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Abstract—In this paper we consider the perfor-
mance of filtering algorithms, which means algorithms
to retrieve the underlying state of a nonlinear system
in a causal way. Since for nonlinear systems the op-
timal filter is computationally prohibitively expensive
in general, one faces a trade—off between desired filter-
ing accuracy and computational complexity. In order
to ascertain whether a certain more powerful filter-
ing algorithm is worth the computational efford, it is
neccessary to carefully evaluate the potential benefits.
We show that skill scores are a useful concept for this.
We compare the performance of a number of filtering
algorithms applied to a simple nonlinear system. We
also discuss the perfomance in relation to the required
computational resources. In general, higher accuracy
requires more cpu-power.

1. Introduction

Nonlinear filtering is the problem of recovering the
state of a (perhaps only partially known) nonlinear
system from noisy observations in a causal manner,
that is by not allowing future observations to en-
ter the current state estimation. For linear systems
with Gaussian uncertainties the problem is completely
solved by the famous Kalman filter [8]. Although there
exists a general optimal filter theory [7, 5], both theo-
retical analysis and practical application meet with the
fundamental problem that optimal filters for nonlinear
systems possess an infinite complexity, in a sense that
can be made rigorous [9]. Consequently, applications
rely on (suboptimal) approximations to the optimal
filter. The theoretical understanding of such approx-
imations is still unsatisfactory though, and compara-
ble studies of different algorithms are lacking. A fair
comparison of nonlinear filtering algorithms needs to
take the probabilistic character of the problem into
account. Furthermore, filter performance should be
seen in relation to the computational burden of the im-
plementation. Since the optimal filter has an infinite
complexity, however well a given filter scheme might
perform, an even better algorithm, although requir-
ing more computer resources, still exists. This paper
aims at providing a framework for comparable studies

of filtering algorithms. As an example, we present a
comparison of three filtering algorithms applied to a
partially observed chaotic system.

The dynamical systems considered in this work are
iterated nonlinear maps of the following form:

Xn+1 = f(Xn)v (1)

where f(-) is a diffeomorphism of R,

In applications the underlying dynamics of a mea-
sured time series are often are modeled by processes
like (1). The problem is to estimate the unknown state
X, using noisy measurements. In this work we assume
measurements of the form

Y, =GX, + o0 W,, (2)

where W,, are independend normal random variables
with zero mean and unit variance. G is a linear map-
ping. We assume Y,, to be one dimensional. Let
y* = {Y1,...,Y,}. Then a rigorous approach to
estimate X,, from Y™ is to consider the conditional
probability P(X,|Y™) or the corresponding probabil-
ity density function henceforth denoted by 7, (z) (the
dependency on Y" is ommited in this notation). It
turns out [5] that this pdf satisfies the iterative equa-
tion

Tnt1(z) = c:q(Yny1, )L (). (3)

Here £* denotes the Frobenius—Peron operator which
can be calculated from the equation (1) and turns out
to be

13}
Lp(z) = det(————=
The density ¢(Y,41,2) is given by

pYn|Xn:oc(y)
= Nl(y,G(z),0?%),

q(y, )

where N is a gaussian pdf.

In order for Equation (3) to be useful in a practi-
cal application, it is of course necessary to represent
mn(2) by a suitable finite dimensional parametrisation.
If the dynamics are linear and the errors are gaussian,



the Kalman filter provides such a parametrisation. As
already mentioned though, if f is nonlinear, the fil-
tering process 7, (x) does not admit a finite dimen-
sional parametrisation. Therefore, approximations are
essential for applications. The approximative filter has
to be, of course, finite dimensional and as optimal as
possible. A large variety of approximation methods
have been conceived. All those methods face a trade-
off between computational complexity and accuracy.
Although we will present some approximations in the
following section, the purpose of this paper is not to
provide a comprehensive study of filtering algorithms,
but rather to present a framework to compare those
methods in a fair and meaningful way, thus studying
the tradeoff between computational complexity and
accuracy.

2. Filtering Algorithms

In this section we briefly consider schemes to ap-
proximate the filtering process 7,,. The approximative
filtering process will be denoted by 7,,. Probably the
first widely applied nonlinear filtering algorithm was
the Extended Kalman Filter. It consists essentially of
the usual Kalman Filter Equations applied to the lin-
earized nonlinear dynamics. We refer the reader to [5]
for a thorough explanation of the technique and pro-
ceed to explain further techniques used in this paper.

2.1. Gaussian density filter

A simple method to obtain approximate solutions of
Equation (3) is simply to assume that m,(x) is gaus-
sian, even though it is not. After applying the oper-
ator L£*, the density is generally nongaussian, but we
can turn it into a gaussian again by retaining only the
predicted mean and variance. Having done this, we
have to multiply by ¢(Y,+1,2) in Equation (3), but
this is just multiplication of two gaussians, resulting
in a gaussian 7,1(x), which we take as an approxi-
mation to m,y1(x). If f is polynomial, this filter can
be formulated explicity in terms of dynamical equa-
tions for the mean and the variance, which gives a
very fast algorithm. If the underlying system has N
dimensions, the filter has N + w dimensions and
is implemented straightforwardly. This method can
be extended using more complicated densities. For a
general overview see [2].

2.2. Monte Carlo Method

The Monte Carlo Method discussed here is also
known as particle filter and has been investigated in
[3]. The idea is to generate M independent copies
{Xﬁk)}ngo,kzlmM of (1), where n is, as before, the
time and k denotes the k’th member of the ensemble.
The method provides an approximation to m,(z) by

a weighted average over d—functions centered at the
ensemble points as

M
() 2 Y wl-6(z — X M),
k=1

To give an expression for wflk), define the quantities

9" = g(v;—n(XM))  forall j<0k=1,..., M.

Theoretically one might guess that

n
k
wl® = e TT o,
j=1
where ¢ is a constant chosen to yield

Zw%k) =1
k

is a reasonable choice. A profound analysis of the prob-
lem however shows that this method tends to diverge,
and one should rather implement a limited memory
version of the filter, where the memory depends on
the ensemble size M. This is done as follows: Let qas
be a certain positive integer depending on the ensem-
ble size M. Then define the weights to be

w=e T o,

Jj=n—qm

where we define g(-k) := 1 if j is negative or zero. If

J

qar s set to gy = integer closest to 24/log(M), it can
be shown that the Monte Carlo Filter converges to the

optimal filter (in some sense) for M — oo. The gen-
eral drawback of Monte Carlo Methods is the required
computer power. It is necessary to store the ensem-
ble points and the associated weight vectors. Further-
more, the dynamical equations (e.g. iterated maps or
stochastic differential equations) have to be solved for
all ensemble points in parallel. This obviously requires
more power than the previously discussed low dimen-
sional filters.

3. Proper Scoring Rules

The main focus of this paper is on the fair evalua-
tion of filtering algorithms. The optimal filtering pro-
ces in our setup is m,(z), so a measure of the quality
of a filtering process 7, could be some sort of dis-
tance between m,(z) and 7, (z). Although in general
7 () is not available, the concept of Skill Scores pro-
vides a measure by which two approximative filtering
processes can be compared in terms of their relative
distance to m,(z). A skill score is a function S(p,z),



where p is a probability density and x is a real number.
By means of a skill score we can compute the skill

S(p,q) = /S(p, z)q(z)dz

of p with respect to q. We now consider some ex-
amples. The common Mean Square Error is the skill
defined via the score

Stpa) = (o~ [ 2p(2)d2),

This score measures the quality of the mean of p(x) as
an estimator for . As is obvious from the definition,
the Mean Square Error depends on p(x) only through
its first moment and hence cannot be expected to value
all aspects of p properly.

The Ignorance Score is defined by

S(p,z) = —log(p(x))

The Ignorance Score 1is related to the log—
likelihood [10] and plays an importand role in
gambling theory. Another interesting score (although
not used in this paper) is the Proper Linear Score. It
is defined as

S@aazjfaww—pu»

It should be noted that the Proper Linear Score de-
pends on the functional form of p while the Ignorance
depends on p only via the single number p(x). This
property is called locality. We note that in this pa-
per skill scores are defined like cost functions: small
numerical values indicate better skill. Especially we
want the score to be minimal if p and ¢ coincide. This
property is called propriety. Mathematically, a skill
score is proper if for any two densities p(x) and ¢(x)

S(q,p) = S(p.p).

In other words, the minimum of the left hand side
over ¢(z) is obtained for ¢ = p. A skill score is strictly
proper if that happens only if ¢ = p.

Propriety is a property only of the score itself. The
Ignorance and the Proper Linear Score are proper. A
general result due to Bernardo (see [1]) states that all
smooth, proper and local scores are affine functions
of the Ignorance. Proper scores in general have been
characterized by Raftery & Gneiting [4].

The Mean Square Error is proper, but not strictly
proper. In fact, it is easy to see that [(z —m)?q(z)dx
is minimal if m = [z ¢(x)dz (proving that the Mean
Square Error is proper), yet any other density p(z)
having the correct first moment m will achieve the
same skill.

In filtering we are concerned not only with a sin-
gle pdf p but with a sequence 7, (z) of pdfs. If we

have corresponding true states X, available, we can
estimate the mean skill of the filter (with respect to a
proper skill score S). To this end, define the empirical
skill

N
- 1 -
S@)w = 5 D S(itn, Xn)
n=1
We assume this to converge to the mean skill
S(@)n — E[S(Tn, Xn)].

The mean skill can be written as
E[S(7n, Xn)] = E [ / S, w)n(z)dz |

To see this, condition on V" under the expectation.
If the skill score is strictly proper, this expression is
minimal if and only if 7,, = m, for every n. In other
words, the conditional probability m,, minimizes the
mean skill. For improper skill scores though, a filtering
process different from the optimal one could achieve a
better skill, which essentially means that the filter we
think is right would not achieve the best score.

4. Numerical Examples

To demonstrate our methodology, we applied the
aforementioned approximative filtering algorithms to
the well known Hénon system definded as

f(x) =[1—1.42% +0.329, 21].
As measurement variable we used
y=x1+x2+0-W,.

We used the Extended Kalman Filter (EKF), the
Gaussian Density Filter (GDF), a Monte Carlo Fil-
ter using an ensemble of 1024 points (MCF1024),
Monte Carlo Filter using an ensemble of 2048 points
(MCF2048) and an Indistinguishable States Filter
(ISF) (see [6]) that will not be described here. Ac-
tually, the invariant measure was used as a further
“filter” for reference.

Each filter was allowed an initial training sequence
of 256 points, during which certan parameter tuning
was allowed. Then the empirical skill was measured
as a mean over 1792 points. The skill score used was
the Ignorance. We recorded the cpu-times needed to
carry out the sweep through the data.

In Figure 1 we plotted the performance of the filter-
ing algorithms versus the required cpu—time. The pan-
els show the performance for a noise level (from top to
bottom) of 15dB, 18dB and 21dB. The performance is
actually measured relative to the zero—skill filter given
by the invariant measure. This filter does not need any
cpu-time (it does not take any measurements into ac-
count), so it appears furthest on the left with zero skill.



The other filters generally show increase in perfomance
with increasing cpu—-demand, with the ISF being the
most time consuming and best performing filter (ex-
cept for the 15dB case). The gain in performance,
however, appears to settle with increasing complexity.
Bootstrap-bars indicate 90% isopleths. It should be
noted that except for the ISF in the 15dB case, none
of the filters could be termed better or worse that any
other in general. A better performance in general has
to be paid for by higher computational burden. Given
that in higher dimensions ensemble filters need huge
Monte Carlo ensembles to sample the state space, fur-
ther studies should probably also take the size of the
required storage into account. Furthermore, the re-
quirements to store the actual pdf 7,, can be an issue,
especcially if the results is to be disseminated, for ex-
ample in weather forecasting.

5. Conclusion

In this paper we presented a framework to compare
the performance of filtering algorithms. We suggested
that rather just the performance alone, the trade—off
between desired filtering accuracy and computational
complexity should be investigated. In order to ascer-
tain whether a certain more powerful filtering algo-
rithm is worth the computational efford, it is necces-
sary to carefully evaluate the potential benefits. Often
filtering algorithms (as well as prediction and other
estimation schemes) have been valued only in terms
of the Mean Square Error which does not compre-
hensively assess all features of a pdf. We suggested
that conceptually better measures are provided by skill
scores. To illustrate our point, we compared the per-
formance of a few algorithms applied to the henon sys-
tem with the average cpu—time they required to carry
out a single filtering step. In general, higher accuracy
requires longer time. For an overall quality assess-
ment, subsequent studies should take other aspects of
the filtering algorithm into account, for example the
size of the required storage or the size of the actual
product.
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Figure 1: Performance of the filtering algorithms vs.
time. The symbols indicate EKF (circle), GDF (tri-
angle), MKF1024 (star), MKF2048 (box) and (ISF)

(plus sign).



