTheWeights
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Class Declaration LinearLayerNetwork

The class declaration is in three parts
the (hidden) data, (hidden) functions, public functions
explained later why protected is used not private

class LinearLayerNetwork { // simple layer with linear activation
protected:

int numInputs, numNeurons, numWeights; 
vector<double> outputs; // vector of neuron Outputs
vector<double> deltas; // of Deltas 
vector<double> weights; // of weights
vector<double> changeInWeights; // of weight changes
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LinearLayerNetwork
protected functions

virtual void CalcOutputs (vector<double> ins);
virtual void StoreOutputs (int n, dataset &data);
virtual void FindDeltas (vector<double> errors);

// find the deltas from the errors
virtual void ChangeAllWeights (vector<double> ins, 

double learnRate, double momentum);
// change all weights in layer

<< later will be extra function for multi layer nets >>
vector<double> PrevLayersErrors (void);

// calculates the errors for the previous layer (see later)
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And public part

LinearLayerNetwork (int numIns, int numOuts);   // constructor
virtual ~LinearLayerNetwork (); // destructor
virtual void ComputeNetwork (dataset &data);

// pass each item in dataset to net, calc outputs
virtual void AdaptNetwork

(dataset &data, double learnRate, double momentum);
// pass each item, calc outs, then deltas, change weights
// used to train network: paras are [lrate m’mtum]

<< SetTheWeights, GetNumWeights, ReturnTheWeights >> 
}; << as per LinearNeuron >> 
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LinearLayerNetwork Constructor
We will now implement some of this
LinearLayerNetwork::

LinearLayerNetwork (int numIns, int numOuts { 
numInputs = numIns; 
numNeurons = numOuts;  
numWeights = (numInputs + 1) * numNeurons;
outputs.resize(numNeurons);
deltas.resize(numNeurons);
weights.resize(numWeights);
changeInWeights.resize(numWeights);

//  then have code to initialise arrays
}; //   weights are given random values

Note num in/out 
calc num weights

Create space for 
o/ps, deltas etc
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ComputeNetwork

void LinearLayerNetwork::ComputeNetwork (dataset &data) {
// pass each item in dataset to network & calc outputs

for (int ct=0; ct<data.numData(); ct++) {
CalcOutputs (data.GetNthInputs(ct));
StoreOutputs (ct, data);

}
}

This is almost identical to that for LinearNeuron

For each in data set   
calc weighted sum
copy o/ps to data
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On Calculating Outputs
Take example : 2 inputs, 3 nodes

Weights, w

Inputs, i

Outputs[0] = w[0] + w[1]*i[0] + w[2]*i[1]

Outputs[1] = w[3] + w[4]*i[0] + w[5]*i[1]

Outputs[2] = w[6] + w[7]*i[0] + w[8]*i[1]

Hence process weights in order … easy for code:
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CalcOutputs
void LinearLayerNetwork :: CalcOutputs (vector<double> ins) {

// calc outputs as sum of weighted inputs ins
int wtindex = 0;

for (int neuronct=0; neuronct < numNeurons; neuronct++) {

outputs[neuronct] = weights[wtindex++];

for (int inputct=0; inputct < numInputs; inputct++)
outputs[neuronct] += ins[inputct] * weights[wtindex++];

}
}

index into weights array

output[ct] = bias weight

For each neuron

Add to output[ct], input * next weight
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StoreOutputs and SetWeights

void LinearLayerNetwork::SetWeights (vector<double> initWt) {
// set the layer’s weights : copy values from initWt

}

void LinearLayerNetwork::StoreOutputs (int n, dataset &data) {
// copy calculated network outputs into n'th data item
data.SetNthOutputs(n, outputs);

// Copy the outputs from layer's outputs into data
}

weights = initWt;
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AdaptNetwork
void LinearLayerNetwork::AdaptNetwork

(dataset &data, double learnRate, double momentum) {
// pass whole dataset to network : for each item
//      calculate outputs, copying them back to data
//      adjust weights : targets are in data

for (int ct=0; ct<data.numData(); ct++) {
// for each item in data set

CalcOutputs(data.GetNthInputs(ct));
StoreOutputs (ct, data);
FindDeltas(data.GetNthErrors(ct));
ChangeAllWeights(data.GetNthInputs(ct), learnRate, momentum); 

}
}
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Assignment – In Lab Sessions

You are provided with 
The basic program mlpmain.cpp (code here + some more)
The datasets class in mlpdata.h and mlpdata.cpp
Some of mlplayer.cpp and its header file mlplayer.h 
Relevant data files

First task : download the provided files, compile and run.
The program is designed to be extendable for the complete 
assignment, so you have various options
Choose 0 for Linear Layer; 0.2 and 0.0 for η and α.
The program will calculate the output for AND OR XOR
It will try to learn but the relevant functions are blank
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More on Assignment
Once you are happy that is ok, edit the program to return the 

weights – write code based on SetTheWeights

Next get it to attempt to learn AND OR and XOR: write

FindDeltas

ChangeAllWeights – extend LinearNeuron version

When you have done these, your program should learn to an extent 
AND and OR, but not XOR – as per next slide

Experiment with different learning rate, momentum and initial 
weights, recording all you do in a log.

Subsequent labs will allow you to have a working MLP

Later you will apply that MLP to a problem of your choice
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Testing – On And Or Xor -lrate 0.2
For 0 0 should be 0 0 0 actually are 0.2 0.3 0.4
For 0 1 should be 0 1 1 actually are 0.5 0.4 0.6
For 1 0 should be 0 1 1 actually are 0.7 0.8 0.5
For 1 1 should be 1 1 0 actually are 1 0.9 0.7
Mean Sum Square Errors are 0.195 0.125 0.265

After 7 epochs – sort of learnt AND, OR but not XOR

For 0 0 should be 0 0 0 actually are -0.1771 0.3392  0.4861
For 0 1 should be 0 1 1 actually are 0.2830  0.7182  0.4490
For 1 0 should be 0 1 1 actually are 0.3767  0.7362  0.3253
For 1 1 should be 1 1 0 actually are 0.8367   1.1151   0.2882
Mean Sum Square Errors are 0.06999  0.06934   0.2695

Varying Learning Rate – AND 

At this stage – comment on varying learning rate …

On the AND problem : when Learning Rate is 0.1
Apply data set learning 20 times, sse at each of 20 epochs is

1.1676    0.8152    0.7096    0.6551     0.6123    0.5741    0.5400
0.5097   0.4831    0.4599    0.4397    0.4221    0.4069    0.3937 

0.3822    0.3723   0.3637    0.3562    0.3497    0.3441

Then when present data, show have learnt (to an extent)
x1 x2 Target   Actual    Scaled
0.0000    0.0000    0.0000   -0.1260     0
0.0000    1.0000     0.0000    0.2730     0
1.0000     0.000      0.0000    0.3329     0
1.0000    1.0000      1.0000    0.7319      1
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SSEs with different learning rates
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The smaller learning rate means network slower to learn

However, do seem to minimise errors

A coarse learning rate may mean cant reach minimum:

Possibly oscillating around it.

So start with bigger learning rate and then reduce it.

If learn 40 epochs rate 0.1, 

SSE reduces to 0.31

If do 10 at 0.3; then 10 at 0.2; 10 at 0.1 and 10 at 0.05

SSE reduced to 0.28

With Different Initial Weights

If start with random weights  -0.0956   -0.8323    0.2944

The first and 20th SSE with η = 0.1 are  3.1188    0.3643

% note the higher initial error and slightly higher final

If learn for ~60 epochs, get min error of ~0.344

Number of epochs needed to find smallest error varies

depends on initial weights and hence error

it also depends on learning rate

Key point

In general you need to test a network many times with different
initial values of weights, and different learning rate,  to find best.

p66 RJM  17/08/16 CS2NN16 Neural Networks – Part A
© Prof Richard Mitchell 2016



CS2NN16 – Neural Networks – Part A

© Prof Richard Mitchell, 2016 12

p67 RJM  17/08/16 CS2NN16 Neural Networks – Part A
© Prof Richard Mitchell 2016

Summary
A class has been defined to allow a neural network to be produced 

which comprises a layer of simple neurons

These have linear activation : 

output = weighted sum of inputs + bias

Such a network can solve simple problems to an extent, but even 
these have significant errors

Next week we consider how such a network can be improved using 
sigmoidal activation

And we shall start to see the power of object orientation

To help you in your understanding, you should now start looking at 
the assignment – preparing for lab session – whole session can be 
done when know of sigmoids … hence next lecture
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4 : Sigmoidal Activated Perceptrons

We have seen how a linearly activated neuron can to an extent 
solve simple linearly separable logic problems.

AND: calc -0.1260  0.2730  0.3329  0.7319 for 0 0 0 1
We have seen how a C++ program can be written to implement the 

method using an object
We saw how this can be extended for a layer of neurons
This week we will show how a sigmoidally activated neuron can 

learn these problems more accurately
And how the existing program can be extended easily to 

implement this, using Object Inheritance
We shall also see why we needed virtual functions.
Knowing this you will be able to do SigmoidalLayerNetwork…
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Sigmoid Activation
The nodes we have used have ‘linear activation function’

Output = weighted sum * 1 = z * 1
Instead often use semi-linear activation function sigmoid, 
acting on the weighted sum z:

Thus, to calculate the outputs, we find the weighted sum, as 
before (result in output), and then we say

output = 1 / (1 + exp(-output) );

We also need to change the delta rule for learning

-z
1Output  = 

1 e
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Delta Rule and Activation Functions
The delta rule needs slight clarification

delta term = ‘error’ * ‘derivative of activation function’

So if z is weighted sum of inputs (including bias)

Then for ‘linear activation’, output O = z

-z 2 -z -z 2 -z

2 -z 2 -1

dO  = (1 e ) *-1*e * 1 (1 e ) * e
dz
     = O * (1 e 1) = O * (O 1) = O * (1 O)

So  = error * Output * (1 - Output)

    

   

But for sigmoidal activation, O = (1+e-z)-1

dO d= (z) = 1      So  = error * 1 = error
dz dz


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And So
Before in FindDelta have delta = error

Now need to do

delta = error * output * (1 – output);

For the AND problem, if we train for 1000 epochs, with a learning 
rate of 0.5, we get the following

0.0000    0.0000    0.0000    0.0008
0.0000    1.0000    0.0000    0.0812
1.0000    0.0000    0.0000    0.0815
1.0000    1.0000    1.0000    0.9041

Much closer to 0 0 0 1, but taken many more epochs
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On Implementation

The LinearNeuron we have already defined has

weights, delta, output and deltaweights

It has constructor, destructor and functions to calc output, delta, 
deltaweights and to change weights

For Sigmoidal activation we need the same variables and much the 
same functionality

The differences are

we need to extend the calculation of output

we need to change the calculation of delta

The rest is the same. 

Object hierarchies come in very handy here …
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Inheritance

An object type which extends/slightly modifies some behaviour is 
achieved by inheritance

We now define a class SigmoidNeuron which inherits the data 
variables and functions of the existing class LinearNeuron

Where the functionality is the same, we DON’T rewrite the code –
we use what has already been written

We only write functions for the bits that are different.
In fact we shall write for SigmoidNeuron

a constructor and destructor  // always have these
functions CalcOutput and FindDelta

Assignment: 
you write SigmoidalLayerNetwork inheriting LinearLayerNetwork
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And then

If L is of class LinearNeuron and S of class SigmoidNeuron

L.CalcOutput(ins);

calls CalcOutput function of LinearNeuron

S. CalcOutput(ins);

calls CalcOutput function of SigmoidNeuron

L.SetTheWeights(initweights)

calls SetTheWeightfunction of LinearNeuron

S.SetTheWeights(initweights) 

calls SetTheWeights function of LinearNeuron as

SigmoidNeuron does not have its own SetTheWeights
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Inheritance Diagrams

Anything public/protected in LinearNeuron, 

is public/protected in SigmoidNeuron

Constructor
Destructor

CalcOutput
FindDelta

LinearNeuron

SigmoidNeuron

SigmoidNeuron

LinearNeuron
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So Class Declaration

class SigmoidNeuron : public LinearNeuron {
// Neuron with Sigmoid Activation, inheriting LinearAct.

virtual void FindDelta (double error);   // by Out*(1-Out)*Error
virtual double CalcOutput (vector<double> ins);

public: // Node output is Sigmoid(Weighted Sum)
SigmoidNeuron (int numIns);  //constructor
virtual ~SigmoidNeuron (); // destructor

};
Note variables like output and delta are available to 

SigmoidNeuron and LinearNeuron as they are ‘protected’

If they were private, only LinearNeuron could access them
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The Constructor and Destructor

SigmoidNeuron::SigmoidNeuron (int numIns) 

: LinearNeuron (numIns) {

} // just use inherited constructor

This just calls the constructor of the class it inherits

If class has own variables, it will usually also initialise those, as 
well as calling the inherited constructor

Often such a constructor has extra arguments.

SigmoidNeuron::~SigmoidNeuron() {

} // destructor … do nowt as no variables of own

// note automatically LinearNeuron destructor called
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And The Rest

void SigmoidNeuron::CalcOutput (vector<double> ins) {
// output = Sigmoid (WeightedSum)

LinearNeuron::CalcOutput(ins);  // use LinearNeuron function
// to set output to weighted sum

output = 1.0 / (1.0 + exp(-output));
} // then turn weighted sum to Sigmoid(weighted sum)

In assignment, model SigmoidalLayerNetwork on SigmoidNeuron

void SigmoidNeuron::FindDelta (double error) {
// computer delta from error : ie * O * (1-O)

}
delta = output * (1.0 - output) * error;
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On Virtual Functions

Functions were labelled virtual – why?

ComputeNetwork calls CalcOutput for which there are different 
versions, for LinearNeuron and SigmoidNeuron

ComputeNetwork is defined ONLY in LinearNeuron

If L is a LinearNeuron and S is SigmoidNeuron

L.ComputeNetwork should call LinearNeuron:: CalcOutput

S.ComputeNetwork should call SigmoidNeuron:: CalcOutput

When the program is compiled, the code for ComputeNetwork
cannot know which CalcOutput to call

That can only be determined when the program runs

Achieved by defining CalcOutput as a virtual function
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How C++ Implements Virtual Functions
You can use virtual functions without knowing this …
If at least one virtual function in class, compiler creates a ‘virtual 

function table’, a look up table with function addresses
To call function, find its address from this look up table.
When a class inherits another, its table has addresses: some of 

functions in base class, some for new class.
So in ComputeNetwork, program looks in look up table for current 

class to call correct version of CalcOutput.

Lin::CalcOutput

Lin::SetTheWeights

Lin::StoreOutput

Sig::CalcOutput
Lin Sig
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In Main Program
Before we had the following variable

LinearNeuron *slp;
Initialised by

slp = new LinearNeuron (2);
So slp is a pointer to a LinearNeuron
Now, our program is to have the option 

the user can have either a Linear or Sigmoidally activated node 
It is chosen at run time.

We still call slp a pointer to LinearNeuron and say
if (wantLin) slp = new LinearNeuron (2);
else slp = new SigmoidNeuron (2);
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Continued

KEY point
A pointer to a base class is assignment compatible with pointers to 

other classes in the hierarchy.
Hence can assign as LinearNeuron or SigmoidNeuron
When using slp, appropriate member function is called
So slp -> ComputeNetwork(data) will run that function

which will call the relevant CalcOutput function 
if slp points to LinearNeuron

LinearNeuron::CalcOutput is called
otherwise SigmoidNeuron::CalcOutput is called.
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Pointers and Virtual Functions

For assignment, you develop code for layers not neurons

So the class hierarchy will have

LinearLayerNetwork - layer version of LinearNeuron

SigmoidalLayerNetwork - layer version of SigmoidNeuron

MultiLayerNetwork – a layer of hidden neurons with sigmoidal 
activation followed by another layer

ComputeNetwork is in LinearNeuron but not SigmoidNeuron

However, MultiLayerNetwork needs own ComputeNetwork

For main program have variable LinearLayerNetwork *mlp

A pointer to the network: assignable to a LinearLayerNetwork, 
SigmoidalLayerNetwork or MultiLayerNetwork
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On virtual functions again

Consider mlp -> ComputeNetwork(data)

When the program was compiled it is not possible to know which 
ComputeNetwork function is called, as mlp is assigned (after 
user choice) when program runs

Thus when program is running the system has to determine then 
what type of object mlp points to

And hence which ComputeNetwork function to call

As it is a virtual function, the program uses *mlp’s virtual function 
look up table to call mlp -> ComputeNetwork
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Make Destructors Virtual

The primary job of a destructor is to tidy up, often returning 
memory to the heap.

In the examples so far, the SigmoidNeuron class has no extra 
variables, so its destructor did nothing.

The MultiLayerNetwork class has extra variables and so needs to 
return memory to the heap

For that object, it is important to call its destructor

As mlp is a pointer to the base class

delete mlp

Must determine AT RUN TIME which destructor to call

Thus it is sensible to define destructors as virtual
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Summary + Assignment
Sigmodially activated neurons learn better than Linear ones.
We have seen how inheritance can be used to implement linearly and 

then sigmoidally activated neurons.
The class which inherits reuses some functions in the base class, but 

has some of its own functions.
This is the power of object orientation.
On the Assignment (see the sheet for more details)

In the lab session, you will write code for SigmoidalLayerNetwork:
extend LinearLayerNetwork 

like SigmoidNeuron extends LinearNeuron
Experiment with these, see effect of momentum.

Next week … start looking at multiple layer perceptrons

p87 RJM  17/08/16 CS2NN16 Neural Networks – Part A
© Prof Richard Mitchell 2016

5 : Multi-Layer Perceptrons

A single layer perceptron cannot solve non linearly separable 
problems – so multi-layer perceptrons (MLP) are used.

These have input and output nodes, but also ‘hidden’ ones.

Achieved using the classes already defined for layers of neurons 

Remember all neurons in layer share same inputs

The challenge is in learning … we will investigate .. 

We will need another class of layer and network
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Learning

Delta rule can be used to ‘learn’ single layer perceptrons

This utilises the error between actual outputs and targets

For MLPs this is ok for output nodes 

as we know their targets from the training set

But for ‘hidden’ nodes, we do not know their target

This problem was realised in 1969 in Minsky/Papert’s book

The lack of a multilayer learning rule stopped nets

Then Werbos (and others independently) developed a method –
known as BackPropagation, it was ignored!

NB there are other learning methods…
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BackPropagation
Backpropagation utilises the Generalised Delta Rule.

(generalised over delta rule used in single perceptrons)

An initialised MLP is trained as follows

For each item in training set (having inputs and targets)

Actual Outputs are Calculated
Errors and deltas in the output nodes are found.
Output delta’s propagated back for hidden errors, thence deltas
Then weights in hidden and outputs nodes are adjusted 

by an amount defined by the generalised delta rule.
End

Node O/p is weighted sum of I/ps passed thru Activation Function 
which must be differentiable eg sigmoid
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From Picton’s Book

Phil Picton’s book describes in detail the operation of back 
propagation for the XOR problem

The slides here use his nomenclature, which we will later map 
suitably for layers in our C++ code

In addition, he gives the weights, deltas and changes in weights as 
the training set is applied

These require initial weights here called Picton’s weights

Their ONLY significance is that they allow you to compare your 
network’s results with his for XOR – don’t use for other data.

If they are different then you are in error!!!!

The numbers here should help you debug your program.
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Nomenclature

xr(i) is output of node i in layer r;
wr(i,j) is weight i of link to node j in layer r;  i = 0 for bias
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Using the Nomenclature

n
r r-1 r-1

i 0
z = w (i, j) *x (i)     where x (0) = 1



The weighted sum of node j in layer r we will call z

If node has linear activation, then its output is xr(j) = z

If node has sigmoidal activation xr(j) = 1 / (1 + exp(-z))

delta term is ‘error’ * ‘derivative of activation function’
For Linear Activation, delta is  error * 1 = error
For Sigmoidal, delta term is 
But, what is the error ?

error * xr(j) * (1 - xr(j) )

p93 RJM  17/08/16 CS2NN16 Neural Networks – Part A
© Prof Richard Mitchell 2016

Errors
Easy for an output node : Target – Actual Output

Error for a hidden node is found using all nodes which use its output: 
summing delta of node * weight of connection 

r r 1 r 1
j

E (i) = (j) *w (i,j)  

th
r rE (i) = X(i) x (i);    X(i) is expected i  output (target)

So, when using Sigmoid Activation Function

So, when using Sigmoid Activation Function

 r r 1 r 1 r r
j

(i) = (j) *w (i,j) * 1 x (i) *x (i)   
 

 
 
 

r r r r(i) = (X(i) x (i)) *(1 x (i)) * x (i)  

Example
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Then Change In Weights
For weight wr(i,j),  (weight i of node j in layer r)

which acts on xr-1(i)      (output of ith node from layer r-1)

The change in weight should be Δtwr(i,j) = η δr(j) xr-1(i)

This is learning rate  *  delta of the node j in layer r *

output from node at ‘input’ end of weight connection

[For a bias weight, this ‘input’ is 1]

If Momentum is used,   Δtwr(i,j) = η δr(j) xr-1(i) + α Δt-1wr(i,j)

Filters out high frequency changes in weight-error space

Good in spaces with long ravines and a gently sloping floor.

Suitable values      0.2 ≤ η ≤ 0.6;      0 ≤ α ≤ 1, say 0.6
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Example – Simple XOR with Sigmoids

Initial weights, from Picton – to check code for XOR problem ONLY
w2(0,1) = 0.8625; w2(1,1) = -0.1558; w2(2,1) = 0.2829;
w2(0,2) = 0.8350; w2(1,2) = -0.5060; w2(2,2) = -0.8644;
w3(0,1) = 0.0365; w3 (1,1) = -0.4304; w3 (2,1) = 0.4812; 
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Operation – input [0 0] : Target 0

x2(1) = 0.7032; x2(2) = 0.6974; x3(1) = 0.5173;
δ3(1) = x3(1) * (1- x3(1)) * (0 - x3(1) ) = -0.1292
δ2(1) = x2(1) * (1- x2(1)) * (w3(1,1)* δ3(1) ) = 0.0116
δ2(2) = x2(2) * (1- x2(2)) * (w3(2,1)* δ3(1) ) = -0.0131
Assuming learning rate is 0.5, the changes in weights are:
Δw2(0,1) = 0.5* 1* δ2(1) = 0.0058 (* 1 as weight is bias)
Δw2(1,1) = 0.5* 0* δ2(1) = 0 (* 0 as input is 0)
Δw2(2,1) = 0.5* 0* δ2(1) = 0 (* 0 as input is 0)
Δw2(0,2) = 0.5* 1* δ2(2) = -0.00656  (* 1 as weight is bias)
Δw2(1,2) = 0.5* 0* δ2(2) = 0 (* 0 as input is 0)
Δw2(2,2) = 0.5* 0* δ2(2) = 0 (* 0 as input is 0)
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Continued
Δw3(0,2) = 0.5* 1* δ3(1) = 0.5*1*-0.1292 = -0.0646
Δw3(1,2) = 0.5*x2(1)*δ3(1) = 0.5*0.7032*-0.1292=-0.04542
Δw3(2,2) = 0.5*x2(2)*δ3(1) = 0.5*0.6974 *-0.1292=-0.04504
Therefore, the weights become

w2(0,1) = 0.8683;   w2(1,1) = -0.1558;   w2(2,1) = 0.2829;
w2(0,2) = 0.8284;   w2(1,2) = -0.5060;   w2(2,2) = -0.8644;
w3(0,1) = -0.0281;  w3 (1,1) = -0.4759;  w3 (2,1) = 0.4362;

After then presenting 0 1, target 1, the weights are
w2(0,1) = 0.8625;   w2(1,1) = -0.1558;   w2(2,1) = 0.2770;
w2(0,2) = 0.8358;   w2(1,2) = -0.5060;   w2(2,2) = -0.8571;
w3(0,1) = 0.0394;  w3 (1,1) = -0.4246;  w3 (2,1) = 0.4693
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Continued

After presenting 1 0 and target 1, the weights are

w2(0,1) = 0.8567;   w2(1,1) = -0.1616;   w2(2,1) = 0.2770;

w2(0,2) = 0.8428;   w2(1,2) = -0.4990;   w2(2,2) = -0.8571;

w3(0,1) = 0.1010;  w3 (1,1) = -0.3834;   w3 (2,1) = 0.5051

After presenting 1 1 and target 0, the weights are

w2(0,1) = 0.8615;   w2(1,1) = -0.1568;   w2(2,1) = 0.2818;

w2(0,2) = 0.8354;   w2(1,2) = -0.5064;   w2(2,2) = -0.8645;

w3(0,1) = 0.0381;  w3 (1,1) = -0.4290;   w3 (2,1) = 0.4816

The whole training set has been presented once – an epoch. 

The sum of square of errors for all items in the set is 1.0594
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Continued
One would then present whole training set again, and again…
Often items from training set selected in random order. 
After 2000 times, sum of square of errors down to 0.0216
Then the weights are

w2(0,1) = 1.916;   w2(1,1) = -5.199;   w2(2,1) = -5.223;
w2(0,2) = 5.794;   w2(1,2) = -3.922;   w2(2,2) = -3.920;
w3(0,1) = -3.130;  w3 (1,1) = -7.398;  w3 (2,1) = 6.903

The inputs and calculated outputs for the training set are
0.0000    0.0000    0.0632
0.0000    1.0000    0.9304
1.0000    0.0000    0.9299
1.0000    1.0000    0.0877    but taken 2000 epochs …

Run from Program

Inputs    Targets    Actuals  Rescaled before training
0       0 :        0 :    0.517 :        1
0       1 :        1 :    0.487 :        0
1       0 :        1 :    0.507 :        1
1       1 :        0 :    0.475 :        0

Mean Sum Square Errors are   0.25   % Correct Classifications     50
Epoch      0 XOR : Mean Sum Square Errors are    0.267
Epoch    200 XOR : Mean Sum Square Errors are    0.261
Epoch    400 XOR : Mean Sum Square Errors are   0.0105
Epoch    600 XOR : Mean Sum Square Errors are  0.00245
Epoch    800 XOR : Mean Sum Square Errors are  0.00132
Epoch   1000 XOR : Mean Sum Square Errors are 0.000894
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Continued
Inputs            Targets      Actuals       Rescaled
0       0 :    0 :   0.0265 :    0
0       1 :        1 :    0.972 :        1
1       0 :        1 :    0.972 :        1
1       1 :        0 :   0.0354 :        0

Mean Sum Square Errors  0.000892 % Correct Classifications    100

NB when training SSE calculated by summing Err^2 as present data
In an epoch, weights change as present each item in data
So SSE reported at end of an epoch when learning may not be same 

as SSE as computed when data set then presented
SSE at last training 0.000894, but 0.00892 when present data

p102 RJM  17/08/16 CS2NN16 Neural Networks – Part A
© Prof Richard Mitchell 2016



CS2NN16 – Neural Networks – Part A

© Prof Richard Mitchell, 2016 18

p103 RJM  17/08/16 CS2NN16 Neural Networks – Part A
© Prof Richard Mitchell 2016

Variation of SSE over 2000 epochs
Lrate 0.5; Momentum 0.0 or 0.8; start with Picton Weights

No MMT
SSE(2000)

0.0216
With MMT 
SSE(2000)

0.0023
SSE(680)

0.0216

0 500 1000 1500 2000
0

0.5

1

1.5

Different for other initial weights &learning rate – Momentum helps
See also http://www.reading.ac.uk/~shsmchlr/jsann/OnMLP.html
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Simple Adaptive Momentum
Swanston, D.J., Bishop, J.M. & Mitchell, R.J. (1994), "Simple adaptive 
momentum: new algorithm for training multilayer perceptrons", 

Elect. Lett, Vol 30, No 18, pp1498-1500

Normally, if Momentum is used, then

Δtwr(i,j) = η δr(j) xr-1(i) + α Δt-1wr(i,j)

Concept: adapt the momentum term depending on whether weight 
change this time in same direction as last

If same direction, use maximum momentum

If opposite, use no momentum

If in similar direction, use something close to max
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On Weight Change Vectors
What to we mean by direction?

The change in weights is an array (or vector) in effect saying how 
changing weights in many dimensions.

Can have two such vectors, for the current and previous 
deltaWeights, Δwc and Δwp

If these have two elements, can show in 2D space:

w2

w1

Δwp2

Δwp1

Can see angle 
between 
vectors

Concept 
extends to nD

w2

w1

θ

Δwp

Δwc
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Implementing SAM
Replace momentum constant  by (1+cos()) 
 is angle between current and previous deltaWeights, Δwc and Δwp.
Cos() varies between -1 and + 1, momentum by 0 .. 2

c p

c p

w . w
cos( ) = ;  i.e. use vector dot products

w w


 

 

In original paper Δw is all weights in network, but RJM investigated 
adapting α at the network, layer and neuron level. Layer best?

R J Mitchell, ‘On Simple Adaptive Momentum’, Paper ID 18, Proc IEEE 
SMC Conference on Cybernetic Intelligent Systems (CIS2008), 
Middlesex, UK. Sept 2008

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4798940
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Summary

So a multi layer perceptron can solve the XOR problem, an example 
of a ‘hard’ problem.

This it does using the ‘generalised’ delta rule

We have seen that the method is slow

(the XOR problem is in fact a poor example)

We have seen an improvement, using ‘momentum’

Next lecture we will look at code to implement the back propagation 
algorithm and issues on data.

[Backprop is nasty and can be slow: Forsyth commented:

‘you should not back backprop’ 

‘don’t propagate back prop’!]


