OBTAINING MAXIMUM FEEDBACK AND DESIRED PHASE MARGIN

Dr Richard Mitchell

Cybernetics Intelligence Research Group Department of Cybernetics
The University of Reading, UK
R.J.Mitchell@reading.ac.uk

Overview

- Bode's fundamental work uses asymptotes to allow a system to be stabilised having suitable gain and phase margin, and max possible gain over a given bandwidth
(It's a method of placing poles/zeros)
- But if specify too high a bandwidth, for instance, actual phase margin far too low
- A solution is presented, which is consistent with Bode's aims

Specification

- Uncompensated system
- Gain = 1 at ω_{a} then its order is n
- As Phase = -n*T/2, unstable if $n>2$
- Compensated system specified to have
- Phase margin, PM
- Gain margin, GM
- Max possible gain up to ω_{0} (bandwidth)
- Define $y=P M / \pi ; \quad x=G M$, then

GMax $=40(1-y) \log _{10}\left(\frac{4(1-y)}{n} 10^{x / 20 n} \frac{\omega_{a}}{\omega_{0}}\right)-x$

Frequency Shape to achieve this

Slope -2(1-y) \rightarrow Phase = - $\pi+$ PM; 'Bode Step' $\omega_{d} . . \omega_{c}$: cancel phase due to -n slope

Loop Transfer Function

$$
\frac{\mathrm{GMax}}{\mathrm{~T}^{2} \mathrm{~s}^{2}+\mathrm{Ts}+1^{1+\mathrm{s} / \omega_{2}} \frac{1+\mathrm{s} / \omega_{1}}{\left(1+\mathrm{s} / \omega_{\mathrm{d}}\right)^{2}}\left(1+\omega_{\mathrm{C}}\right)^{\mathrm{n}}}, \text { where } \mathrm{T}=\frac{1}{\omega_{0}}
$$

Second order element for low freq response.
(easier for students to understand than
Bode's irrational element)
Lead Lag to approximate slope -2(1-y)
Can be better to have multiple lead lags

Problem

Slope $\mathbf{- 2}(1-\mathrm{y})$ from $\omega_{\mathrm{d}} / \mathrm{m}$ to ω_{d} where

$$
\begin{array}{lll}
\mathrm{m}=2^{1-\frac{1}{\mathrm{y}}} \frac{\omega_{\mathrm{d}}}{\omega_{0}} & \begin{array}{l}
\mathrm{PM}=30^{\mathrm{O}} \\
2^{1-\frac{1}{y}}
\end{array} 4^{\mathrm{O}} \\
& 0.03 & 0.125
\end{array}
$$

For PM=30 ${ }^{\circ}, \omega_{\mathrm{d}}$ must be at least 30 times ω_{o} and preferably much larger.

That is if bandwidth ω_{0} too large, there wont be region where slope -2(1-y) and phase not -п+PM

For instance - Phase response

$\omega_{o} 1 \mathrm{rad} / \mathrm{s}$
GM 15dB
PM 30°
$\omega_{\mathrm{a}} 100 \mathrm{rad} / \mathrm{s}$
n 5
PM actual
11.6°

Means of extending -2(1-y)

a) reduce

Bode Step not good. ignores
Bode's stability analysis

The University of Reading

Better - extend -2(1-y) to low freq

The University of Reading

Now 'length' of -2(1-y) given by

$$
r=2^{\frac{2(y-1)}{1+2 y}} \frac{\omega_{d}}{\omega_{0}} \quad \begin{aligned}
& \mathrm{PM}= \\
& 2 \frac{2(y-1)}{1+2 y}=30^{\mathrm{O}}
\end{aligned} 4^{45^{\mathrm{O}}} \begin{aligned}
& 0.42 \\
& 0.5
\end{aligned}
$$

For same system as shown earlier PM actual was 11.6°, with fix PM actual 27.5°
IF GM reduced from 15dB to 10 dB
PM actual 9.8° or with fix PM actual 23.1°
Can achieve PM=30ㅇ if specify higher PM

Conclusion

- Analysis has shown why a design using Bode's method may not have the desired phase margin, particularly when seeking too high a bandwidth. For such situations, however, a simple successful solution to the problem is provided.
Acknowledgement
- The author would like to thank Dave Keating, Pentamid Ltd, (his predecessor as lecturer on course) for useful chats.

