TIMETABLE

of the summer school ŇModern topics in Nonlinear PDE and Geometric AnalysisÓ,

4th-8th of July 2016

University of Reading, Whiteknights Campus, Reading, UK

Miller Building, Theatre G05

 

 

                            Monday             Tuesday                Wednesday              Thursday             Friday

09.45-10.00      Opening              ------------              --------------              ------------           ------------  

10.00-10.45      Evans (L)            Dacorogna (L)       Dafermos (L)          Manfredi (DL)     Jensen (DL)

11.00-11.45      Evans (L)            Dacorogna (QA)    Dafermos (QA)       Kristensen (L)    Kristensen (L)

12.00-12.45      Dafermos (L)      Evans (L)               Evans (QA)             Kristensen (L)    Kristensen (QA)

LUNCH BREAK

14.30-15.15      Dafermos (L)      Alexakis (L)           Alexakis (L)           Holzegel (L)         Holzegel (L)         

15.30-16.15      Dacorogna (L)    Alexakis (L)           Alexakis (QA)        Holzegel (L)         Holzegel (QA)                

16.30-17.15      Dacorogna (L)    Katzourakis (CL)   Poster Session       Aretakis (CL)       Poster Session      

 

L:       Lecture 

QA:   Questions and Answers session

DL:   Distinguished guest lecture

CL:   Contributed lecture 

 

*The four 15-minute breaks per day are coffee breaks

 

 

Titles of mini-courses and talks (order of appearance)

 

Evans:           Adjoint methods for nonlinear PDE

Dafermos:    The stability problem for black holes

Dacorogna:  The pull-back equation for differential forms

Alexakis:      Geometric inverse problems and PDE

Katzourakis: Higher order L° variational problems and the °-Polylaplacian

Manfredi:      Obstacle problems for the p-Laplacian via optimal stopping of Tug-of-War games

Kristensen:   Convexity notions in the Calculus of Variations

Holzegel:      The formation of shocks in three dimensional fluid dynamics

Aretakis:       Decay for the wave equation on curved backgrounds

Jensen:         Maximum principle techniques for fully nonlinear elliptic PDEs