BODE'S MAXIMUM AVAILABLE FEEDBACK AND PHASE MARGIN

Dr Richard Mitchell Cybernetics Intelligence Research Group Department of Cybernetics The University of Reading, UK R.J.Mitchell@reading.ac.uk

Overview

- Maximum Available Feedback is max loop gain over a specified bandwidth for given margins, in a single loop feedback system
- Uses asymptotes, so actual margins can be very different from specified – often phase margin is low
- In ASM2003 author showed how asymptotes can be changed for large bandwidth
- This paper considers further adaptions and how can be applied to smaller bandwidths

Frequency Shape for Bode's Design

Loop Transfer Function – 3 parts

Design produces transfer function round loop Curved Part : low freq response Bode's irrational element awkward, so Second Order Element, corner freq ω_{o} In effect slope -2 from ω_0 to -2(1-y) slope Lead Lag(s) to approximate slope -2(1-y) from ω_d / m to Bode Step (at ω_d) **Double Lead for Bode Step at ω_d** Then n Lags at ω_{c}

But Slope Can Be Too Short

Bode Phase Plot : Phase vs log(ω)

Actual PM up from 13.9^o to 28.5^o

However

- As Phase lag goes past -180^o + PM soon after ω_o does not meet Bode's PM defn:
 - If add phase lag, system conditional stable
- Thus investigated different configurations for region up to $\omega_e = (\omega_d / m)$
- Already 2nd and 3rd order elements (a) (b)
- Tried 3rd order at ω_o , lead mid way ω_o : ω_e
 - (in effect slope -3 then -2)
 (c)
- Also slopes -3, -2 then -1
- Also slopes -3 then -1 (e) and -4 (f)

(d)

Example Results

	PM sp	ec = 30°	PM sp	ec = 45º	PM spec = 60°		
Sys	PM	MaxPh	PM	MaxPh	PM	MaxPh	
a	13.9	-169	38.7	-153	58.0	-136	
b	28.5	-169	45.6	-153	61.4	-135	
С	28.6	-170	45.5	-155	61.0	-139	
d	37.1	-181	45.5	-156	60.0	-140	
e	41.0	-185	46.4	-156	60.3	-139	
f	26.7	-168	43.7	-149	59.3	-132	

Max Phase means still not meet Bode's PM defn d) & e) not good as can be conditionally stable

Step Response Tests

	PM spec = 30° GMax = 588			PM spec = 45° GMax = 223			PM spec = 60° GMax = 86		
Sys	Tpk	%os	Tset	Tpk	%os	Tset	Tpk	%os	Tset
a	0.11	76.0	1.25	0.15	39.6	0.59	0.21	20.5	0.53
b	0.12	53.5	0.54	0.14	30.3	0.51	0.21	16.3	0.75
С	0.12	54.3	0.56	0.14	31.2	0.35	0.21	17.3	0.71
d	0.15	44.2	0.49	0.16	31.7	0.43	0.22	19.0	0.63
е	0.15	40.1	0.59	0.16	30.5	0.35	0.22	18.6	0.65
f	0.11	56.0	0.53	0.13	32.6	0.52	0.20	18.6	0.72

No obvious best

PM = 45° ; different ω_{\circ} and LeadLags

ω_o=1; LL=1 ω_o=0.1; LL=1 ω_o=0.1; LL=2 Sys PM Tpk Tset PM Tpk Tset PM Tpk Tset 38.7 0.15 0.59 45.2 0.13 0.84 45.6 0.15 0.62 **a** 45.6 0.14 0.51 37.6 0.12 0.77 48.0 0.15 0.39 b c 45.5 0.14 0.35 39.7 0.12 0.92 47.6 0.15 0.35 43.7 0.13 0.52 35.9 0.12 0.72 48.0 f 0.15 0.52 For $\omega_0 = 0.01$, get similar good result if LL=3

Paper has similar results for PM = 30^o and 60^o

Overall, configuration c) seems best

Conclusion

- Modifying the linear element used for the low frequency response, and choosing the appropriate number of lead-lag elements for the -2(1-y) slope successfully ensures Maximum Available Feedback and Phase Margin are achieved Worth trying different configurations An automatic method of selecting leadlags is needed ... the author is working
 - on one!

