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This paper proposes a learning mechanism where 
the rule base of the neuro-fuzzy controller is 
replaced by Albus’s CMAC controller. The 
controller is applied to a flexible link manipulator 
and its performance verified.
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Flexible Manipulator

Arm dimensions: 
190x19x3.2mm3

Mass density: 
2710 kg/m3

Young Modulus: 
71x109 N/m2



On Relation Between Neuro-Fuzzy and CMAC Controller  - 3
IEEE SMC UK&RI Applied Cybernetics         © Dr Richard Mitchell 2005

FLC for Flexible Manipulators

Most of FLC reported for flexible manipulators are 
Mamdani-type

FLC with 2 inputs requires n×m rules,  n and m are 
the number of primary fuzzy sets.

Number of rules grows exponentially as the 
number of inputs increases.  

Performance of Mamdani-type FLC depends on the 
amount of time required for rule-base processing 
and the defuzzification methods used. 
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Elimination of Rule Base and Defuzz..

Problem of defuzzification methods eliminated by 
the use of Sugeno-type fuzzy systems

Roger Jang first introduced an adaptive-network-
based fuzzy inference system; serves as a basis 
for constructing a set of fuzzy if-then rules.

Sugeno type FLC
consequent part represented by a parametric 
polynomial function
No need for defuzzification of fuzzy sets in 
consequent
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Roger Jang’s ANFIS
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Parameter Estimation

This further imposes a set of premises and 
consequence parameters to be learnt/estimated

Consequent paras found by LSE in forward pass 
Premises parameters are updated by gradient descent 

in the backward pass. 
Application of algorithms depends on trade-off: 

computational complexity v resulting performance. 
In the case of a flexible-link manipulator - online 

calculation involves inversion of large matrices, 
which degrades the ultimate performance.  So ..
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Neuro Fuzzy Controller
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Albus’ CMAC
CMAC can approximate a 
nonlinear function
Fixed mapping  transforms 
each µ into an N-
dimensional binary 
association vector  
Mapping  is a procedure of 
summing the weights of 
the association cells  
Output is a weighted sum
Weights are to be learnt
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Fuzzy CMAC Controller
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Manipulator Responses  (same scales)

N-Fuzzy

FCMAC
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End Point Vibration   (Mag vs Freq)

N-Fuzzy

FCMAC
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Conclusion
FCMAC faster, but poorer end-point vibration
Main advantage of the FCMAC scheme over the 

neuro-fuzzy controller is the reduced number of 
parameters that is to be learnt. 
Neuro-fuzzy controller has 27 parameters to be 
estimated from I/O data
FCMAC has only 9 weights to learn 

This has further reduced the computation time 
during operation. 
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