The ability to control and maintain force between robots and people remains a major problem in assistive robotics. This talk will review some past work in assistive robotics and machine mediated stroke rehabilitation as well as explore the challenges in designing effective force control for rehabilitation applications.
\[ \underline\tau= M(\underline{q})\ddot{\underline{q}}+C(\underline{q},\dot{\underline{q}})\dot{\underline{q}} +G(\underline{q}) \]
i.e. \[ F=m\ddot{x} \]
or
\[ \ddot{x}=\frac{F}{m} \]
http://www.cybernetia.co.uk/LN/Inertia.html An adventure game with gravity |
\[~^1\dot{\vec\omega}_1=\begin{bmatrix} 0\\ 0\\ {\ddot\theta}_{1} \end{bmatrix}\] \[~^1\dot{\vec{v}}_{cog_1}=\begin{bmatrix} g\,\sin\left(\theta _{1}\right)-{{\dot\theta}_{1}}^2\,\mathrm{lcog}_{1}\\ {\ddot\theta}_{1}\,\mathrm{lcog}_{1}+g\,\cos\left(\theta _{1}\right)\\ 0 \end{bmatrix}\]
\[~^2\dot{\vec\omega}_2=\begin{bmatrix} 0\\ 0\\ {\ddot\theta}_{1}+{\ddot\theta}_{2} \end{bmatrix}\] \[~^2\dot{\vec{v}}_{cog_2}=\begin{bmatrix} \sin\left(\theta _{2}\right)\,\left({\ddot\theta}_{1}\,l_{1}+g\,\cos\left(\theta _{1}\right)\right)-\mathrm{lcog}_{2}\,{\left({\dot\theta}_{1}+{\dot\theta}_{2}\right)}^2-\cos\left(\theta _{2}\right)\,\left({{\dot\theta}_{1}}^2\,l_{1}-g\,\sin\left(\theta _{1}\right)\right)\\ \cos\left(\theta _{2}\right)\,\left({\ddot\theta}_{1}\,l_{1}+g\,\cos\left(\theta _{1}\right)\right)+\sin\left(\theta _{2}\right)\,\left({{\dot\theta}_{1}}^2\,l_{1}-g\,\sin\left(\theta _{1}\right)\right)+\mathrm{lcog}_{2}\,\left({\ddot\theta}_{1}+{\ddot\theta}_{2}\right)\\ 0 \end{bmatrix}\]
\[~^3\dot{\vec\omega}_3=\begin{bmatrix} 0\\ 0\\ {\ddot\theta}_{1}+{\ddot\theta}_{2}+{\ddot\theta}_{3} \end{bmatrix}\] \[~^3\dot{\vec{v}}_{cog_3}=\begin{bmatrix} \sin\left(\theta _{3}\right)\,\left({\ddot\theta}_{1}\,l_{2}+\cos\left(\theta _{2}\right)\,\left({\ddot\theta}_{1}\,l_{1}+g\,\cos\left(\theta _{1}\right)\right)+\sin\left(\theta _{2}\right)\,\left({{\dot\theta}_{1}}^2\,l_{1}-g\,\sin\left(\theta _{1}\right)\right)\right)-\cos\left(\theta _{3}\right)\,\left(l_{2}\,{\left({\dot\theta}_{1}+{\dot\theta}_{2}\right)}^2-\sin\left(\theta _{2}\right)\,\left({\ddot\theta}_{1}\,l_{1}+g\,\cos\left(\theta _{1}\right)\right)+\cos\left(\theta _{2}\right)\,\left({{\dot\theta}_{1}}^2\,l_{1}-g\,\sin\left(\theta _{1}\right)\right)\right)-\mathrm{lcog}_{3}\,{\left({\dot\theta}_{1}+{\dot\theta}_{2}+{\dot\theta}_{3}\right)}^2\\ \cos\left(\theta _{3}\right)\,\left({\ddot\theta}_{1}\,l_{2}+\cos\left(\theta _{2}\right)\,\left({\ddot\theta}_{1}\,l_{1}+g\,\cos\left(\theta _{1}\right)\right)+\sin\left(\theta _{2}\right)\,\left({{\dot\theta}_{1}}^2\,l_{1}-g\,\sin\left(\theta _{1}\right)\right)\right)+\sin\left(\theta _{3}\right)\,\left(l_{2}\,{\left({\dot\theta}_{1}+{\dot\theta}_{2}\right)}^2-\sin\left(\theta _{2}\right)\,\left({\ddot\theta}_{1}\,l_{1}+g\,\cos\left(\theta _{1}\right)\right)+\cos\left(\theta _{2}\right)\,\left({{\dot\theta}_{1}}^2\,l_{1}-g\,\sin\left(\theta _{1}\right)\right)\right)+\mathrm{lcog}_{3}\,\left({\ddot\theta}_{1}+{\ddot\theta}_{2}+{\ddot\theta}_{3}\right)\\ 0 \end{bmatrix}\]
Sensor Platform for HEalth in a Residential Environment
Ian Craddock |
Margaret Cox |
Barry Quinn |
William Hoderbaum |
Simon Sherratt |
Faustina Hwang |
Brian Tse |
Emma Villeneuve |
Farshid Amirabdollahian |
Rui Loureiro |
Ally Barrow |
Balazs Janko |
Rachel King |
Ozan Tokatli |
Maitreyee Wairagkar |
Colleagues at Royal Berkshire Hospital, Southampton University, Bristol University and Kings College, London |