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Introduction 
Cells have a range of gene regulatory and repair mechanisms that allow them to adapt to changes in 

the extracellular/intracellular environment and thus maintain homeostatic conditions. This ability to 

adapt is essential to the survival of the organism, maintaining specialised cellular functions within 

tissues. Dependent on their function cells accumulate ‘wear and tear’ over the course of their life 

cycle and there is a natural rate of turnover of cells which varies between tissues. However, under 

conditions of extraordinary cellular stress, the rate at which this damage accumulates can increase. 

Cells can sense an ‘assault’ (e.g. through nuclear receptors) and so adapt the expression of 

detoxification  and repair mechanisms accordingly, thus eliminating the chemical insult and 

repairing, as far as possible, any damage caused. These chemical insults can take many forms 

ranging from pharmaceuticals, personal care products, cleaning products, fertilizers or industrial 

chemicals. In any case it is important to understand the level at which organisms/tissues/cells 

exposed to such compounds are able to tolerate exposure and how this corresponds to the level of 

exposure required for these compounds to be effective or useful. 

A number of well characterised biological pathways are associated with adverse responses and these 

can act as markers of cellular stress. Three such pathways were presented to the workgroup: 

oxidative stress [1], unfolded protein response [2] and DNA damage [3]. Given these examples, the 

aim was to reduce these three pathways down to a level of abstraction that allowed all three to be 

modelled through unified adverse outcome pathway (AOP). AOPs aim to structure pathways 

associated with toxicity into a uniform structure beginning with a molecular initiating event (MIE), 

the key events (KE) resulting from the MIE and the key event relationships that link these KEs [4]. 

Such a model would be able to describe the stress responses of all three and given sufficient data do 

so quantitatively. On studying the pathways the group concluded that there was a unifying 

behavioural motif between all three pathways and this could be reduced to the level of healthy cells 

accumulating cellular damage that is repaired through maintenance mechanisms. Given a sufficient 

stress, the rate at which damage accumulates, becomes more critical and can lead to cell death.  

Following discussions, the group decided to tackle the problem posed using three approaches. 

Firstly, a model describing three distinct states of the cell whereby ‘healthy’ cells may accumulate 

‘wear and tear’ (non-critical damage such as associated with aging) before tipping over to ‘critical’ 

damage requiring the cell to mobilise special adaptive measures to mitigate the damage. The second 

approach seeks to minimise the problem even further, describing the balance between damage and 

repair processes. The third approach is complementary to the others, providing insight into how 

perturbation of a cell system will affect metabolic pathways producing key molecules required by 

repair mechanism pathways. 

These three approaches are presented below. 
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Model 1 –‘ Crumple-Zone’ model 
We devised the model depicted in Figure 1 which describes a population of cells by dividing them 

into three groups: H the set of ‘healthy’ cells, W the set of `worn' cells, and C the set of ‘critically 

damaged’ cells. Additionally, the model explicitly accounts for two variables R and E that can be 

abstractly understood to represent the material and energy depleted in repairing the population of 

cells.  

 

Figure 1: A schematic of an abstract adverse outcome pathway model. 

 

R represents the resources of basal repair and detoxification mechanisms in addressing general wear 

and tear. Meanwhile E accounts for the ‘emergency’ repair mechanisms that can be mobilised to 

repair critical damage in the cells, but which require activation following the cell sensing damage.  

Given such a model it is assumed that occurrence of an adverse outcome can be predicted as a 

function of the proportion of critically damaged cells. 
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Hence we chose to model the system under mass action kinetics, as defined via the following system 

of chemical equations: 

 

�
��
���, � + �

��
�� �, 

�
��
�� �, � + �

��
���. 

 

Now define state-variables h(t), w(t) and c(t) to represent the time-varying proportion of the cell 

population that are in healthy, worn, and critical states, such that we have the conservation relation 

 

ℎ(�) + �(�) + �(�) = 1 

 

Similarly, define time-varying state-variables to describe the amount of the repair resources R and E 

available. Such that, overall, we have: 

ℎ(�)	 = [Healthy Cells], 

�(�) = [Worn Cells], 

�(�)  = [Critical Cells], 

�(�)	 = [Basic Repair Resources], 

�(�)		= [Emergency Repair Resources]. 

 

Via the Law of Mass Action the dynamics of these state-variables can then be described by the 

following system of ODEs: 

�ℎ(�)

��
= �2�(�)�(�) − �1ℎ(�), 

��(�)

��
= �1ℎ(�) − �2�(�)�(�) − �3�(�) + �4�(�)�(�), 

��(�)

��
= �3�(�) − �4�(�)�(�), 

��(�)

��
= �7 − �8�(�) − �4�(�)�(�). 
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Table 1: An imagined parameterisation associated with the unstressed abstract adverse outcome 

pathway model. 

Parameter Value 

�1 0.1 

�2 1 

�3 0.01 

�4 0.5 

�5 0.5 

�6 0.15 

�7 0.05 

�8 0.015 

 

Homeostatic regime 
Under normal, background stress we would expect to see a population of cells settle into a steady-

state where they are predominantly healthy with a small proportion of cells in a worn state, and a 

negligible proportion in critical condition. Using this ideal, we sought to inform a basic, intuitive 

parameterisation of the model that yields this behaviour. This led to the parameterisation given in 

Table 1 which, at steady-state, yields  

 approximately 96% of the cell population in a healthy state;  

 approximately 4% in the worn state; and,  

 roughly 0.02% in the critical state.  

 

Stress  

In a pharmacological context, the model depicted in Figure 1 can be used to account for a number of 

types of stress by allowing different parameters to be altered in response to drug concentration. 

While any of the 8 model parameters can be altered to potentially simulate a stress situation, we 

noted that from both the nature of the model and the example adverse outcome pathways provided 

these stresses can broadly divided into two classes: 

1. actively damaging stresses 

2. repair inhibiting stresses 

We will address each of these classes of stress in turn. 

 

Actively damaging stresses 

In this case the stress caused by the administration of a drug actively causes damage to population 

of cells; increasing the rate with which healthy cells become worn and worn cells become damaged. 

This is depicted schematically in Figure 2. Within the model this can be accounted for by increasing 

the rate of background stress (represented by rate parameter �1) and the rate of damage 
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(represented by rate parameter �3). Amongst the three example adverse event pathways provided 

at the workshop this form of stress most readily corresponds to the example of oxidative stress.  

 

 

Figure 2: A schematic of actively damaging stress. 

 

 

Figure 3 depicts an example time-course for actively damaging stressor. Here the system was initially 

assumed to be in the homeostatic, steady-state regime where at � = 0 the administration of an 

actively damaging stress is simulated via a 10-fold increase in the rates of background stress and 

damage (such that  �1 = 1 and  �3 = 0.1). As can be seen from the simulated results, the system is 

initially able to compensate for this stress in the first 0.5 units of time by using its emergency repair 

resources. In the figure, we refer to this period of relative safety as the system's ‘crumple-zone’. 

Once these emergency repair resources have been depleted, however, more critical damage begins 

to accumulate and is likely to result in an adverse outcome. Under this stressed regime the 

population of cells eventually reaches a steady-state where  

 

 approximately 13% are in a healthy state  

 approximately 5% are in a worn state  

 approximately 82% are in a critical state  
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Figure 3: A simulation of the abstract adverse outcome model under an actively damaging stress. 

 

Repair inhibiting stresses  

In this case the stress caused by the administration of a drug inhibits the model's repair  and 

detoxification mechanisms; this leads the cell's background wear and tear to steadily accumulate 

and to eventually tip over into more critical damage. A schematic for this type of stress is depicted in 

Figure 4. Such a class of inhibitive stress can potentially encompass both the DNA damage and 

unfolded protein accumulation examples presented at the problem workshop. 

Figure 4: A schematic of repair inhibiting stress. 
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Given the basic model, there are a number of ways to perturb the parameterisation in order to 

simulate repair inhibiting stress. Specifically, there are three main possibilities  

 

1. we can reduce the rate at which the repair resources interact with damaged cells by reducing 

parameters �2 and �4  

2. we can reduce the rate at which the repair resources are synthesised by reducing parameters 

�5 and �7  

3. we can increase the rate at which the repair resources are degraded by increasing 

parameters �6 and �8  

Here we chose to explore possibility 2., such that the inhibition of the system's repair resources is 

caused by limiting their rate of resupply. Simulated results for this type of stress are shown in Figure 

5. Specifically, we mimicked this type of repair inhibition by applying a 10-fold reduction to the rates 

of resupply represented by parameters �5 and �7. This stress was simulated in two forms:  

 Firstly, a permanent step change, where t ≥1 the rates of resupply are reduced to 10% of 

their original value. Again, the system exhibits the crumple-zone like behaviour until the 

existing pool of repair resources is exhausted. Once this has been overwhelmed, critical 

damage rapidly begins to rise. 

 In the second case, a pulse of stress was administered where the rates of resupply are 

reduced to 10% of their original value 1≤ t ≤7. After the stress has been ‘switched off’ the 

worn cells are very rapidly repaired as the necessary repair resources are replenished 

quickly. The critically damaged cells, however, are repaired significantly more slowly. 

Under the permanent repair inhibition stress regime the population of cells eventually reaches a 

similar steady-state to that obtained under the actively damaging stress, such that 

 

 approximately 13% are in a healthy state 

 approximately 5% are in a worn state 

 approximately 82% are in a critical state 
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Figure 5: Simulations of the abstract adverse outcome model under repair inhibiting stress. 

 

Repeated dosing and cumulative stress  
Finally, we sought to simulate how this system might respond under repeated dosing of a stressor. 

To look at this we again utilized a repair inhibiting stress that reduces the rate of repair synthesis 

(represented by parameters �5 and �7). We assumed that the drug in question was administered 

intravenously, such that upon administration the stress could be assumed to be instantaneously 

active before returning via a logistic decay to normal operating conditions. Additionally we assumed 

that the effect of each individual dose was well within the systems `crumple-zone' such that a single 

dose was not capable of causing critical damage. Figure 6 shows simulated results for two cases of 

such repeat dosing. 

In the first case, referred to as the long interval repeat dosing case, the model simulates the 

administration of a repair inhibiting stressor every 6 units of time. In the second, short interval 

repeat dosing case the same stressor is administered every 3 units of time. In both cases the stress 

response has fully dissipated by the time of the repeat dose, which can be interpreted as 

representing the complete pharmacokinetic elimination of the drug by this point. However, in the 

long interval repeat dosing case the proportion of critically damaged cells reaches a maximal value of 

1.6%, which would likely still be considered safe. Meanwhile, in the short interval repeat dosing case 

the proportion of critically damaged cells can climb to around 48%, potentially leading to an adverse 

outcome. Crucially, in this short interval case, the system can accommodate the first 2-3 doses, but 

after this point the repair mechanisms cannot sufficiently replenish themselves before the 

administration of the next dose.  
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In essence, then, the system is able to accumulate damage under repeated dosing, even where there 

is hypothetically no pharmacokinetic accumulation of the drug. This can occur if the dosing interval 

of a drug is long enough such that it is fully eliminated between doses, but short enough that the 

`repair resources' are not able to be fully replenished before a repeat dose is administered. 

Figure 6: Simulations of the abstract adverse outcome model under repeat dosing of a repair 

inhibiting stressor. 

 

‘Crumple-Zone’ Model Summary  
As demonstrated above, this model exhibits a phenomenon that we have termed the `crumple-

zone'. Specifically, this implies that the population of cells is able to absorb a certain degree of stress 

without producing any critical damage. It is only if the stress is sufficient to overwhelm the pool of 

existing repair/detoxification resources, and hence get beyond the crumple-zone, that any more 

substantial form of damage will begin to accumulate. These crumple-zone dynamics also have 

interesting implications in the administration of repeat dosing; as was shown, it is possible for the 

stress effects associated with the administration of a drug to dissipate without having caused any 

notable damage if the duration of the stress is less than that of the ‘crumple-zone’. However, if the 

dosing is frequent enough and the rate of repair resource replenishment is slow enough, this can still 

eventually lead to the emergence of more significant damage and the possibility of adverse 

outcomes.  

There were a number of ideas for further work on this model discussed during the workshop that 

could not be addressed in the time available. These include:  
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 More detailed mathematical analysis of the ‘crumple-zone’ model: Further exploration of 

the ‘crumple-zone’ network should be performed, including a detailed bifurcation analysis. It 

may be possible that, for certain parameterisations, this model can exhibit bistability 

(indeed, during the workshop it was possible to show that the steady-state solution of the 

system was the solution of a cubic which may permit a bifurcation). Additional methods, 

such as sensitivity analysis or asymptotic analysis, may also provide greater understanding of 

the dynamical behaviour of this system. 

 Comparative analysis of existing adverse outcome pathway models: Another approach to 

the problem of creating a generalised description of adverse out-come pathways that was 

discussed during the workshop centres on the comparative analysis of existing pathway 

models. The aim would be to reduce and analyse a range of these networks to obtain highly 

simplified motifs that still give the same dynamical behaviour. We would then seek to 

compare and match these simplified motifs in the hopes of finding motifs that can be seen 

to underlie a wide range of adverse outcome pathways. This would essentially be a graph 

matching problem, similar ideas are explored in [5]. 

 Model verification and parameter fitting: Finally it may be possible to verify the ‘crumple-

zone’ model for specific drugs with associated adverse out-comes. For example, glutathione 

levels may represent a good proxy for the pool of repair resources for certain adverse 

outcomes.  
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Model 2 - Adverse Outcome Pathway Core Model 
The aim of this approach was to create a more minimal framework to describe key features 

observed in the above mentioned examples of AOPs. These include the healthy state, the hijacking 

of functional pathways and the accumulation of a reagent that leads to a negative outcome, for 

example apoptosis.  

We decided to start the model as a two state system coupled according to the law of mass action: 

 

	
��

��
= −�[�] + �[�]	; 	

��

��
= 	−

��

��
 

 

The two states A and B represent two required components in a cellular pathway, for example a 

folded and unfolded form of protein. We assume that the overexpression of component B leads to 

an adverse outcome (i.e. serves as a biomarker of toxicity). D and R give the rate constants of the 

two processes of destruction and repair, respectively. The assumption of conservation of the total 

population  

[�] + [�] = �����. = ����� 

 

allows us to rewrite the system with a single state variable. For Total = 1 we get  

 

��

��
= �([�] − 1) − �[�] = 	� − [�](� + �) 

 

This equation has a single stable fixed point at [�]∗ = 1 − �/�. This fixed point can be interpreted 

as the normal state of the biological system in which it operates. It represents the stable coexistence 

of the two reagents. The stability guarantees that after small perturbations (for instance due to 

noise in the environment) the system will return to the normal state and remain near it. 

As noted in many of the exemplary AOPs, feedback loops are important in the catastrophic 

accumulation of the toxic marker B. Such feedback loops can be represented as the functional 

dependency of the rates on the population B. Here we want to give two fundamental examples. We 

include firstly a positive feedback on the destruction process and secondly a negative feedback on 

the repair mechanism. Note that both may lead to an increase in the negative reagent B. We model 

the positive feedback on the destruction mechanism as a simple linear response � = � × [�] 

leading to: 

 

��

��
= 	�[�] − [�](� + �[�]) 
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The negative feedback on the repair mechanism is modelled as a Heaviside step function.  

� = �	 × �	([�] − ��) 

��

��
= 	�[�] − [�](�	�	([�] − ��) + �[�]) 

 

Where r is the amplitude of the step and B0 is the onset threshold. The step function can be seen as 

a simplified form of a sigmoidal characteristic of the repair mechanism. 

Note that both response functions are chosen to be minimalistic; in detailed models more complex 

functions may be chosen. 

In the analysis of this system we are especially interested in the behaviour of the stable state of the 

system under the change of the destruction parameter D which can be interpreted as representing 

the amount of toxic agent, for example from the AOP of a given drug. Mathematically speaking we 

are performing a bifurcation analysis. The outcome can be compared to experimentally obtained 

dose-response curves. 

In Figure 7 we illustrate the simulated dose-response curve from a numerical integration of the 

differential equation and overlay it with the analytical bifurcation diagram of the model. For low 

toxicity values D the stable fixed point= 0 (i.e. there is no adverse response). For intermediate 

toxicity, the stable fixed point is given by the solution 1 − �/�. This will often coincide with the 

regime of a stable biological process since a finite amount of B is necessary for functionality. The 

stability of these two solutions interchange at � = 1 in a transcritical bifurcation. As a result of the 

step function form of the feedback this solution abruptly stops to exist when the stability point is 

above �� (dotted vertical line). After this the only stable fixed point is � = 1 which represents a 

state of only the negative reagent being present and thus representing an adverse outcome. This 

step occurs at �/(1 − ��).  

We note that a supra-linear feedback on the destruction mechanism in the form � = � × [�]n (with 

n>1) leads to a bistable system and hysteresis behaviour in the dose-response curve. Such a 

bistability and hysteresis has been predicted by various detailed models of adverse outcome AOPs. 

The two-state system represents fundamental mechanisms of the AOPs in the form of feedback 

loops and the eventual accumulation of a negative reagent. This negative reagent could stand (e.g. 

for the unfolded protein molecules in [2]. The simple form of this model allows the analytical 

derivation of the bifurcation diagram. The system’s numerical integration shows that both solutions 

coincide. The equivalent of the bifurcation diagram can be measured experimentally as a dose-

response curve and compared with the analytical prediction of various feedback functions. The two 

feedback functions must be seen as a gross simplifications of more complex pathways and more 

realistic functions will need to be included in detailed models.  

 

A point of future research would be the enrichment of such predictions with real world data sets of 

signalling pathways and the investigation of the specific type of feedback functions and 

accompanying bifurcations.   
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Figure 7: a) Minimal AOP model with two states A and B. Destruction and repair 

mechanism are influenced via two feedback loops in form of linear response (orange) 

and a Heaviside step function (purple). b) Numerical integration of the differential 

equation gives the dose response curve (black dots). Analytical bifurcation diagram 

matches those results and solid lines representing stable and dashed lines unstable fixed 

points, respectively. Response values below zero are non-biological and only given to 

show the exchange of stabilities at the trans-critical bifurcation point � = �. 
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Model 3 – Complementary Genome Scale Metabolic Network 
Mechanistic, bottom up modelling of literature-based molecular network models is an alternative to 

the phenomenological mathematical modelling approaches presented above. Here we used 

mechanistic simulation of a human genome scale metabolic network to identify reactions, which 

influence glutathione availability and so can potentially limit the cells capacity of responding to 

oxidative and/or xenobiotic exposure. Workflow of the analysis performed with version 2 of 

SurreyFBA [6] software is shown in Figure 8. 

Figure 8: Constrained based modelling workflow with SurreyFBA2 software. The exchange 

reactions of Recon 2 model of human metabolism has been constrained with uptake fluxes 

measured for 120 cancer cell lines from NCI-60 collections. The Flux Variability Analysis revealed 

that there are 127 reactions, which have to carry non-zero flux if glutathione production is to 

reach its maximal value. The screenshot of SurreyFBA2 software shows dependence of maximal 

glutathione production on of the 127 reactions – Mitochondrial ACAT1 acetyl-CoA 

acetyltransferase. Similar curves would be obtained for each of the reactions identified by FVA. 

Thus, our analysis identified 127 reactions, which would affect glutathione production if their 

activity was decreased due to toxic agents or through a genetic polymorphism. 

 

The Recon 2 model of human metabolism, recently developed by an international community [7] 

contains 7440 biochemical reactions and 5764 metabolites. Recon 2 aims to describe the whole-cell 

network of biochemical conversions used to generate biosynthetic precursors, energy and reducing 

power from available nutrients. The variables of the model are reaction fluxes at quasi-steady state. 

The quasi-steady approximation state is justified by the time separation of metabolic reactions and 

Recon 2: stoichiometric model of 7440 
metabolic reac ons linked to genes in 
human genome. 

CORE: Consump on and release fluxes of 
141 metabolites measured for 120 NCI-60 
cancer cell lines. 

Assump on: No human ssue uptakes nutrient faster than the fastest nutrient uptake recorded in fast 
dividing cancer cell lines.  

Recon 2 model with boundary condi ons constrained by 82 CORE fluxes that were 
common between two integrated datasets. 

Objec ve func on: Maximal 
reduced glutathione 
(M_gthrd_c) produc on. 

Flux Variability Analysis shows 
that there are 127 reac ons 
which ac vity influences 
glutathione produc on. 

Example reac on iden fied in analysis: Dependence of maximal 
glutathione produc on on Mitochondrial ACAT1 acetyl-CoA 
acetyltransferase (R_ACACT10m). SurreyFBA2 so ware. 
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metabolic gene expression. Such models can be analysed by a wide range of Constraint Based 

Methods (CBM) [8], which explore the space of metabolic flux distributions satisfying stoichiometric 

constraints defined by elementally balanced metabolic reaction formulas and thermodynamic 

constraints defined by current knowledge on reaction reversibility under physiological conditions. 

The Recon 2 model is based on the set of genes encoding metabolic enzymes in human genome. 

However, an additional gap filling step was necessary construction of the model to reproduce basic 

metabolic capabilities of human cells. Additional reactions were added for which the mediating 

enzymes are currently not known. This illustrates an advantage of using mechanistic models over 

metabolic pathway maps; the model needs to provide stoichiometrically and thermodynamically 

feasible flux distributions for known metabolic functions, whereas pathway maps are not validated. 

Here, we have imported the Recon 2 model into SurreyFBA and calculated the maximal growth rate 

of the cell.  

The original Recon 2 model has been validated in qualitative simulations, where only the existence 

of a flux distribution realising the metabolic function of interest was required. This implies that 

fluxes would not have realistic values in quantitative units, which would limit the application of the 

model in Quantitative Systems Pharmacology context. However, to provide further 

parameterisation, we have integrated Recon 2 model with a landmark dataset of metabolic fluxes 

measured for NCI-60 cancer cell lines [9]. For each of 120 cancer cell lines the consumption/release 

(CORE) flux for each of 141 extracellular metabolites has been measured by quantitative 

metabolomics. We assumed that no human tissue would uptake the nutrient faster than the fastest 

rate observed over 120 fast growing cell lines. This provides upper bounds for uptake and release of 

metabolites in Recon 2. To be more specific, we have identified 82 extracellular metabolites in Recon 

2, which could be unequivocally assigned to metabolites in CORE dataset. For each of these 

metabolites we constrained the upper/lower bounds of the corresponding exchange reaction to 

minimal/maximal flux observed across 120 cell lines. Subsequently, we have calculated a maximal 

growth rate by Flux Balance Analysis [10]. The result of 0.065 1/h was within the range of growth 

rates observed for NCI-60 cell lines, a more physiological value than 3.198 1/h obtained for the 

original, unconstrained, Recon 2 model. We concluded that parameterisation of boundary conditions 

using the CORE dataset constrained the solution space to a physiologically realistic range of 

quantitative fluxes in mmol/gDW/h units. This CORE constrained model can now be used to draw 

conclusions about quantitative upper bounds on metabolic capabilities. 

To identify reactions across the network linked with glutathione production, we have performed flux 

variability analysis. The sum of fluxes producing cytoplasmic reduced glutathione was used as an 

objective function for linear programming optimisation. In FVA, the SurreyFBA software first 

calculates a maximal objective function value. Subsequently, the objective function is constrained to 

its maximal value and each reaction in the model becomes objective, which is maximised and 

minimised. Thus, FVA calculates for each reaction in the model the range of fluxes consistent with 

maximal value of the original objective, here glutathione production . Reactions, for which flux 

ranges do not contain zero, must carry flux if objective is maximal. This implies that any decrease in 

the activity of any of these reactions would impact glutathione production. Our FVA simulations 

predicted 127 reactions, which influence glutathione availability. Figure 8 shows one example: 

Mitochondrial ACAT1 acetyl-CoA acetyltransferase. We used SurreyFBA to calculate maximal 

glutathione production as a function of an upper bound on Mitochondrial ACAT1 acetyl-CoA 
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acetyltransferase flux. The plot shows that a decrease in this enzyme activity decreases availability of 

glutathione for downstream processes. 

Our analysis shows that availability of glutathione for stress response and drug detoxification can be 

affected by 127 reactions in global metabolic network. This prediction goes beyond what can be 

concluded by examining pathway maps; for example Mitochondrial ACAT1 acetyl-CoA 

acetyltransferase does not belong to the ‘glutathione synthesis pathway’. Our results imply that 

genetic polymorphisms or inhibition of any of these 127 reactions impact on glutathione-mediated 

stress responses. Thus, these results constitute a proof-of-concept case study of how CBM 

implemented in SurreyFBA software can be used to identify gene-drug and drug-drug interactions. 

By facilitating a semi-qualitative interrogation of the producibility of molecules forming part of the 

repair/elimination pathways modelled above, CBM can inform analysis of AOP by providing insight in 

to whether these pools of repair resources can be replenished given the availability of nutrients to 

the cell. 

Finally, we note that recently published Quasi-Steady State Petri Net (QSSPN) approach [11] and 

QSSPN software, now integrated with SurreyFBA, enable integration of Petri Nets (PN) [12] with 

CBM models. The method has been validated by integration of qualitative PN model of nuclear 

receptor network with HepetoNet1 [13] genome scale model of liver metabolism. The current 

version of the QSSPN software has enhanced support for continuous Petri nets representing 

Ordinary Differential Equation (ODE) models. This opens the avenue for multi-formalism simulation 

of models containing abstract, qualitative modules, ODE based models describing Physiologically 

Based Pharmacokinetics and Genome Scale Metabolic Networks. 

 

Conclusion 
We have produced two models for simulating AOPs in a quantitative, but abstract form resulting in a 

framework that reduces all chemical/environmental cell stresses to the level of ‘damage’  and 

‘repair’. As noted above, these models would require parameterisation from in vitro datasets and 

further analysis in order to determine their true utility. We also present a complementary genome 

scale, semi-quantitative approach that can inform toxicity studies by exploring the impact of nutrient 

status and genotype/phenotype relationships on the cells ability to maintain pools of key molecules 

for repair/detoxification pathways.  

It is worth noting that the AOP models developed here may require increased mechanistic resolution 

in order to be useful. However, the incorporation of a large-scale mechanistic metabolic model may 

mitigate this. Also, these models may require some adaption to be able to investigate the impact of 

chronic stress. The models presented above assume a fixed population of cells and assume that 

subsequent generations would start from a perfectly healthy background regardless of the stresses 

on parent cells. These transgenerational effects would be important in studying chronic exposure to 

cell populations, but this lies beyond the scope of this work. 

Here we show that it is possible to reduce the behaviours of the three AOPs (oxidative stress, 

unfolded protein response and DNA damage) to a single level of abstraction, with varying resolution. 
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However, we also acknowledge that the incorporation of multiple modelling strategies offers a far 

more robust approach and that a multi-scale workflow, incorporating both quantitative and 

qualitative data, is likely to give the greatest benefit in studying cellular stress. 
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