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Abstract

The reliability diagram is a common diagnostic graph used to summarise and
evaluate probabilistic forecasts. Its strengths lie in the ease with which it is
produced and the transparency of its definition. While visually appealing,
major long noted shortcomings lie in the difficulty of interpreting the graph
visually; for the most part, ambiguities arise from variation in the distribution
of forecast probabilities and from various binning procedures (Murphy and
Winkler, 1977; Smith, 1997). A resampling method for assigning consistency

bars to the observed frequencies is introduced which allows immediate visual
evaluation as to just how likely the observed relative frequencies are under
the assumption that the predicted probabilities are reliable. Further, an
alternative presentation of the same information on probability paper easies
quantitative evaluation and comparison. Both presentations can easily be
employed for any method of binning. Code to implement this approach is
available at www.lsecats.org.



1 Introduction

Reliability diagrams are common aids for illustrating the properties of proba-
bilistic forecast systems. They consist of a plot of observed relative frequency
against predicted probability, providing a quick visual inter-comparison when
tuning probabilistic forecast systems, as well as documenting the performance
of the final product, see for example Murphy and Winkler (1977, 1987); Atger
(2004, 2003); Jolliffe and Stephenson (2003); Wilks (1995). Yet the visual
impression of the reliability diagram can be misleading. Even a perfectly re-
liable forecast system is not expected to have an exactly diagonal reliability
diagram due to limited counting statistics (Jolliffe and Stephenson, 2003).
To evaluate a forecast system requires some idea as to how far the observed
relative frequencies of that forecast system are expected to be from the di-
agonal if it was reliable. This paper provides two methods to visualise this
expected deviation from the diagonal, thereby allowing the forecaster to see
directly whether the observed relative frequencies fall within the variations
to be expected even from a perfectly reliable forecast system.

In the first section, we revisit how reliability diagrams are computed,
and explain in detail why limited counting statistics cause even perfectly
reliable forecast systems to exhibit deviations from the diagonal. The next
two subsections present two alternative approaches towards visualizing this
information: the first is a revised set of consistency bars (Smith, 1997) com-
puted through a consistency resampling technique; the second is to re-plot
the same information in reliability diagrams on probability paper, providing
a rather blunt presentation of the quality of the forecast system. Both meth-
ods aim to increase the reliability of interpretations of reliability diagrams.
We demonstrate the benefit of both approaches with synthetic datasets and
show an application to London Heathrow temperature anomaly forecasts.

2 How to make a reliability diagram

This section explains briefly how reliability diagrams are computed (for an
excellent explanation and connections to various other statistics see Wilks
(1995)). The main aim is to introduce the necessary terms and notation in
order to facilitate the later discussion on shortcomings of a simple reliability
diagram.

The reliability diagram is a diagnostic for probabilistic forecasts. In this
paper, we will describe the occurrence or non–occurrence of the event under
concern by a variable Y , which is equal to one (event does happen) or to
zero (event does not happen). The variable Y is called the verification. Let
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Yi, i = 1 . . . N be a data set of verifications. For each i we also have a forecast

value Xi, a number between zero and one, representing a forecast probability
that the corresponding Yi will be equal to one. The forecast value Xi need
not assumed to be a probability in a frequentist’s sense (see Wilks (1995),
pp.9 for a discussion).

Reliability diagrams provide a diagnostic to check whether the forecast
value Xi is reliable. Roughly speaking, a probability forecast is reliable1, if
the event actually happens with an observed relative frequency consistent
with the forecast value. More specifically, considering only instances i for
which Xi = x for a certain value x, the event happens with an observed
relative frequency equal to x. This definition implicitly assumes that the
forecast values Xi can assume only a finite number of values, for example
[0, 0.1, 0.2 . . . 1], and there is an obvious problem with this definition when
Xi can assume any value between zero and one. In that case, the event
{Xi = x} is unlikely to happen more than once for any x, rendering the
computation of observed relative frequencies impossible. In order to be able
to compute any nontrivial observed relative frequencies, the forecast values
Xi are collected into a number of representative bins. The above definitions
are slightly altered thus: A forecast is reliable if the relative frequency of the
event Yi = 1, when computed over all i for which Xi falls into a small interval
B, must be equal to the mean of Xi over that interval.

Reliability diagrams reveal reliability by plotting the observed relative
frequencies versus the forecast values. If the bins are small, then in the limit
of infinitely many forecast values these observed relative frequencies would
fall along the diagonal for a reliable forecast. The remainder of the present
subsection explains how basic reliability diagrams are computed.

First, the forecast values are partitioned into bins Bk, k = 1 . . . K (which
form a partition of the unit interval into non overlapping exhaustive subin-
tervals). The Bk are often taken to be of equal width, but if the distribution
of the forecast values is non–uniform, then choosing the bins so that they are
equally populated is an attractive alternative.

Next, for each i, it is established which of the K bins the forecast value
Xi falls into. For each bin Bk, let Ik be the collection of all indices i’s for
which Xi falls into bin Bk, that is

Ik := {i; Xi ∈ Bk}. (1)

The corresponding observed relative frequency fk is the number of times the
event happens, given that Xi ∈ Bk, divided by the total number of forecast

1Sometimes the expression “calibrated” is used instead of “reliable”
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values Xi ∈ Bk. This can be expressed as

fk =

∑

i∈Ik
Yi

#Ik

, (2)

where #Ik denotes the number of elements in Ik.
Each bin Bk is represented by a single “typical” forecast probability rk.

Although the arithmetic centre of the bin is often used to represent the fore-
cast values in that bin, this method has a clear disadvantage: If the forecast
is reliable, the observed relative frequency for a given bin Bk is expected
to coincide with the average of the forecast values over that bin Bk, rather
than with the arithmetic centre of the bin. Plotting the observed relative
frequency over the arithmetic centre can cause even a perfect reliability dia-
gram to be off the diagonal by up to half the width of a bin. In this paper,
observed relative frequencies for a bin Bk are plotted versus the average of
the forecast values over bin Bk. This average, denoted by rk, is:

rk :=

∑

i∈Ik
Xi

#Ik

, (3)

The reliability diagram comprises a plot of fk versus rk for all bins Bk.

2.1 Reliable Reliability Diagrams

The observed relative frequencies fk for a given bin Bk fluctuate for several
reasons. First, if we fix the forecast values falling into bin Bk, then under the
hypothesis of reliability, the observed frequencies follow a binomial distribu-
tion with parameters Ik and rk (i.e. the number of forecast values falling into
bin Bk and the average of the forecast values over bin Bk respectively, see
Equations 1,3). Second, these two parameters fluctuate as well, with Ik being
of larger impact than rk, especially in bins already containing relatively few
samples.

Several approaches to visualise these effects quantitatively have been sug-
gested. Commonly, a small viewgraph is plotted overlaying the reliability
diagram, showing the distribution of the forecast values Xi. This kind of
plot is also known as the calibration diagram. Although this pair of plots
conveys all relevant information, it is difficult to mentally integrate the two
graphs to estimate possible variations of the observed relative frequencies; no
direct quantitative consistency check is available. In the reliability diagrams
of the ECMWF (e.g. (Hagedorn et al., 2004)), the size of the symbol is often
used to reflect Ik, the population of the bin. This is similar to the approach
taken by Murphy and Winkler (1977), where Ik is plotted next to the symbol.
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Although the information is visually displayed in these approaches, neither
provides a measure of quantitative agreement with the hypothesis of relia-
bility. In Smith (1997), the expected fluctuations in the observed frequency
fk for each bin are computed using the binomial density, but the rk (see
Equation 3) as well as the bin population Ik are assumed to be fixed. This is
obviously an idealisation, especially if the number of forecast values falling
into bin Bk is small or if they are not uniformly distributed.

Our approach, which can be seen as an extension to Smith (1997), is
simply to compute the variations of the observed relative frequencies over
a set of reliable forecasts generated by resampling technique referred to as
consistency resampling. It computes the fluctuations of the observed relative
frequencies fk taking into account uncertainties arising due to varying bin
means rk as well as bin populations Ik. Let (Xi, Yi), i = 1 . . . N be the
data set consisting of forecast–verification pairs. A single resampling cycle
consists of the following steps: We draw N times2 with replacement from the
set Xi, i = 1 . . . N , obtaining a set of surrogate forecasts X̂i, i = 1 . . . N . We
then create surrogate observations Ŷi, i = 1 . . . N by means of

Ŷi = 1 if Zi < X̂i and 0 else,

where Zi is a series of independent uniformly distributed random variables.
Note that X̂i is by construction a reliable forecast for Ŷi (see Appendix I).
A reliability diagram is computed using the surrogate data set comprising
X̂ and Ŷ . The resulting vector of surrogate observed relative frequencies is
recorded. This completes a single resampling step.

The resampling step is repeated Nboot times, yielding Nboot surrogate ob-
served relative frequencies f̂B for each bin Bk. We plot the range of the
surrogates for each bin as a vertical bar over rk (the average of the forecast
values over bin Bk) in the reliability diagram (See Figure 1). The bars extend
from the 5% to the 95% quantiles, indicated by dashes. Henceforth, these
bars will be referred to as consistency bars. Consistency bars, along with
the observed relative frequencies of the original data set, allow an immediate
visual interpretation of the quality of the probabilistic forecast system. The
extent to which the system is calibrated is reflected by where the observed
relative frequencies fall within the consistency bars, not their “distance from
the diagonal”. In a bin with a large number of forecast values, the observed
relative frequency may be quite close to the diagonal in terms of linear dis-
tance, but quite far in terms of probability. In this case, the consistency
bars reflect the expected distances, and will clearly indicate the failure of
the forecast system. The benefit of the method is illustrated by comparing

2Recall that N is the total length of the data set
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Figure 1: Reliability diagram for data set I using consistency bars. The
observed relative frequencies fall all within the 5%-95% quantiles (indicated
by vertical bars). Although the observed relative frequencies do not fall
onto the diagonal, the deviation is still consistent with reliability. The bin
boundaries were taken as [0, 0.2, 0.4, 0.6, 0.8, 1]. The observed frequencies are
plotted versus rk (as defined in Equation 3). Plotting versus the bin centres
would have caused substantial deviations from the diagonal (circle).

two synthetically generated data sets. These two datasets were constructed
to illustrate a case where closeness of observed frequencies to the diagonal
does not necessarily mean greater consistency with the null hypothesis of
the data being reliable; both data sets are slightly unreliable by design. In
Figure 1, a reliability diagram with consistency bars for data set I is shown.
All observed relative frequencies (marked with (+)) fall within the 5%-95%
consistency bars. Although the observed relative frequencies are obviously
not on the diagonal, the deviation is not inconsistent with what would be ex-
pected if the forecast was reliable. Figure 2 shows a reliability diagram with
consistency bars for data set II. The observed relative frequencies (marked
with (×)) are closer to the diagonal than in Figure 1, but the observed rel-
ative frequencies lie further outside the 5%-95% consistency bars. Figure 3
shows again the reliability diagrams for both data set I (+) and data set II
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Figure 2: Reliability diagram for data set II using consistency bars. Although
the observed relative frequencies are closer to the diagonal than in Figure 1,
there are observed relative frequencies that do not fall within the 5%-95%
bootstrap limits. The bin boundaries were taken as [0, 0.2, 0.4, 0.6, 0.8, 1].
The observed relative frequencies are plotted versus rk (as defined in Equa-
tion 3).

(×), now overlaid in one viewgraph and without consistency bars. Since the
observed relative frequencies of data set II do indeed (×) lie closer to the
diagonal, Figure 3 alone might lead to the false conclusion that data set II
(×) is a more reliable forecast. Another way to see this is by looking at the
variance of the observed frequencies for the individual bins. For data set I,
this variance is larger, thus the deviations from the diagonal are consistent
with sampling errors. For data set II though, the deviations, albeit smaller
than for data set I, are not consistent with sampling errors, since the variance
of the observed frequencies is smaller as well.

Note also that in Figures 1, 2, and 3, the observed relative frequencies have
been plotted versus rk (see Equation 3) rather than the arithmetic centres of
the bins. As has been explained in Section 2, the observed relative frequencies
of a reliable forecast system are expected to be equal to rk, the average over
the forecast values in the bins, not the arithmetic center. The impact of
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Figure 3: Reliability diagram without consistency resampling bars for
data set I (+) and data set II (×) used in Figures 1 and 2 respectively.
This plot gives the wrong impression that data set II (×) represents a more
reliable forecast than data set I (+).

this effect is demonstrated in Figure 1 for the lowest forecast bin (stretching
from 0 to 0.2). By design, the forecast values for this bin are reliable. The
distribution of forecast values in this bin is, however, very uneven. Plotting
the observed relative frequency versus the arithmetic center of the bin would
have caused the observed relative frequency to be off the diagonal (indicated
by a circle (◦)), giving the false impression that the forecast is unreliable. As
an alternative, the consistency bars could be plotted at the arithmetic center
of the bin as well. In this case, both the consistency bar and the observed
relative frequency for the lowest forecast bin would be off the diagonal, but
the observed relative frequency would again fall into the consistency bar,
thereby correctly indicating reliability.

2.2 Reliability Diagrams on Probability Paper

Employing the consistency bars to indicate the distance of the observed rel-
ative frequencies from the diagonal in probability suggests a new graph, con-
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taining essentially the same information as the reliability diagram but plotted
differently. In this graph, the x–axis still represents forecast values. The y–
axis however, instead of showing the observed relative frequency directly,
represents the probability that the observed relative frequency would have
been closer to the diagonal than the actual observed relative frequency if
the forecast was reliable (see Figure 4). In other words, the y–axis gives the
likelihood of the observed frequency if the forecast was reliable, rather than
the actual value of the observed frequency. This graph, showing the distance
in probability of the observed relative frequencies from that expected for a
reliable forecast system, will be referred to as a reliability diagram on prob-

ability paper. If the observed relative frequency fell exactly on top of the
consistency bar, for example, its value on probability paper would be 0.9,
since there is a 90% chance of the observed relative frequency to be within
the range of the consistency bar if the forecast was reliable. The reliability
diagrams on probability paper are mirrored vertically along the diagonal.
Observed frequencies falling above the diagonal are plotted onto the upper
panel, observed relative frequencies falling below the diagonal are plotted
onto the lower panel.

Strictly speaking, the y–axis in these plots represents the distance in
probability from the 50% quantile rather than from the diagonal. These two
would coincide if the chance of the observed relative frequency falling either
above or below the diagonal were exactly 50%. Although this is not quite
the case, we found the difference to be very small (the true position of the
diagonal is indicated on probability paper by a dash–dot line).

In principle, reliability diagrams on probability paper could be computed
by the same resampling technique used to compute reliability diagrams with
consistency bars (see Subsection 2.1), but plotting the fraction of surro-

gate observed frequencies closer to the diagonal than the actual observed
frequency, rather than plotting the observed frequencies directly. Since reli-
ability diagrams on probability paper require a high resolution at quantiles
close to zero and close to one due to the logarithmic y–axis, the consistency
resampling as presented in Subsection 2.1 was slightly modified: we used
the same resampling to obtain surrogate bin populations, but rather than
creating surrogate observed frequencies directly, we determined the value on
the y–axis by employing the binomial distribution. In detail, this is done as
follows. As in Subsection 2.1, surrogate forecasts are created, from which we
obtain surrogate bin populations Îk and surrogate representative forecasts r̂k.
If the forecast were reliable, the number of surrogate events in each bin would
follow a binomial distribution with parameters Îk and r̂k. Consequently, the
fraction zk of surrogate observed frequencies smaller than the actual observed
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frequency fk is given by

zk = B([fkÎk]; Îk, r̂k)

where B is the cumulative Binomial distribution and [fkÎk] is fkÎk, rounded to
the nearest integer. The reliability diagram on probability paper comprises
a plot of zk versus fk.

Figure 4 shows reliability diagrams for the two synthetic datasets con-
sidered in the previous section, but plotted on probability paper. Again,
data set I is plotted with (+), the data set II is plotted using (×). Data set II,
seemingly closer to the diagonal in the standard reliability diagram Figure 3,
is clearly further away in probability for three out of five bins, another bin
effectively being a tie. This indicates that data set II is actually less reli-
able than data set I. The dash–dot line represents the exact position of the
diagonal, which usually falls close to the zero line.

Some general hints as to how reliability diagrams on probability paper
should be read seem to be in order. For a given bin, there is a 90% chance the
observed relative frequency falls within the range labelled 0.9 on the y–axis.
Likewise there is a 99% chance the observed relative frequency falls within
the range labelled 0.99 etc. Thus the chance of being outside the 0.9–band
in any one bin is 0.1. Of course the chance of seeing some points of the entire
plot falling outside the 0.9–band is larger. For example, the chance of all
points on a reliability diagram with 6 bins falling inside the 0.9–band is only
0.96 ∼= 0.53. A band that would encompass all points with a 90% chance is
indicated by the dashed line3. In other words, if the forecast is reliable, then
there is a 90% chance that the entire diagram falls within the dashed line.

3 Relation of Consistency Resampling and

the Consistency Bars With the Common

Bootstrap

Consistency resampling is related to, but distinct from, bootstrap resampling
in statistics (Efron and Tibshirani, 1993). Both are resampling techniques,
but the consistency resampling differs from the common bootstrap of statis-
tics in that the latter bootstrap resamples the data to extract an estimate
of the uncertainty in the statistic of interest (in this case this would be the
observed relative frequencies), while the consistency resampling quantifies

3This line indicates the Bonferroni corrected 90% level (see Bonferroni (1936)). Inde-
pendence of the individual bins was assumed for this calculation.
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Figure 4: Reliability diagrams on probability paper for the data sets I (+)
and II (×). Some observed relative frequencies that seemed to be close to the
diagonal in Figure 3 are clearly further away in probability. The dash–dot
line represents the exact position of the diagonal, which usually fall close to
the zero–line. For a reliable forecast, we would expect the entire diagram
with a 90% chance to fall within the dashed lines.

the range of results expected if the forecast values were in fact correct proba-
bilities. While the traditional bootstrap would resample the forecast values,
thereby quantifying the expected variation in the observed relative frequen-
cies, the consistency resampling quantifies the range of relative frequencies
which would be expected if the predicted probabilities were, in fact, reliable.
This also differs from the common use of surrogate data in geophysics, where
a null test is set up in the hope that it will be rejected (for a discussion, see
Smith and Allen (1996)). Both consistency resampling and bootstrap resam-
pling are common in statistics (see Efron and Tibshirani (1993)), and both
are confusingly referred to as “the bootstrap”. The two techniques address
different questions and yield different information, so distinguishing them is
important.

Two very different approaches to bootstrap resampling can be applied
to the reliability diagram, one resampling by-bin, the other resampling the
entire diagram. Resampling within each bin yields the sampling uncertainty
in the relative frequency of that bin; this is easily displayed by either form
of the diagram and the resample realisations in different bins are indepen-
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dent. Alternatively, resampling from the entire-diagram will alter the num-
ber of forecasts in each bin (or even the bins themselves) and introduces
an inter-dependency between the bootstrap realizations across the diagram.
This inter-dependency makes the entire-diagram alternative more difficult to
evaluate visually, suggesting that it is best displayed in a manner that eval-
uates the diagram as a whole, and while both alternatives have their uses we
consider only the by-bin method in the remainder of this paper.

The presentation of the reliability diagram on probability paper opens the
possibility to use both the consistency resampling and the common bootstrap
in parallel. After plotting the reliability diagram on probability paper, com-
mon bootstrap resamples for each bin can be added to the plot to give an
immediate visual impression of the sampling uncertainty in each frequency.
Examples including this addition are discussed in the end of the following
section.

4 Numerical Examples

Consider daily forecasts of the two metre temperature at London Heathrow
weather station taken at 12 noon, specifically whether this value exceeded
the monthly average computed for the previous 21 years of data (1980-2000).
The forecast was a 51 member ensemble, provided by downscaling output
from ECMWF’s global ensemble forecasting system (see Appendix II for
details of this procedure). The forecast value Xi was taken as the fraction of
ensemble members exceeding the current monthly average.

Reliability diagrams where plotted for London Heathrow, contrasting the
years 2003 and 2005 (containing 365 forecast instances each) for lead times
1, 3, and 10 days. Figures 5, 6, and 7 show reliability diagrams on probabil-
ity paper, while Figures 8, 9, and 10 show conventional reliability diagrams
with consistency bars. The overall impression is that, as far as reliability is
concerned, the forecasts have improved.

For lead time 1 day (Figures 5 and 8), the reliability of 2003 and 2005 is
generally comparable. For forecast probabilities between 0.4 and 0.8, the ob-
served relative frequencies fall within the 90% range for both years. It seems
though that in 2003, the forecast system struggled to get the lower probabil-
ities right (there were generally more events than the forecast probabilities
would suggest), while in 2005 the system forecasts the high probabilities
poorly. The confidence bars for the extreme events are very tight. This is a
typical situation where the forecast is shown to be unreliable, although the
observed relative frequencies appear “close to the diagonal” in terms of usual
distance.
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In 2003, there were considerably more days where the temperature ex-
ceeded the monthly average than in 2005 (247 vs 203), the year 2003 being
one of the hottest on record in Europe. Therefore, a system usually overesti-
mating the frequency of days hotter than normal would have scored better in
2003 than in 2005. It is not clear though whether high or low forecast proba-
bilities would have been affected more. For lead time 3 days (Figures 6 and 9),
the forecast was better in 2005 in every single bin and is accepted as reliable
at a 0.9 significance level. In fact, it is accepted even at a significance level of
0.96 ∼= 0.53, since all points fall within the 0.9 confidence band (see discussion
at the end of Subsection 2.2). For lead time 10 days (Figures 6 and 9), the
forecast system seems to have given probabilities which were systematically
too low in 2003. Since this bias is fairly uniform over different bins, simply
subtracting a constant offset would have improved the performance. The
forecast system obviously improved in 2005, although the overall reliability
appears to be not as good as for lead time 3 days.

Using the same three day lead time data as in Figures 6 and 9, Figure 11
shows the traditional reliability diagram with by-bin bootstrap-resampled
observed frequencies in addition to the consistency bars. Bootstrap resamples
are shown as dots while the consistency bars for the original forecasts is shown
as before. Technically, each bootstrap resample has its own corresponding
consistency bar; the dots here only reflect sampling uncertainty for each bin:
for instance, is resampling likely to yield a value “near” the diagonal? This
is, in fact, much more common in the 2005 forecasts than the 2003 forecasts.
Note that variations in the variance of the dots indicate bins with small
populations.

Figure 12 shows the same analysis on probability paper, in effect adding
the bootstrap resample dots to Figure 6. This figure is constructed to be
consistent with Figure 11: each dot here is the resampled frequency in terms
of the probability defined by the true-sample frequency; an interesting alter-
native (not shown) is to place each dot at the individual probability implied
by that bootstrap resample. The choice of which resampling technique to
apply is determined by the question to be resolved; to avoid confusion the
details of the bootstrap scheme should be stated in every case.

Figures 11 and 12 add confidence to the conclusions drawn from Figures 6
and 9, namely that the forecast system is more reliable in 2005 than in
2003. This is clear after taking into account uncertainties in the observed
frequencies (to the extent that this is simulated by resampling the original
data). The resampled observed frequencies are much more often within the
confidence bars for the 2005 data than for the 2003 data (see Figure 11).
Similarly on probability paper, the resampled observed frequencies fall within
higher probability regions for the 2005 data than for the 2003 data (note that
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in the 2003 data, dots even fall beyond the range of the probability graph in
three of the bins).

5 Conclusion

The reliability diagram is a common diagnostic aid for quickly evaluating
the reliability of probabilistic forecast systems. A reliable forecast should
have a reliability diagram close to the diagonal, but how close exactly? Both
forecasts and observed relative frequencies fluctuate, and to interprete a reli-
ability diagram correctly, these deviations have to be taken into account. We
have introduced a consistency resampling method for assigning consistency
bars to the diagonal of the reliability diagram, indicating the region where
a reliable forecast would fall into, or in other words, how likely the observed
relative frequencies are under the assumption that the predicted probabilities
are accurate.

We have shown a numerical example using synthetic data where two fore-
casts are compared using the proposed technique. One of the forecasts, al-
though seemingly closer to the diagonal than the other, turns out to be
further away in probability and therefore constitutes a less reliable forecasts.
The method was also applied to anomaly data for London Heathrow tem-
perature and ECMWF ensemble forecasts from 2003 and 2005. The overall
reliability appears to have improved. We argue that the more reliable re-
liability diagrams as introduced in this paper add more credibility to this
finding than conventional reliability diagrams.

Two approaches to make the quantification of just how reliable the fore-
cast system is more visually accessible have been suggested; each contains
the same reliability information as the traditional diagram. Examining a
variety of meteorological forecast systems suggests that in practice diagrams
which look “good” in the traditional presentation often have many points
well beyond the .90 probability threshold (suggesting the forecast system is
not reliable). We hope these new diagrams make reliability diagrams even
more valuable in practice.
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Appendix I: Generating Data with Specified

Reliability Diagram

This Appendix discusses how to create artificial forecast verification pairs
with a given reliability diagram and Brier Skill Score. Let pi ∈ [0, 1], i =
1 . . . N be an iid random variable with a probability density function g(p).
In order to generate a random variable Yi ∈ [0, 1], i = 1 . . . N for which pi is
a reliable forecast, draw another random variable Ri, independent from pi,
from a uniform distribution on the unit interval and then set

Yi =

{

1 if Ri < pi

0 else
(4)

To see that this forecast is reliable, note that

P (Yi = 1|pi = z)

= P (Ri < pi|pi = z)

= P (Ri < z|pi = z)

= P (Ri < z) = z

where the equality signs follow (in that order) from the definition of Yi, the
properties of conditional probabilities, the fact that Ri is independent of pi

and from its uniform distribution. This technique is used to generate “fake”
verifications consistent with a given set of forecast values to draw consistency
resampling bars (see Section 2.1). Draws from an unreliable forecasts with a
specified reliability graph (that is with a specified reliability diagram in the
large sample limit), can be generated as well. If r(p) is the desired reliability
graph, generate Yi by applying Equation (4) but using r(pi) instead of pi.
Then the limiting observed relative frequencies corresponding to pi are r(pi),
as desired.

Appendix II: Downscaling the ECMWF data

This appendix explains the method used to downscale the ECMWF data.
ECMWF publishes the output of their global model on a certain grid. This
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grid lacks a point exactly at London Heathrow, but even if it did, we would
not expect the forecast at that grid point to be all the model has to say
about temperatures around London Heathrow. Furthermore, ECMWF also
publishes a forecast for London Heathrow explicitely, which is interpolated
from several neighbouring grid points. This interpolation is done accord-
ing to an interpolation scheme which does not involve any fitting to actual
station data (this is why we use the word “interpolation” rather than “fit-
ting”). Using these five ensemble forecasts (the four neighboring gridpoints
and ECMWF’s interpolated forecast), featuring 51 ensemble members each,
we produce a forecast for London Heathrow using a linear fit as follows: Let-
ting x1 . . . x5 denote the mean values of the five ensemble forecasts, we find
coefficients a0 . . . a5 by fitting

z = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 (5)

to the observations at London Heathrow using a least squares error criterion.
Then Equation 5 is applied to the entire ensembles (rather than just the
means) to find the final ensemble. The linear fit is carried out using one
years worth of data (2001). The same procedure is applied to each lead time
individually. Note that the rest of the analysis described in this paper is
carried out on different data, namely on the years 2002-2005.
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Figure 5: Reliability diagrams on probability paper for two metre temper-
ature forecasts (above/below monthly average) at London Heathrow. Fore-
casts were provided by ECMWF’s ensemble forecasts. The lead time is 1 day.
The upper (resp. lower) panel shows the performance for 2003 (resp. 2005).
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Figure 6: Reliability diagrams on probability paper for two metre temper-
ature forecasts (above/below monthly average) at London Heathrow. Fore-
casts were provided by ECMWF’s ensemble forecasts. The lead time is
3 days. The upper (resp. lower) panel shows the performance for 2003 (resp.
2005).
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Figure 7: Reliability diagrams on probability paper for two metre temper-
ature forecasts (above/below monthly average) at London Heathrow. Fore-
casts were provided by ECMWF’s ensemble forecasts. The lead time is
10 days. The upper (resp. lower) panel shows the performance for 2003
(resp. 2005).
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Figure 8: Reliability diagrams with consistency bars for two metre temper-
ature forecasts (above/below monthly average) at London Heathrow. Fore-
casts were provided by ECMWF’s ensemble forecasts. The lead time is 1 day.
The upper (resp. lower) panel shows the performance for 2003 (resp. 2005).
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Figure 9: Reliability diagrams with consistency bars for two metre temper-
ature forecasts (above/below monthly average) at London Heathrow. Fore-
casts were provided by ECMWF’s ensemble forecasts. The lead time is
3 days. The upper (resp. lower) panel shows the performance for 2003 (resp.
2005).
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Figure 10: Reliability diagrams with consistency bars for two metre temper-
ature forecasts (above/below monthly average) at London Heathrow. Fore-
casts were provided by ECMWF’s ensemble forecasts. The lead time is
10 days. The upper (resp. lower) panel shows the performance for 2003
(resp. 2005).
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Figure 11: Reliability diagrams with consistency bars and resampled ob-
served frequencies (small circles). The data is the same as for Figure 9 and
was resampled 20 times. The actual observed frequencies are indicated with
a cross, as before.
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Figure 12: Reliability diagram on probability paper with resampled observed
frequencies (small circles). The data is the same as for Figure 6 and was
resampled 20 times. The actual observed frequencies are indicated with a
cross, as before. The little “o”–marks either above or below the panel indicate
that some resampled observed frequencies are outside the range of the y–axis.
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