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Abstract A growing awareness of the potential for machine mediateciarehabil-
itation has led to several novel concepts for deliveringéhtnerapies. To get from
laboratory demonstrators and prototypes to the point wiereoncepts can be used
by clinicians in practice still requires significant addital effort, not least in the re-
guirement to assess and measure the impact of any propdsédrsolo be widely
accepted a study is required to use validated clinical nreasout these tend to be
subjective, costly to administer and may be insensitivé¢oeffect of the treatment.
Although this situation will not change, there is good reasm consider both clin-
ical and mechanical assessments of recovery. This papkmesuthe problems in
measuring the impact of an intervention and explores theemrof providing more
mechanical assessment techniques and ultimately thebgitgsif combining the
assessment process with aspects of the intervention.

Keywords outcome assessmentehabilitation- robotics- stroke- machine
mediated neurorehabilitatiormechanical impedance
1 Introduction

Strokes, transient ischemic attacks, and traumatic brgimiés, are conditions that
are all related in that there is vascular damage that uléipaguses neuronal death
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in the brain. Trends in the management of stroke as an enwrgeamdition have
resulted in a better survivability, but strokes still remas the leading cause of dis-
ability in the developed world [18,34]. There is strong @ride that early, intense
and challenging neurorehabilitation programmes haverafgignt effect on the func-
tional outcome following a stroke [36], but the cost of adistiering these treatments
tends to be high. The full cost of the stroke should considertteatment cost com-
bined with the ongoing costs of caring for a person followinbospital discharge,
however very few economic models consider this link and tesgure remains to
simply reduce the treatment cost.

Intelligent machines and robotic systems may provide a goethod for reduc-
ing the hospitalisation costs as well as providing new wdysetivering retraining
therapies, while monitoring and assessing recovery. Aataoluin cost may be pos-
sible by the simple expedient of ensuring that neuroretiatidn therapists focus
on specifying and monitoring progress, and allowing maesito deliver specific
therapies to the individual [38,28,14]. It is probable ttred reduced staff cost will
outweigh the equipment costs but this will only be acceptetdre is no negative
effect on patients. An additional justification for intrading machine facilitation of
therapies is the potential to replace aspects of treatrhanhtte difficult, dangerous
or repetitive for the therapist. For example if machinesvjate partial body weight
support in gait retraining then additional therapists aitereeded to guard the person
against a fall. Likewise relearning gait often requiresexdipist to do the difficult and
repetitive task of moving the patient’s foot in a specifidgat during walking, a task
that may be more readily handled by a machine. These twoitunscare available
in lower limb retraining machines such as the Lokomatthough further research is
still needed to add higher levels of sensing and intelligeinto the control systems
to allow monitoring and adaptations to the patient whilergivthe therapist a high
level of confidence that the machine will respond in a clithjcappropriate way. A
third advantage of machine supported neurorehabilitatidhat there may be ther-
apy or assessment actions that can only be achieved by fastesisate machines.
Continuous quantitative monitoring, adaptive controlj &me ability to impose large
and short perturbing forces onto the limb as a way of meagumpedance are all
examples.

Because of a growing pressure to reduce hospitalisatiots @s reasonable
to surmise that increasingly rehabilitation will move awfeym the hospital to spe-
cialised units, the home and local medical health facditid@ possible scenario is
demonstrated in figure 1 where the individual is treated dtiphe sites, depending
on their level of health and needs. Thus, although treatnmégit begin in a spe-
cialised unit in a general hospital, the long term rehadiitin needs are best met in
a specialised rehabilitation unit, or (if the person is megpng well) as an outpa-
tient in a local hospital. This model is compatible with tlemcept of early supported
discharge where, if sufficient care is available in the comityuthe patient can be
discharged early from the stroke unit thus realising a difimancial gain for the
healthcare funder [39]. New methods of providing machingedanterventions for
stroke treatment need to accommodate this trend by inciggéts? levels of customi-
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Fig. 1 In the future stroke recovery management will probably regoianaging patient transitions be-
tween different recovery facilities

sation of the treatment, and by allowing the treatment toeremamlessly with the
patient through the health system. This can be combined thé&hrecognition that
machine delivered therapies can provide motivating andlertging therapies, and
improve the socialisation of the individual and their cardmroughout the recovery
process [14,25]. Not only must the technologies that pmtierapies be designed to
accommodate this trend, but also new high quality assesgp@miques are needed
that can monitor the impact of treatments.

This paper considers assessment techniques for advanabihmanterventions
that include robotics, and is structured as follows: firg thanuscript investigates
the traditional clinical evaluation of stroke treatmentlailonsiders new techniques
for assessment of clinical effect. It then goes on to idgmifssible new methods
that could be sensitive to parameters relevant to strolavesy, that is measures of
recovery attributes at the muscular-skeletal level, thmany reflexes, and central
nervous system. These methods rely on observing the imgossats and velocities
on the individual. These observations can be correlategtesrelly imposed forces,
torques, position perturbations, etc. A framework is dighbd to allow separation
of measures at sub-levels (muscular-skeletal recovargyesy of reflex loops, motor
patterns and short term skills). The paper makes a furthegrghtion of the methods
needed in addition to mechanical methods (in particular MRl fMRI based) to
evaluate the abilities of a person to embed skills. Ultityaitds the combination of
the classical clinical measures, the mechanical measndamaasures based on brain
imaging that will give the most complete picture of the remgvprocess. Ultimately
more precise knowledge will allow therapies to be chosenfgivaur the best output
for each individual in this highly varying condition.

2 Challenges of assessing robots in neurorehabilitation:

Most evaluations of robotic aided interventions in stro&babilitation have tended
to consider only a single intervention group. It is thus difft to distinguish be-
tween the effects of the robot intervention, any other réhation treatments and
any spontaneous recovery. The reason this occurs is tleat thiere is a high level of
effort invested in the engineering of the device, and wittoasequent difficulty of
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producing sufficient systems for a reasonably large studgke place. The cost of
production of rehabilitation devices is significantly hgghhan the cost of producing
drug treatments so even if a controlled trial occurs, thellef’fexposure and intensity
is limited when compared to a drug trial.

There are broadly two intervention methods that can be ipedigt considered
in robot assisted neurorehabilitation. The first is to ocolrttie subject against them-
selves, that is to submit half the subjects to a conditionrevtieey receive robot treat-
ment, along with any other treatments, in the first phasevi@t by a second phase
where only the other treatments continue. The second grasiphiis order reversed.
There are any number of variations on this model, such asdigd measurements
during a baseline and a washout period.

The second controlled intervention is the classic randeth&ontrol trial (RCT)
where subjects are divided into a treatment and a contraipgroften matched for
parameters such as age or severity of stroke. This is a watglgpted method for
evaluating the impact of a treatment but in the case of rdlootseurorehabilitation,
is very costly to evaluate.

Both interventions suffer from the fact that the trial sugecannot be blinded
to the intervention, that is to say they are likely to knowhiéy are receiving robot
assisted treatments [11].

A recent multi-centred RCT study of one particular robotimention (MIT-
manus) considered three comparison groups, one recefing intervention (repet-
itive proximal and distal arm therapies), one receivingimsive comparison physio-
therapies and the third receiving the usual care [22]. Theysprovided 36 sessions
of treatment over 12 weeks for subjects who were at least @haatfter their original
stroke. The conclusion was that for this particular treatimthe robot intervention
was comparable with the intensive therapy and outperforasedl care. Cramer, in
the editorial for this journal issue, observed that thereevgeveral unusual factors,
such as the high levels of depression in the subjects [6]itibelly, since this was
a Veterans Affairs (VA) sponsored study, the reported tes@iflect recruitment of
subjects from within the VA hospital system rather than tbaagyal stroke popula-
tion. Cramer observes robot therapies have great potemtéhcan provide therapy
modes not explored by this study. Kwakkel et al. [20] reviemuaber of RCT stud-
ies in robot-assisted therapies on the upper limb with ink@ive results, and argue
for better measures to discriminate between recovery ddtiomal abilities (where
compensation techniques such as trunk movement might i asd the genuine
recovery of motor skills.

While the randomised controlled trial is considered the gtdahdard for the eval-
uation of new treatment interventions, the model presentswiber of challenges for
the evaluation of novel interventions in stroke, for a numifeeasons.

1. The complexity of the brain and nervous system mean thatiihpossible to
identify 'similar’ strokes. People who have had a strokespre with multiple
problems due to these damaged structures. The impairmdnnction varies
depending on the size, location and nature of the cerelrolasnsult [45], and
is compounded by allied problems ranging from speech impeit to emotional



Assessing the effectiveness of robot facilitated neuraiéitation 5

Sites approvedforRCT

Consecutive admissions
with primary stroke

2weekOPS
Inclusion criteria (3.2-5.2)
Patient 4’
Family/friend Written Informed Consent

Excluded if unwilling

to give consent

Randomisation

Control Group (CG) Experimental Group
(EG)
Baseline Ax
Baseline Ax

I

Routine therapy +

Routine therapy Technology suite
8week Assessment Ccsl+ SweekAx &
Family Qualitative | — Qualitative
Interview (EG) Interview
3,6 & 12 month 3,6 & 12 month
follow-up follow-up

Fig. 2 Flow diagram used in the FAME project[42]

and psychological difficulties. Hence the formation of a logeneous sample is

substantially hindered. _ _
2. Awell controlled RCT should ideally have a well definedatraent, for example

adrug dosage that can be related to age, gender, weighheteafiability of each
individual's post-stroke presentation will inform the g/pnd amount of exercise
intervention that is both appropriate and acceptable tgéreon with stroke. If
the intervention is too prescriptive, it runs the risk ofiggincomprehensible,
ineffective or insufficiently stimulating or engaging fdret person with stroke.
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3. Re-learning motor skills after stroke requires repatitof task-oriented, func-
tional movements. The level of repetition reached in rautiriervention is likely
to be insufficient to optimise recovery and rehabilitationd $he addition of addi-
tional therapy has been shown to be limited unless it is imeg@®n of 900-1200
minutes i.e. approximately 30 minutes daily for up to 6 we€ksmpliance with

augmented therapy programmes has traditionally been 16 [1 )
4. In general it is not possible to blind the person with sérfilom the intervention

hence the best that is achievable is a randomised conttabéd/here the person
doing the assessment measures is blinded to the intermemtiothe subject is

not.
5. A wide choice of clinical measures is available (exampigsd in some studies

on the impact of robots in neurorehabilitation are givenabl€ 1) and must be

selected for sensitivity, ease of use, floor and ceilingotdfetc. )
6. Given the complexities and differences between and mwitieialth services and

systems, multi-centred trials for rehabilitation intemtiens prove difficult at the
level of the control of the intervention and the measurenoénarious outcome
variables. Hence the recruitment of sample sizes that dfieisntly large is a
challenge.

Recent experience by one of the authors (ES) has demoisthatea mixed meth-
ods approach yields rewarding, robust and relevant infaomdor the evaluation of
novel ways of mediating exercise intervention after stfdke11, 9]. Using the Med-
ical Research Council's framework for the development offR@ the evaluation
of complex interventions, Galvin et al. used a variety of@itative and qualitative
research methods to design and evaluate ‘family mediatectise intervention af-
ter stroke’ (FAME). In a pre-clinical or theoretical phasesystematic review and
meta-analysis was completed to understand the reseamdned about augmented
exercise interventions after stroke with a particular eagidon which participants
were best suited, what dose was required and what complissiees emerged. In the
second phase (modelling phase), semi-structured intesvéend focus groups were
carried out with the 100 family members/friends of peopléhvgitroke, 75 people
with stroke and 10 expert physiotherapists. The combinaifaghese studies resulted
in the design of a patient centred, evidence based intéovetitat was informed by
the beneficiaries, that is people with stroke and their fi@silThe final phase was
a multi-centred, controlled trial where the person taking mmeasures was blinded
to the intervention, and followed the design shown in figurevizh 20 subjects in
each arm. Clinical measures were made at baseline, 8 waekshi@e months, the
latter to determine if the effects of the intervention weeegistent. The intervention
consisted of 1200 minutes of exposure to the treatment beeB tveek period, and
with this level of intensity the study was able to show a pesieffect in the chosen
clinical measures.

The RCT was combined with a nested qualitative analysis imittiepth semi-
structured interviews carried out with the participantshwstroke and the family
members. The quantitative output of the RCT demonstrateical effectiveness
however the output from the qualitative research reveatetngact that would not
be captured by simply using clinical outcome measures [9].
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Table 1 A subset of available clinical scales for assessment of pdesseelevant to stroke recovery
(ss=stroke specific, S=spasticity, F=function, A=adigtof daily living)

Scale time to administer (mins)
Tardieu scale S

Modified Ashworth scale S

Orpington prognostic score ss 5
Stroke impact scale ss 15-20
Barthel index A 2-20
Functional independence measure A 30-45
Fugl-Meyer motor scale F 20
Action Research arm test F 7-10
Chedoke-McMaster stroke assessmentscale F  45-60
Motor assessment scale F 15-60
Rivermead motor assessment F 45
Wolf motor function test F 30

3 Machine based measures

A principal advantage of machine based measures of stralavegy is that they
are objective. The challenge is to identify a set of measthrasare able to give
information about the recovery state, that has high spéyifiad low noise. Practical
considerations include the time a test takes to be set updmthistered as well as
the disruption it may cause. The intervention therapiessicemed are directed to
retraining the motor skills associated with upper and lolveb movements so the
measures will be considered in this context.

This paper considers assessing recovery of intentionabments in four ways
that loosely correlate to the levels of recovered skillf tha

e Monitoring force and position parameters during the exeaudf a predefined

task
e Imposing a short duration force or position perturbatidhegiin isolation or dur-

ing a task

¢ Imposing a learnable force perturbation

e Assessing long term skill learning
To succeed as a clinical measure any mechanical measureratidd must a) demon-
strate clinical validity, b) be easy to administer and c)eetflthe true underlying
biomechanical and neural systems [16]. If the test is sefiity well considered there
is potential to distinguish the mechanical parameters efjtint, and use these to
distinguish between the pure mechanical response, the méidiated response and
higher centres of the brain.

3.1 Monitoring force and position during a task

When considering a person performing an action such as iimgertey into a lock
the parameters can be considered in several ways. The fantesorques on the
key due to the hand and the lock can be considered. The saina &cthe result
of the combinations of torques and forces on the joint from mfiuscles and the
forces transmitted from the world through the bones andrdtesues. In the same
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way forces and torques can be considered at the endpoint gkggint space, the
velocities, positions and accelerations of individual oles, must relate to those at
the joints, and the end point. Knowledge of any space suclmeagoint can help
to determine the state in another space such as the end pbage relationships
allow knowledge of parameters in one space (such as thaedfdy) to inform us
of parameters in another space (such as the joint) [32]. dissussion assumes a
set of forces are applied to a kinematic linkage (that is theels within the skeletal
frame) from both internal (muscles) and external soureesjlting in movement of
that linkage. A useful simplification is often made when ¢desng arm movement,
the elbow and shoulder can be modelled as a simple pin andpesspherical joint
respectively. Further simplifications might then restnmivements to a plane further
reducing the unknown variables describing the movementiseoperson allowing a
simple relationship to be expressed between the diffeqgetes (muscle and joint
endpoint).

Any machine using feedback control requires measurememtsd set of sensors.
Information from these sensors allow an estimate of theeoand velocities of the
machine at the point(s) of contact with the person. Therelmeaypotential to process
this information to give a metric for the performance of tleegon. This concept was
used by Mak et al. [26] to get measures of 'work’ or energy exjesl or absorbed by
the individual using the Gentle/s rehabilitation robot,[24] although the idea can be
applied more generally.

The method described above was used to estimate the meaghaoik done by
the elbow and shoulder joints during reaching movementsevthe person was us-
ing the Gentle/s robot. A number of modes were available antl€fs, all imposing
forces via a wrist-hand orthosis onto the individual [1].€8b external forces were
designed to assist intentional movements towards a goal@uid be imposed for all
or part of the individual's movement. The haptic device wasdtance controlled,
and therefore transmitted forces via a 3 axis force senstrctbuld deliver an esti-
mate of the endpoint force in Cartesian spdcéo the logging software. This was
coupled with the intrinsic joint sensors on the haptic de\as well as a set of pas-
sive measurement sensors to give a fully resolved positghagientation state of
the point on the wrist where the forces were applieddn additional measurement
of the flexion angle of the elbovg, was needed to fully resolve the estimated joint
parametersf.

The arm was modelled as a two-link serial chain with 5 degoéé®edom. The
vector of joint anglesf, consisted of three shoulder angles and two elbow angles.
An inverse kinematic model was then generated to give amati of the five joint
angles. That is

6="f(xa)

The internal joint torques can be estimated from the armhlano- now com-
putable from@8. External forces in this case consisted of the forces agpdiethe
wrist attachment to the haptic devide,a vector of gravity termsy, and a vector
of the external wire supports used to compensate the armsiggiavity,w. From
this combined force vector and the computed Jacobian thenialtjoint torquey, is
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estimated as
f

1=J"|g 1)
w

T must represent the combination of muscle forces, passigeds, joint friction
forces and torques, etc associated with movement. Thetsefenlmode 1 where
the haptic device could provide all external energy are shioviigure 3. Clockwise
arrow directions indicate that the person is doing work antthptic device whereas
counter-clockwise directions indicate the joint is absglenergy. Thus, in this ex-
ample, itis readily seen that the person is expending ertbrgugh elbow flexion but
is absorbing energy in all three degrees of freedom assakiegith the shoulder. The
area contained within the curve is then a measure of enepgnebed or absorbed.

Although this technique is quantitative and may be valuaile measure of en-
ergy expended or absorbed in the joint does not give an insighthe internal con-
ditions of the limb. However it is possible to construct siefinear and non-linear
models of internal joint dynamics that may provide a betteasure of the causes of
joint movement and hence the level of recovery.

3.2 Short duration force or position perturbations
Force or position perturbations can be used to estimate pademcef(= Z(x, ..., X)

where force is a function of position states such as velpoitadmittance, X = A(f)
where position (or a derivative) is a function of force statd.inear functions are
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often expressed in a state-space form or as functions of dpégate domain vari-
able,s. Typically these would be referred to either the joint spawea convenient
Cartesian frame for the end point. A linear mass-springgErmodel is often used
to characterise the admittance or impedance at joint ore€iar endpoint level =
(ms® + bs+K)x or f = (ms+ b+ k/s)v. Conversion between these two frames is
straightforward so long as a Jacobian can be calculateds iTltle joint admittance

i
matrix is given byA8 = At (where the superscrigtindicates that the admittance
relates joint torque to joint angle).

f= (J,&JT)*le 2)

Tsuji [44] imposes a position perturbation over approxighattO0ns so it can be
assumed that the figures for hand and hence joint impedaokal@both the me-
chanical response and an additional component due to the-syraptic and other
reflexes. Tsuji considered impedance in a Cartesian framkeswal produced highly
visual stiffness and viscosity maps in a subject’s armshralale workspace.

Bennett et al. [2] used perturbations from a pseudo-randejatdo create torque
perturbations that enabled an estimate of elbow stiffnieaaged during cyclical vol-
untary movements. Similar work by Zhang and Rymer [47] exadihow elbow
reflex-generated stiffness and viscosity contributed ¢ottital stiffness of the joint.
Their conclusion was that joint impedance is charactetigetbn-linearity and time-
variance in healthy adults. Missing in all these studiesiis@ncept of what causes
these impedance changes. It is clear that there is both aamieahand a neurologi-
cal element but there has been little attempt to relate kexdgé of the neuromuscular
structures to the measurable impedance.

Impedance has been investigated in post-stroke subjedtdynira the absence
of voluntary movements. McCrea et al. [27] measured a cahgtassive stiffness
in chronic post-stroke subjects, thus gathering evidemdaviour of a linear relation
between torque and position. These results were simildrdset obtained by Given
et al. [13] for control subjects. McCrea also found a stromigeadation between Mod-
ified Ashworth Scale indications of hypertonia and passtiftness and damping,
using a linear viscoelastic model.

Levin and Dimov [21] tested a step-unloading event on a obrgroup and
chronic post-stroke group, showing that stroke patiemtsdd agonist and antagonist
muscle co-contraction immediately after releasing thel |ginting to a defective
control ofimpedance. These results offer insight into sofrtbe mechanism that are
at the basis of motor control in hemiparetic subjects. Traydver lack longitudinal
perspective and since they focus on chronic subjects (niimirh year after stroke)
do not possess information on the mechanisms involved glihie early stages of
stroke recovery (first 5 months after stroke), when the nitgjof progress are made.

A technique with good specificity in identifying subsystenfsarm movement
is the concept of the parallel cascade model (figure 4 le#) tionsiders a linear
system to represent intrinsic dynamics and a parallel Haisteia model with delay

2 A Hammerstein model is a simple non-linear model that consistsstdtéc non-linear element that
shapes the input variable, followed by a linear dynamic elémen
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Fig. 4 Parallel cascade model (left) and Prochazka model struatigre)( P1 is considered to model the
effects of muscle, joint and surrounding tissue, and is sEpred as a linear model. P2 is considered to
model the combination of reflexes and central nervous systeins aepresented by a Hammerstein model

to represent the reflex and higher neural elements [17].c8jlgithis is used in an
impedance form but an equivalent admittance form is posgfiure 4 right). This
second form is similar to the simulation studies done by RPaaka [37].

The parallel cascade model was demonstrated by Mirbagd@rf¢r the ankle,
and relies on the fact that during the first 50-80 ms followéntprque perturbation
the response cannot have any conscious influence and hgmwesarts underlying
neuromuscular characteristics that can be compared t@ntianal clinical rehabili-
tation measurements. Achieving a measurable responsie timtie period is difficult,
requiring either a well controlled and fast step positiontymation, or a large and
short duration torque perturbation to produce a short jposgierturbation.

Mirbagheri et al. [30] also described chronic post-strokémsic and reflex stiff-
ness of the elbow at different angular positions in the presef perturbation but
in the absence of movement. Using the parallel cascade ntloelglwere able to
conclude that although intrinsic stiffness does not chayejeeen normal and post-
stroke subjects (as observed in the linear pathway), refiéness tends to increase
in post-stroke individuals (as observed in the Hammersteidel of the reflex). In a
further study they observe that it is possible to identifg wvoups from their data on
elbow stiffness measurements of individuals in the 1 to 12tm@eriod following
their stroke.In the first group the reflex stiffness and in#i¢ gains increase consis-
tently over the recovery period compared with the secondmgrehere these gains
decrease [31]. The separation into these two groups rereainewhat arbitrary and
the result can only be considered speculative at this stage.

Research by Burdet et al. [5] confirmed that stabilisatiotihethand derives from
stiffness adaptation during movements in the presencemta field. These studies,
although demonstrating that stiffness and viscosity arelim@ar and time-varying
for voluntary movements, do not however provide evidencéanm the impedance
of the individual joints of the arm changed during the reaghaction, nor allow an
insight into the parameters of key elements in an arm model.

3.3 Imposing learnable force perturbations

There are many theories as to how the brain controls movesylemt a concept that
has some validity is that in some circumstances the brairthgaability to encode a
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forward model - possibly in the cerebellum - and thereafpmrates in essentially an
open loop fashion [3, 29]. The signal sent by the motor cdrtitéates the movements
while proprioceptive signals are returned back to the moaotex via the cerebellum
in the course of the action (figure 5). The forward model thigben implicates the

cerebellum in calculating the error between planned angbhsensory information

using a pre-constituted dynamic model and sends this irdtbam to the motor cortex
only where there is a discrepancy between computed andl @ettfarmance of the

movement.

Evaluation of the brain’s ability to encode these forwarddels is commonly
done by investigating arm reaching movements in the presehan external force
field. One common form of force field is the so called 'curl’ ieThe usual method-
ology is to arrange a subject in front of a two axis manipulanchble to apply in the
region of 3— 15N through a handle. The subject then makes a reaching movement
towards a target and a perturbation force is applied. If thek @oint velocity of a
manipulandum ix then the forcd that is applied through the handle or attachment
point is computed as

f[g _o/\}"‘ 3)

and tends to distort movement in an anticlockwise directiamereA is a scalar that
dictates the level of distortion). Work by Shadmehr and Meissildi [41], Wolpert [46],
and others has shown that the internal model required to ensgte for this external
environment can be learned in a relatively small number ofentents (typically 10-
15), and evidence that the model persists comes from thethajedtory that occurs
if the force perturbation is removed. Osu showed that stbjeere able to switch
rapidly between models to compensate for a clockwise anditeoclockwise force
perturbation [33].
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The strength of this experimental scenario for stroke assest is that it provides
a method to observe through the 'curl’ field both the mechaioocesses needed to
make a reaching movement and the ability to use a forward htodeompensate
for the environment. It is clear that it will only be relevantindividuals who have
made significant progress in recovering motor skills, ang mat ever be relevant
for people who have no potential to relearn movements, butiength is the direct
measurement in an unobtrusive way to make this assessnugettiplly using the
robot that is also delivering movement therapies.

Takahashi and Reinkensmeyer [43] considered such an assgssnd noted that
subjects had a decreased ability to learn the compensatorgmrents on their stroke
effected side. They also observed that the inability to attafne curl field was well
correlated to the severity of the stroke as assessed witbltbdoke McMaster score.

Patton and Mussa-Ivaldi [35] used a similar approach to @ammdividuals with
a stroke to age matched controls. They did not find a corogldietween the ability
to learn an internal model and the Chedoke score, but olis#raethere was a corre-
lation between the strength of the perturbing force and tfiléyato learn the model,
and thus hypothesised that error-enhancing therapy mayobe effective than con-
straining movement to a 'correct’ path.

There were significant differences between these two stutia might account
for the different conclusions, and in both cases the subjgete people with chronic
stroke where less recovery is expected. This highlightadeel for further research in
the area, both to assess the sensitivity of a "curl’ field toemsure of limb recovery
and to establish whether it can be used in a practical retatih robot to both
deliver treatment and as an assessment of recovery.

3.4 Assessing long term skill learning

The force based measurements described give some indiaztioeural activities
but currently cannot be used to investigate long term chatméhe brain as a skill
is acquired or relearned. Since stroke rehabilitation cacdnsidered as a relearn-
ing process, knowledge of structural or connective chaigése brain will give an
insight into this aspect of recovery. Techniques from biaiaging techniques are
able to show areas of the brain where structural (white/gneaster) changes occur.
However, connectivity changes are almost impossible terdehe in vitro, and only
an indication is possible using brain imaging techniques #re sensitive to blood
oxygenation levels that imply an increased metabolism ehuronal cells.
Draganski et al. in 2004 and Scholz et al. in 2009 looked dtatqguisition using
magnetic resonant imaging (MRI) studies to show that theme long term change
to the grey and white matter in the brain that can be attribtiethe acquisition of
a motor skill [7,40]. In both cases the acquired skill wascedg juggling and the
intervention group were given three months (2004 a studyren gatter changes),
or six weeks (2009 a study on white matter changes) to leémtw manual skill.
These studies reported changes in the structure of the Braiganski’s study of grey
matter showed a change of mass in the mid-temporal area W) Bihd left poste-
rior intraparietal sulcus that could be attributed to therhed skill. Schultz reported
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a change of white matter in several areas including the polsterior intraparietal
sulcus. Thus the acquisition of a motor skill can be directiyrelated to structural
changes in the brain and it is these structural changes thstt also occur when a
person is re-acquiring motor skills during rehabilitatiénseparate study by Boyke
et al. also looked at acquiring the skill of juggling, but im @lderly population [4].

They experienced a high drop out rate and from the initial @Jexts, they report
data for a training group of 25 (age range 50-67 years) andiaat@roup of 25 (age
range 55-67 years). They reported changes to the greymrattee middle temporal

area of the visual cortex (hMT/V5).

Other skills also manifest structural changes, and Eng8ji@pserved changes
in cortical thickness (distance between the gray/whiteendtoundary and the pial
surface) in elderly people (age range 42-77) following ane&kvtraining program
designed to improve serial verbal recollection memory. \Waethese techniques can
be adapted to a specific measure of recovery, especiallg tecoften non-localised
damage to the brain, remains to be seen.

MRI measurements give no indication of the short term dyeanso techniques
such as near infra red spectroscopy (NIRS) and functionghetic resonance imag-
ing (fMRI) have emerged to measure changes in oxygenatedilflow. Both NIRS
and fMRI can only be considered as an indication of neuraVviactsince in both
cases the signals are an ensemble of spatial and tempavitlyecom a large num-
ber of individual neurons. A further difficulty with fMRI basl studies in movement
is that it is difficult to gather valid data from subjects véhihey are in the coils. Prob-
lems are associated with the slow response of the signalsptihuption of the signals
caused as a result of the subject moving and from the distoofithe magnetic fields
produced by most metals. This has not prevented severaiteat producing haptic
devices that are compatible with MRI and fMRI measuremet®s15,19]. Resolv-
ing this difficulty would allow a much greater correlationtb® cognitive process to
those that generate the motor patterns for volitional m@rgm

4 Discussion

For the foreseeable future validated clinical measuredilely to remain the only
accepted method for evaluating the benefits of an interwenititended to retrain
movements following a stroke. However there is a secondqaérfor validated clin-
ical measures, that is as a way to monitor the recovery of dividtual and make
decisions about appropriate treatments. Just as machidmated stroke interven-
tions are required to show a value in either saving costs loargeing treatment, any
measurements of the recovery progress must be easy to atemand produce useful
information for clinical decision making. Although therelarge literature on assess-
ment techniques, it is not appropriate to simply adapt tlsesthey can be delivered
mechanically, rather the opportunity exists to use knogésflom human motor con-
trol to attempt to get at more fundamental processes assdorth relearning or
retraining movements. There are unigue advantages forineblased assessment
techniques. The first is the ability to collect large quaesitof data. However data
does not always translate to information and further workeisded to identify what
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measurements will compute useful, consistent and reliagligics of recovery. The
second advantage is that machine based measures will btiobjend quantitative.
Where the measure is only for clinical assessment this caohgdered an advan-
tage, but there is interest in investigating reward sysfemseople undergoing stroke
rehabilitation. A therapist who has access to a clinicalsueacan use discretion in
deciding whether or not to pass this information on to théepatLikewise the same
therapist may be better able to judge if a metric is incortesed on a more complete
knowledge of the person.

If the machine assisted intervention therapy can be intedraith methods to
make mechanical assessment of recovery, an additionahtdyeawill be that a mea-
surement can be taken at almost any time. This is akin to #itehdrials’ used when
assessing the learning of a perturbation model, the foraeinbation is turned off
and the response in this condition measured. Likewise abapgte points in an in-
tervention therapy it would be possible to reduce the legélsssistance and insert
the forces or position perturbations needed to assessdbeansy.

Further work is needed to develop strategies for gathesefuldata for machine
measures. The relatively straight forward estimation eirgy transfers used by Mak
et al. [26] should transfer readily across a range of deviktés more complex to
design rehabilitation robots that can deliver consisterdd or position perturbations
across the different configurations of device, in particgigen that differing levels
and durations of force perturbation were conjectured bioRand Mussa-Ivaldi [35]
to have different learning effects on the individual. Bug fpotential of embedding
the necessary hardware, control and processing into léhtibn equipment to allow
consistent measurement of features that have a clinicalaete will strengthen the
case for the introduction of intelligent machines in neahabilitation.

Robots and intelligent machines clearly have a contrilbuti make in stroke
rehabilitation but these benefits should not be confinedlgitolelivering therapies,
but should be used to enhance the abilities of the therapisel as to make a more
precise assessment of recovery. The best techniques Essasant still need to be
determined, but will work most effectively if they are rddle, open,verifiable and
independent of any particular stroke rehabilitation pid@Combining information
from clinical, mechanical and brain imagery measuremeiitshen allow all aspects
of stroke recovery to be considered.
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