
Section 3 Digital Notebook 1

Notes on the Kalman filter

W.S. Harwin∗, University of Reading

March 25, 2009

1 Introduction

Credited to R.E. Kalman but similar algorithms found by T.N. Thiele and P. Swerling. Developed by R.S. Bucy.

The Kalman filter can be seen in action on most GPS satnav systems. As a car enters a tunnel the GPS
signal is lost but the satnav will continue to try to maintain the position based on the Kalman filter model.

Similar to Wiener filter.

Note: The notation here follows that of Welch and Bishop but see end.

2 Continuous time

State equations are
ẋ = Ax + Bu + w

and the Measurement equations are
z = Hx + v

where v and w are zero mean noise with E[wwT ] = Q, and E[vvT ] = R. Although not necessarily so, we make
the assumption that the state and the measurement noise is uncorrelated, ie E[wvT ] = 0,

Note: E[x] is known as the expected value of variable x. In the following we will compute an estimate of P

which is the expected value of the correlation matrix (xk − x̂k)(xk − x̂k)T i.e. Pk = E[(xk − x̂k)(xk − x̂k)T ]

2.1 Time update (prediction)

ˆ̇x
−

t = Ax̂t + But

ˆ̇
P

−

t = AP̂t + P̂tA
T + Qt (Ricatti equation)

In a non-realtime system a solution to the full Ricatti equation would be used.

Then integrate e.g. numerical Euler integration

x̂−
t = x̂t + ∆ˆ̇x

−

t

P̂−
t = P̂t + ∆ˆ̇

P
−

t

2.2 Measurement update

Kt = P̂−
t HT

k (HtP̂
−
t HT

t + Rt)
−1

x̂t = x̂−
t + Kt(zt − Hx̂−

t )

P̂t = (I − KtHt)P̂
−
t

In the above we use the predict the measurement (ẑ−t = Hx̂−
t ) to reconcile the system state.

3 In sampled time i.e. the discrete Kalman filter

State equations are
xk = Axk−1 + Buk−1 + Gwk−1

Measurement equations
zk = Hxk + vk

where again E[wwT ] = Q, E[vvT ] = R, and E[wvT ] = 0,

∗Digital Notebook c© February 2007

1



Section 3 Digital Notebook 2

3.1 Time update (prediction)

x̂−
k = Ax̂k−1 + Buk−1

P̂−
k = AP̂k−1A

T + Qk−1

3.2 Measurement update

Kk = P̂−
k HT

k (HkP̂−
k HT

k + Rk)−1

x̂k = x̂−
k + Kk(zk − Hx̂−

k )

P̂k = (I − KkHk)P̂−
k

3.3 The discrete extended Kalman filter

State equations are
xk = f(xk−1, uk, wk)

Measurement equations
zk = h(xk, vk)

where again E[wwT ] = Q, E[vvT ] = R, and E[wvT ] = 0,

3.4 Time update (prediction)

x̂−
k = f(x̂k−1, uk−1, 0)

P̂−
k = AkP̂k−1A

T
k + WkQk−1W

T
k

where A = ∂fi

∂xj
and W = ∂fi

∂wj
. Where there is a poor noise model there is little help in calculating W so most

people treat it as an identity matrix.

3.5 Measurement update

Kk = P̂−
k HT

k (HkP̂−
k HT

k + VkRkV T
k )−1

x̂k = x̂−
k + Kk(zk − h(x̂−

k , 0))

P̂k = (I − KkHk)P̂−
k

where H = ∂hi

∂xj
and V = ∂hi

∂vj
. Similar argument to W , treat as an identity matrix.

3.6 Explanation

The Kalman filter has two ways to estimate state, the first is ’open loop’ relying on perfect knowledge of A and
B and any inputs to the system u. In this case the Kalman filter gain Kk is zero and the filter applies the normal
state space equations. This condition would require R to be large compared with HPHT approaching infinitely
noisy measurements. The second case relies on perfect knowledge of the measurements of the output. If an
inverse to h(xk) or H existed then the state could be recovered as x = H−1z. Since this is not normally true the
Kalman filter defaults to a modivied pseuo-inverse of H and sets the filter gain to Kk = PH(HPHT )−1. Under
these circumstances the measurement update equation (in zero noise) becomes x̂k = Kkzk

2



Section 3 Digital Notebook 3

Figure 1. Kalman filter based on Singer and Behnke

3.7 Random walk

We can use the Kalman filter to predict the movement of a person or robot. The following should run in matlab
or octave.

% Where’s Wally

% A Kalman filter to predict the 2D location of a 1st order system

% with integrator

% Should be able to play with the time constant, the sample time,

% Q and R, the measurement noise, the model incorrectness

T=3; % time constant for Wally

Atrue=[0 1;0 -1/T];

% This is the actual model of wally walking, i.e. a first order

% system followed by an integral. Put them into a great big state matrix

nothing=zeros(2,2);

m1=ss([Atrue nothing;nothing Atrue],[0 0;0 1;0 0;1 0],...

[1 0 0 0;0 0 1 0],[0 0 ;0 0]);

% Simulate a walk of 20 seconds where the input is a [0,1] random variable

tt=0:.1:20;

u=randn(length(tt),2);

[x_w,x]=lsim(m1,u,tt); % simulate the walk

% if matlab use the transpose

x_w=x_w’;

% Will predict from an incorrect discrete time version of the model

% The correct model would have the numerator of A(2,2) as -1

Akf=[0 1;0 -1.10/T]; % currently A(2,2) is 10% too large

sampletime=.1;

3



Section 3 Digital Notebook 4

m2d=c2d(ss([Akf nothing;nothing Akf],[0 0;0 1;0 0;1 0],...

[1 0 0 0;0 0 1 0],[0 0 ;0 0]),sampletime);

% Could use the (incorrect) discrete time model to compare to the actual walk

% Xx=[0 0 0 0]’; for ii=2:length(u);Xx(:,ii)=m2d.a*Xx(:,ii-1)+m2d.b*u(ii,:)’; end

% Now set up the Kalman filter

A=m2d.a; % A is a (probably incorrect) model of the system

H=[1 0 0 0;0 0 1 0]; % we will be able to make a direct measure of

% only the x/y positions

Xmeas=[0 0 0 0]’; % our first prediction, where it starts

Pmeas=eye(4); % first guess at the covariance matrix

Q=.1*[ones(2,2) zeros(2,2);zeros(2,2) ones(2,2)]; % our estimate of

% model noise variance

R=.1; % our estimate of the sensor noise variance

Xallpred=[]; % place to put states after predictions

Xallmeas=[]; % place to put states after measurement

Xnpred=[0;0];

tk=tt; % tk=0:sampletime:20;

for jj=1:length(tk)

% Prediction

Xnewpred = A*Xmeas;

Pnewpred = A*Pmeas*A’+Q;

Xpred=Xnewpred; % save to old values

Ppred=Pnewpred;

Xallpred=[Xallpred Xnewpred]; % history of prediction state

% Measurement

znew=x_w(:,jj) +.01*randn;

K=Pnewpred*H’/(H*Pnewpred*H’+R);

Xnewmeas=Xnewpred+K*(znew -H*Xnewpred);

Pnewmeas=(eye(4)-K*H)*Pnewpred;

Xmeas=Xnewmeas; % save to old values

Pmeas=Pnewmeas;

Xallmeas=[Xallmeas Xnewmeas]; % history of measurement state

end

% Make a prediction at each time point on where Wally is going

% These depend on the estimate state, and the incorrect model

Predict1=(A-eye(4))*Xallmeas; % 1*sampletime prediction

Predict10=(A^10-eye(4))*Xallmeas; % 10*sampletime prediction

deltax=[x_w(1,:); x_w(1,:)+Predict10(1,:)];

deltay=[x_w(2,:); x_w(2,:)+Predict10(3,:)];

figure(1)

plot(x_w(1,:),x_w(2,:),Xallmeas(1,:),Xallmeas(3,:));shg

title(’The true path and the Kalman estimate’)

figure(2)

plot(tt,x_w,tk,Xallmeas’,tk,Xallpred)

title(’The model states over time’)

figure(3)

4



Section 3 Digital Notebook 5

plot(x_w(1,:),x_w(2,:),deltax,deltay)

title(’Predicting the future direction of Wally’)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Predicting the future direction of Wally

Figure 2. Predictions of a random walk

3.8 Notation

Walsh and Bishop use a slightly different notation for the development of x and P

here W & B Others
x−

k = xk|k−1

xk−1 = xk−1|k−1

xk = xk|k

P−
k = Pk|k−1

Pk = Pk|k

A = A = Φ
H = = C

References

G. Welch and G. Bishop An Introduction to the Kalman Filter , Department of Computer Science at the
University of North Carolina at Chapel Hill Tech. report TR 95-041 (2006)
-Online- http://www.cs.unc.edu/˜welch/kalman/kalmanIntro.html

R.A. Singer and K.W. Behnke Real-Time Tracking Filter Evaluation and Selection for Tactical Applications
”IEEE Transactions on Aerospace and Electronic Systems ” AES-7 (1) , (doi 10.1109/TAES.1971.310257 ) pp.
100 - 110 (1971)

5


