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Overview
Bode’s fundamental work uses asymptotes 
to allow a system to be stabilised having 
suitable gain and phase margin, and max 
possible gain over a given bandwidth

(It’s a method of placing poles/zeros)
But if specify too high a bandwidth, for 
instance, actual phase margin far too low
A solution is presented, which is 
consistent with Bode’s aims
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Specification
Uncompensated system 

Gain = 1 at ωa then its order is n
As Phase = -n*π/2, unstable if n>2

Compensated system specified to have
Phase margin, PM
Gain margin, GM 
Max possible gain up to ωo (bandwidth)

Define y = PM/π; x = GM, then 
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Frequency Shape to achieve this
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Slope -2(1-y) → Phase = -π + PM;
‘Bode Step’ ωd .. ωc: cancel phase due to –n slope
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Loop Transfer Function 
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Second order element for low freq response.
(easier for students to understand than 
Bode’s irrational element) 

Lead Lag to approximate slope -2(1-y)
Can be better to have multiple lead lags
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Problem

Slope -2(1-y) from ωd/m to ωd where 
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For PM=30O, ωd must be at least 30 times ωo
and preferably much larger.

That is if bandwidth ωo too large, there wont 
be region where slope -2(1-y) and phase not 
–π+PM
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For instance – Phase response
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Means of extending -2(1-y)
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not good. 
ignores
Bode’s
stability
analysis
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Better – extend -2(1-y) to low freq
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Have 3rd order 
element at ωo
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Now ‘length’ of -2(1-y) given by
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For same system as shown earlier
PM actual was 11.6O, with fix PM actual 27.5O

IF GM reduced from 15dB to 10dB
PM actual 9.8O or with fix PM actual 23.1O

Can achieve PM=30O if specify higher PM
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Conclusion
Analysis has shown why a design using 
Bode’s method may not have the desired 
phase margin, particularly when seeking 
too high a bandwidth. For such 
situations, however, a simple successful 
solution to the problem is provided.
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