BODE’S MAXIMUM AVAILABLE FEEDBACK AND PHASE MARGIN

Dr Richard Mitchell
Cybernetics Intelligence Research Group Department of Cybernetics
The University of Reading, UK
R.J.Mitchell@reading.ac.uk

Overview

- Maximum Available Feedback is max loop gain over a specified bandwidth for given margins, in a single loop feedback system Uses asymptotes, so actual margins can be very different from specified - often phase margin is low
In ASM2003 author showed how asymptotes can be changed for large bandwidth
This paper considers further adaptions and how can be applied to smaller bandwidths

Frequency Shape for Bode's Design

Uncompensated: gain = 1 at ω_{a} when slope -n GMax Specify $\omega_{0}=b w$ x = Gain
Margin
y = Rel
Phase
Margin
PM/180
Slope -2(1-y) \rightarrow Phase = -180 + PM; 'Bode Step' $\omega_{d} . . \omega_{c}$: cancel phase due to -n slope

Loop Transfer Function - 3 parts

Design produces transfer function round loop Curved Part : low freq response

Bode's irrational element awkward, so Second Order Element, corner freq ω_{0}
In effect slope -2 from ω_{0} to $-2(1-\mathrm{y})$ slope Lead Lag(s) to approximate slope -2(1-y) from ω_{d} / m to Bode Step (at ω_{d})
Double Lead for Bode Step at ω_{d}
Then n Lags at ω_{c}

But Slope Can Be Too Short

$$
\mathrm{m}=2^{1-\frac{1}{\mathrm{y}} \frac{\omega_{\mathrm{d}}}{\omega_{\mathrm{o}}}} \quad \begin{aligned}
& \mathrm{PM}=30^{\mathrm{O}} \\
& 2^{1-\frac{1}{\mathrm{y}}}=0.03
\end{aligned}{45^{\mathrm{O}}}^{0.125}
$$

Bode Phase Plot : Phase vs log(ω)

Actual PM up from 13.9° to 28.5°

However

- As Phase lag goes past -180 ${ }^{\circ}+$ PM soon after ω_{o}, does not meet Bode's PM defn:
- If add phase lag, system conditional stable
- Thus investigated different configurations for region up to $\omega_{\mathrm{e}}=\left(\omega_{\mathrm{d}} / \mathrm{m}\right)$
- Already $2^{\text {nd }}$ and $3^{\text {rd }}$ order elements (a) (b)
- Tried $3^{\text {rd }}$ order at ω_{0}, lead mid way $\omega_{o}: \omega_{e}$ - (in effect slope -3 then -2)
- Also slopes -3, -2 then -1
- Also slopes -3 then -1 (e) and -4

Example Results

PM spec $=30^{\circ}$ PM spec $=45^{\circ} \quad$ PM spec $=60^{\circ}$

Sys	PM	MaxPh	PM	MaxPh	PM	MaxPh
a	13.9	-169	38.7	-153	58.0	-136
b	28.5	-169	45.6	-153	61.4	-135
c	28.6	-170	45.5	-155	61.0	-139
d	37.1	-181	45.5	-156	60.0	-140
e	41.0	-185	46.4	-156	60.3	-139
f	26.7	-168	43.7	-149	59.3	-132

Max Phase means still not meet Bode's PM defn d) \& e) not good as can be conditionally stable

Step Response Tests

$\begin{array}{lll}\text { PM spec }=30^{\circ} & \text { PM spec }=45^{\circ} & \text { PM spec }=60^{\circ} \\ \mathrm{GMax}=588 & \mathrm{GMax}=223 & \mathrm{GMax}=86\end{array}$
GMax =588 GMax = $223 \quad$ GMax $=86$
Sys Tpk \%os Tset Tpk \%os Tset Tpk \%os Tset
$\begin{array}{llllllllll}\text { a } & 0.11 & 76.0 & 1.25 & 0.15 & 39.6 & 0.59 & 0.21 & 20.5 & 0.53\end{array}$
$\begin{array}{llllllllll}\text { b } & 0.12 & 53.5 & 0.54 & 0.14 & 30.3 & 0.51 & 0.21 & 16.3 & 0.75\end{array}$
$\begin{array}{llllllllll}\text { c } & 0.12 & 54.3 & 0.56 & 0.14 & 31.2 & 0.35 & 0.21 & 17.3 & 0.71\end{array}$
$\begin{array}{llllllllll}\text { d } & 0.15 & 44.2 & 0.49 & 0.16 & 31.7 & 0.43 & 0.22 & 19.0 & 0.63\end{array}$
$\begin{array}{llllllllll}\text { e } & 0.15 & 40.1 & 0.59 & 0.16 & 30.5 & 0.35 & 0.22 & 18.6 & 0.65\end{array}$
$\begin{array}{llllllllll}\text { f } & 0.11 & 56.0 & 0.53 & 0.13 & 32.6 & 0.52 & 0.20 & 18.6 & 0.72\end{array}$
No obvious best

PM = 45°; different ω_{0} and LeadLags

Sys $\omega_{0}=1 ;$ LL=1

$$
\omega_{o}=0.1 ; L L=1
$$

$$
\omega_{0}=0.1 ; L L=2
$$

PM Tpk Tset PM Tpk Tset PM Tpk Tset $\begin{array}{llllllllll}\text { a } & 38.7 & 0.15 & 0.59 & 45.2 & 0.13 & 0.84 & 45.6 & 0.15 & 0.62\end{array}$ $\begin{array}{llllllllll}\text { b } & 45.6 & 0.14 & 0.51 & 37.6 & 0.12 & 0.77 & 48.0 & 0.15 & 0.39\end{array}$ $\begin{array}{llllllllll}\text { c } & 45.5 & 0.14 & 0.35 & 39.7 & 0.12 & 0.92 & 47.6 & 0.15 & 0.35\end{array}$ $\begin{array}{llllllllll}f & 43.7 & 0.13 & 0.52 & 35.9 & 0.12 & 0.72 & 48.0 & 0.15 & 0.52\end{array}$

For $\omega_{0}=0.01$, get similar good result if $L L=3$
Paper has similar results for $\mathrm{PM}=30^{\circ}$ and 60°
Overall, configuration c) seems best

Conclusion

- Modifying the linear element used for the low frequency response, and choosing the appropriate number of lead-lag elements for the $-2(1-\mathrm{y})$ slope successfully ensures Maximum Available Feedback and Phase Margin are achieved
Worth trying different configurations
An automatic method of selecting leadlags is needed ... the author is working on one!

