
Velocity estimates from sampled position data

It is often the case that position information has been sampled from continuous process and
it is desired to estimate the velocity and acceleration. Example would include data from
a quadrature encoder, an analogue to digital converter, a Vicon capture system, a series of
ultrasound measurements etc.

The problem is that differentiation is noisy at high frequencies and further more there is a
danger of oversampling where multiple records are made of the same value, or quantisation,
where the measurement rounded up or down to the nearest binary integer that represents the
signal.

An alternative is to use a sensor such as an accelerometer and integrate which is more more
robust but suffers from drift (low frequency noise).

The solution is to filter the signal and then compute the velocity but since the filters considered
here are linear, this process can be done in a single filter. This can be used to reduce the
consequences of noise in the signal but care is needed to ensure that the phase lag does not
distort the results, that is to say a position peak (or trough) should be represented by the
velocity estimate passing through the horizontal axis (0), the danger is that the velocity will
pass through the horizontal axis some time after the velocity peak.

We can consider finite impulse response (FIR) and infinite impulse response (IIR) filters.

FIR Velocity filters

Given a signal u sampled at regular intervals T we want to estimate du/dt

The general FIR filter is yn = b0un + b1un−1 + b2un−2...

The best equal weighted FIR filters are

2 [1 -1 ]/T
3 [.5 0 -.5]/T
4 [.3 .1 -.1 -.3]/T
5 [.2 .1 0 -.1 -.2/T
6 [1/7 3/35 1/35 -1/35 3/35 1/7]/T
7 [3/28 1/14 1/28 0 -1/28 1/14/3/28]/T
8 [1/12 5/84 1/28 1/84 -1/84 -1/28 -5/84 -1/12]/T

It can be derived from the Maxima code as follows

matrix( [1,1,1,1], [0,T,2*T,3*T] );

transpose(%).invert(%.transpose(%));

As the length of the filter increases the phase lag increases.
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Note on quantisation

At high sampling speeds where the signal is changing slowly the output of a difference filter
will appear as a series of impulses. Check the data and consider resampling your position at a
lower frequency (for example keep only every 10th measurement)

Using a mean filter followed by a differentiator

One crude way of filtering a signal is to use a mean filter with a span p that is to say

yn =
1

p
(un + un−1 + un−2..un−p+1)

This can then be followed by the difference filter

yn =
1

T
(un − un−1

It is relatively easy to show that this is simply the filter

yn =
1

Tp
(un − un−p+1)

The problem with this approach is that the filter has a large phase lag because equal weight is
given to the latest sample and the sample p time steps back.

IIR Velocity filters

An IIR filter is possible by considering

N

1 +N/s

as a differentiator followed by a first order filter. This can be written as

s

s/N + 1

which is a closed loop system with gain N and an integrator in the feedback path.

One digital integrator is

Y/X =
T

2

(1 + z−1)

(1− z−1)
≈ 1

s

Where the new integrated value is the old value plus the average of the current and the new
input. This is essentially a Padé approximation of

z = esT ≈ 1 + sT/2

1− sT/2

2



Figure 1: Frequency response of FIR and IIR velocity filters. Pure differentiation has gain= ω
phase= π/2

Thus the filter becomes

Y/X =
N

(1 +NT/2)

(1− z−1)

(1 + NT−2
NT+2

z−1)

When NT=2 then the filter imitates a 2 element difference filter. High values of NT implies
noise at high frequencies but a constant phase lead of pi/2 i.e. correct integration. Low values
of NT implies phase large phase lag

Second order Butterworth filter

Another possible velocity is a 2nd order low pass filter following the differentiator.

The 2nd order Butterworth filter is of the form yn = b0un + b1un−1 + b2un−2 − a1yn−1 − a2yn−2

Can choose a cut off frequency 0 < wn < 1 where sampling frequency =2;

The filter coefficients are then derived from Ω = tan(ωnπ/2)

den = 1 +
√

2Ω + Ω2

b = [1 2 1]Ω2/den

a = [2(Ω2 − 1) (1−
√

2Ω + Ω2)]/den

Compute your own filter

A simple filter that might do better with you particular data is to consider how to estimate the
filter data giving greater weight to recent data.
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For example a finite difference filter could difference the current value and the average of the
previous two values. This would now be considered to happen over a time period of 1.5T that
is to say

yn = (xn − 0.5(xn−1 + xn−2))/1.5T This can be rewritten as yn = (2xn − xn−1 + xn−2)/3T

Or alternately use a difference over the last two samples and average this estimate to the
previous estimate. If we assume c + d = 1 a range of filters are available of the form yn =
cyn− 1 + d

T
(xn − xn−1)

Matlab code to generate the graph

function response2(x)

% some response functions

% for velocity filters based on Butterworth and finite difference.

%

T=1;

% difference filters

BF2=[1 -1]/T;

BF3=[.5 0 -.5]/T;

BF4=[3 1 -1 -3]/(10*T);

BF6=[5 3 1 -1 -3 -5]/(35*T);

BF8=[7 5 3 1 -1 -3 -5 -7]/(84*T);

N=3/T; %red

AC5=[1 (N*T-2)/(N*T+2)];

BC5=[1 -1]*N/(1+N*T/2);

N10=10/T; %cambridge

AC10=[1 (N10*T-2)/(N10*T+2)];

BC10=[1 -1]*N10/(1+N10*T/2);

[Abut5,Bbut]=butter(.5); %butterworth filter at .5

Bbut5=conv(Bbut,BF2);

Bbut5_4=conv(Bbut,BF4);

[Abut795,Bbut]=butter(.795); %butterworth filter at .795

Bbut795=conv(Bbut,BF2);

Bbut795_4=conv(Bbut,BF4);

[Abut9,Bbut]=butter(.9); %butterworth filter at .5

Bbut9=conv(Bbut,BF2);

% Now do the frequency responses

Npts=50;

[h1,w1]=freqz(BF2,1,Npts);

[h2,w2]=freqz(BF4,1,Npts);

[hfb1,wfb1]=freqz(BC5,AC5,Npts);

[hfb2,wfb2]=freqz(BC10,AC10,Npts);

[hb1,wb1]=freqz(Bbut9,Abut9,Npts);

[hb2,wb2]=freqz(Bbut795_4,Abut795,Npts);
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[hb4,wb4]=freqz(Bbut795,Abut795,Npts);

subplot(2,1,1)

plot(w1,angle(h1),w2,angle(h2),wfb1,angle(hfb1),wfb2,angle(hfb2),wb1,angle(hb1),wb2,angle(hb2),wb4,angle(hb4));

ylabel(’phase (radians)’)

subplot(2,1,2)

plot(w1,abs(h1),w2,abs(h2),wfb1,abs(hfb1),wfb2,abs(hfb2),wb1,abs(hb1),wb2,abs(hb2),wb4,abs(hb4));

axis([0 pi 0 5/T])

ylabel(’gain’)

xlabel(’frequency 0-pi’)

legend(’FD2’,’FD4’,’Int NT=3’,’Int NT=10’,’but .9’,’but .795 (4)’,’but .795’);shg

end

function [Abut,Bbut]=butter(wn)

% butterworth

Om=tan(wn*pi/2);

den=1+sqrt(2)*Om+Om^2;

Bbut=[1 2 1]*Om^2/den;

%Abut=[1 2*(Om^2-1) 1-sqrt(2)*Om+Om^2]/den;

Abuta=[2*(Om^2-1) 1-sqrt(2)*Om+Om^2]/den;

Abut=[1 Abuta];

end
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