

6.1	Apply standard rules		
6.2	Ditto		
6.3	a) m = dy/dx at x = 1; c = y(1) - m		
	b) Use standard integral for means		
6.4	a) straightforward		
	b) show both sides of equation equal.		
6.5	Use inverse function - note diff of $tan(x)$ is $sec^{2}(x)$.		
6.6 a) Integrate, find constant, integrate, find constant			
	b) evaluate left hand side of equation - show is 15.		
p25	RJM 10/09/15 SEICV15 Differentiation and Integration - Part B © Prof Richard Mitchell 2015 Stepress		

Tutorial - Week 9 - Hints				
9.1 a) Find dx/dt, and put t = 0. Use diff of product				
b) Use diff of product and then show LHS = RHS				
9.2 a) Choose u and dv/dt as per examples				
b) Straightforward				
c) Diff of a product than show LHS = RHS				
9.3 Straightforward.				
9.4 Use diff of quotient to find dG/dw, find w where this is zero and evaluate G at these values.				
9.5 Use Integration by Parts				
9.6 Ditto				
p93 RJM 10/09/15 SEICY15 Differentiation and Integration - Part B © Prof Richard Mitchell 2015 <u>Steefers</u>				

Tutorial - Week 10 - Q5				
10.5 Revision				
a) Expand	$\frac{d(5Ve^{0.2t})}{dt}$			
b) An RC circuit is described by $5\frac{dV}{dt}$ + V = t				
Show that V = 0.2e ^{-0.2t} ∫t e ^{0.2t} dt				
c) Use integration by parts to find ∫te ^{0.2t} dt				
d) Hence t	find V given that V = 1 at time t = 0.			
Hints	Q1, 2 and 3 use methods in this week's notes Q4 and 5 - look back in previous lectures			
p114 RJM 10/09/15	SE1CV15 Differentiation and Integration - Part B © Prof Richard Mitchell 2015	Cybernetics		