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“It is always the unexpected that happens,”
I said in a propitiatory tone. My obtuseness
provoked him into a contemptuous “Pshaw!”
I suppose he meant that the unexpected
couldn’t touch him; nothing less than the un-
conceivable itself could get over his perfect
state of preparation.

Lord Jim

Summary

In this thesis a certain estimation problem for nonlinear stochastic dy-
namical systems in discrete time, known as filtering in the literature, is
considered. The objective is to reconstruct the current state of the system
by means of observations. The observations are noise corrupted measure-
ments of a function of the state.

In the first chapter we will provide concepts from probability theory
necessary to define and investigate the nonlinear filtering problem. The
definition of the nonlinear filter is presented in the second section of this
chapter. The second chapter explains in detail why filtering is an extremely
difficult problem in a nonlinear context. It turns out that a finite dimen-
sional representation of the filter is possible in very special circumstances,
only. This chapter summarizes known results and is intended mainly as a
motivation for the necessity of investigating approximation schemes for the
nonlinear filter, considered in the following two chapters.

Numerical approximation methods are then investigated from a general
point of view in the third chapter. A general framework to obtain error
bounds for approximation schemes is presented. Necessary for this inves-
tigation are metrics for probability distributions we will make extensive
use of. Furthermore, an essential property of the filter required to give a
bounded approximation error turns out to be a negative Lyapunov exponent
of the filter dynamics.

The fourth chapter provides some classes of approximation methods.



Common to all these methods are projection techniques on parametrized
families of probability distributions. This approach was carried out for
continuous time systems already by several authors. However, the error
analysis carried out in this thesis is, to the best of our knowledge, new.

The last two chapters present (aside from two small sections devoted
to a Monte Carlo approach), two interesting and important applications of
nonlinear filtering. The first is estimation of an unknown parameter in the
dynamics. This problem is very important in all branches of science, and we
will present two numerical examples. The second application is reconstruc-
tion of a sent message in telecommunications. To this problem a chapter
is devoted, including results on the bit error probability obtained using
methods from nonlinear filtering theory for a simple transmitter model.

To summarize, the aim of this thesis is threefold. First, to show that fil-
tering of nonlinear dynamical system is a nontrivial and interesting problem
from a mathematical point of view, second to show methods to overcome
the difficulties arising in applications, and third to show that filtering is
not a purely artificial mathematical problem but has a great significance in
science and engineering.
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Chapter 1

Introduction

1.1 The problem of estimation

A quotation from Mood, Graybill and Boes’ Introduction to the Theory of
Statistics [51] may serve as a basic statement on the necessity of statistics
in science.

Progress in science is often ascribed to experimentation. The
research worker performs an experiment and obtains some data.
On the basis of data, certain conclusions are drawn. The con-
clusions usually go beyond the materials and operations of the
particular experiment. In other words, the scientist may gen-
eralize from a particular experiment to a class of similar ex-
periments. This sort of extensions from the particular to the
general is called inductive inference. It is one way in which new
knowledge is found.

Inductive inference is well known to be a hazardous process.
(...) One function of statistics is the provision of techniques
for making inductive inference and for measuring the degree of
uncertainty of such inferences. Uncertainty is measured in terms
of probability, and that is the reason we have devoted so much
time to the theory of probability.

This may be well enough reasoning that coping with uncertainty is some-
thing a scientist should have a basic understanding of. Furthermore, in



8 Chapter 1. Introduction

physics, statistics and probability theory has become a central tool as im-
portant as, say, theory of differential equations, not only to verify (or falsify)
theories by inductive inference, but also since fundamental laws of quantum
mechanics and statistical mechanics (as the name suggests) are formulated
using probability theoretical concepts.

Finally, probability theory and statistics have experienced fruitful appli-
cation in many fields of engineering. Since the fundamental works of Shan-
non and Wiener, statistics is an indispensable concept in fields like control
theory, communication and computer science where we are concerned with
such things as systems with uncertain state, noise corrupted messages or
algorithms with unknown input.

The inference or estimation problems we are going to investigate in this
thesis belong to a special class. In general, any estimation problem can
roughly be formulated as follows. We want to know a quantity X (future
stock prices, membrane potential, fetal heartrate, internal state of a com-
bustion engine,...). What we have available, however, is just a quantity ¥’
(present stock prices, patch clamp information, noisy sound signal, temper-
ature,...) which features only incomplete information about X. Analysis
now states that this problem is uniquely solvable if the functional relation-
ship between Y and X is known and invertible. However, in the beforemen-
tioned problems it is quite unlikely that the quantity Y is a function of just
X alone. We merely have to assume that not only X but a large amount
of different further influences determine the actual value of Y. It is obvious
that under such circumstances the problem is not solvable in an analytical
sense.’

In many cases the influences obscuring the dependence of ¥ on X
strongly fluctuate. Although at first sight this seems to make the prob-
lem even worse, it is often a reasonable assumption that these quantities
obey certain average laws. The internal fluctuations yet amount to fluctu-
ations of the measured quantity Y, but the average behaviour of Y should
be determined by the average behaviour of the fluctuations and the value of
X. Thus it is intuitively clear that a sequence of consecutive measurements
of Y may allow to determine the unknown X.

1We would like to remark that what we have in mind is to be distinguished from what
is known as ill posed problems. In an ill posed problem the relationship between X and
Y is invertible but the inverse is not continuous. Then a small variation of Y leads to
large deviations in X, which obviously exacerbates the problem.
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This discussion already suggests the concept of noise as random unpre-
dictable fluctuations. Assuming the reader to have at least an intuitive
understanding of noise we will explain now more precisely the subject of
this thesis. In our case the quantity X that is assumed to be unknown is the
state of a dynamical system, i.e. X depends on time. As dynamical systems
we may first (for sake of simplicity) consider a finite dimensional iterated
map. This is, X = {X;, X,,...} is recursively defined by an equation of
the form

X‘n+1 = f(X'ﬂ)J

where X is an unspecified quantity. In order to estimate X,, we need data.
In this thesis we assume the data Y,, to be dependent on X, in the form

Y, = h(X,,) + noise.

The central question considered in this thesis is

Assume a sample of values Yi,...,Y, has been recorded.
Furthermore, suppose f and h are known functions. What
is the value of the system state X,, ?

This special estimation problem is called filtering. Of course, the answer
to the basic question in filtering cannot be given with infinite accuracy
due to the unknown noise. What is desired are estimators (i.e. functions
X, = Xn(Y1,..,Y,)) having a good average performance. It should be
mentioned that the indices n of X, and Y7 ...Y,, are not accidentally the
same. Estimating X, from Y;...Y; where £ < n or k > n are different
(but quite related) problems. They are called prediction and smoothing,
respectively.

We would like to remark that even in the deterministic case (where
no noise enters the dynamics or the observations) the filtering problem is
not trivial. Note that we do not assume that h is invertible, so in general
more than one measurement is necessary to recover the underlying system
state. In the theory of deterministic control this is known as the observer
problem (see e.g. [52, 53]). The filtering problem therefore can be seen as a
generalisation of the observer poblem.
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1.2 Two motivating examples

We will now give two simple but intuitive examples. Consider the filtering
problem for

Xn+1 == 05Xn + Vn,
Y, =X, +0.1W,,

where W,, and V,, are standard normal (Gaussian) random variables with
probability density

pv(2) = pw(z) = %2_7? exp(—0.527).

Since the system is stable, it is already a reasonable estimate to assume
that X,, = 0 which is true in average for n large. This estimate has an
asymptotic variance of 1.33. However, we can do better. It turns out that
Xn given by the equations

Xn—i—l = O5Xn + Fn—l—l(Yn—l—l - Xn);
11
Thyr 0250, +1

+0.01,

is a superior estimator. Its variance is I',, which has asymptotic value 0.57.
This value becomes smaller if the observation noise variance decreases, while
the naive estimate X,, = 0 does not take into account the observations
and has a constant variance. The estimator has the structure of an error
feedback system with a suitably chosen gain T',,. It is an example of the
Kalman filter and is optimal in the sense that it has the least average square
error among all possible estimators (see [17]). A filter with this property will
be referred to as optimal in the following. The relatively simple structure
of the optimal filter is unfortunately destroyed when nonlinear effects enter
the stage.

In a second example we investigate a nonlinear system. This example is
given in order to demonstrate that nonlinear systems amount to far more
complicated filtering problems. Consider the Hénon system

2
N
x, = xO, (1.2)
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with parameters a = 1.4 and b = 0.3. This example features a chaotic signal.
The results of different filter approaches will be illustrated using time series
{Xr} generated by this map. The chaotic attractor reconstructed from
the clean time series {Xél)} is shown in Figure 1.1a. Figure 1.1b shows a
reconstruction from a time series

Y, = XM + W,

where Gaussian noise {W,,} with SNR 13 dB? has been added to the data.
The chaotic dynamics generates a broadband signal and the added noise
occupies the same frequency band (inband noise) and can thus not be re-
moved using linear (spectral) methods. Thus, any linear method (like the
Kalman filter) is expected to be suboptimal.

That this filtering problem is actually much harder that the beforemen-
tioned linear problem can as well be understood by looking at the attractor
Figure 1.1a. This plot can be seen as a sample from the invariant density
of the Hénon system. In a filtering problem we know beforehand that the
system states lay on the attractor, and the filter should reproduce this fact.
For a linear system, the “attractor” is a single point, and this is a set much
more eagsily to cope with than the fractal attractor.

Furthermore, it can be shown that the optimal filter providing the least
average quadratic error cannot be represented in a finite dimensional form.
Thus, a “nonlinear” optimal Kalman filter does not exist. In Sections 3.1
and 3.2 rigorous results will be presented showing that this unfortunately is
the case for the majority of nonlinear systems. This negative result was a
central motivation for the investigation of approximative optimal filters to
be discussed in this thesis.

That the situation is not hopeless is illustrated in Figure 1.1c where one
of the approximation methods to be presented in the following has been
applied.?

2To quantify the amount of noise in a signal it is convenient to compare the energy
content of the noise to that of the signal. The SNR is this ratio measured on a 10-log
scale, i.e. if X, is the signal and W,, is the noise,

1
SNR = 10- (logm(N Z(Xn - X)?) — logyo(+ ZW ))

n

where X is the mean of X,,.
3 Readers already aquainted with noise reduction may think that the resulting attrac-
tor still looks very noisy compared to other noise reduction methods common in nonlinear
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-1 0 m 1 2

Figure 1.1: Chaotic attractor of the Hénon map (1.1) for a = 1.4 and b = 0.3.

(a) Clean data {(Xﬁl),

1}, (b) noisy data (13 dB SNR) {Y,}, (c) result

of noise reduction using exponential families (see Section 5.2).
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We have compared the improvement for a noisy time series from the
Hénon system of different algorithms that will be presented in detail in
Chapters 5 and 6. Figure 1.2 shows the improvement of the SNR vs the
SNR of the given data set consisting of 1024 samples. As a benchmark the
dotted curve shows the performance of a linear optimal Wiener filter [55]
that turns out to be competitive for negative SNR’s, only. Note that for
vanishing relative signal power (SNR, — —o0) the dotted curve approaches
the straight line given by: SNR improvement = — SNR. This line gives the
improvement when using as filtered signal a constant time series given by
the empirical mean of the data. Clearly any algorithm should outperform
this simple approach.

The unmarked curve in Figure 1.2 shows the SNR, improvement of an-
other standard method, the extended Kalman filter (EKF) [17] which gives
satisfying results for low noise amplitudes (SNR > 30dB). The dashed-
doted curve is obtained with a noise reduction scheme where some under-
lying probability density functions are approximated by functions from an
exponential family. This approach was used in Figure 1.1b and yields good
SNR improvement for SNR > 10dB, but fails for large noise amplitudes
(SNR < 0). Methods of this kind are subject to Section 5.

The dashed line in Figure 1.2 denotes results obtained with Monte Carlo
sampling [19, 20]. A short account on this technique is given in Section 6.1.
For large noise amplitudes the performance of this method compares to
that of the Wiener filter. For medium noise (0-30 dB) it turned out to be
better than the other methods mentioned so far. The sudden decrease of
the SNR improvement at about 40dB is due to the finite ensemble used in
the Monte Carlo simulation. With a larger ensemble also for higher values
of the SNR good improvement is achieved, for smaller ensembles the curve
bends already at smaller SNR values. A significant drawback of the Monte
Carlo method is the necessity of considerable computer ressources. This of
course becomes the more a problem the larger the ensemble.

We emphasize that all the methods mentioned so far provide (less noisy)
estimates of the state based on information from the past, only, and thus
are filters. These estimates can be improved considerably when more and
more future values of the time series are taken into account. For comparison

dynamics. The displayed result, however, was obtained using a causal method, in con-
trast to most other methods, which are acausal and use the full time series including
future values.
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Figure 1.2: SNR-Improvement vs SNR for different noise reduction methods
applied to noisy data from a chaotic Hénon map.

the SNR-improvement of an orbit estimation algorithm (called LSS [10]) is
shown as a solid curve marked with +-symbols in Figure 1.2. Using the
full information from past and future this method outperforms all state
estimation schemes.

1.3 Outline of the thesis

With the reader having now an idea of what the thesis is about, let us
give a brief overview over the contents. Chapter 2 explains the theoretical
background of stochastics and filtering. Everything here is standard text-
book material. Chapter 3 discusses the problem of how to represent the
nonlinear filter as a dynamical system. For applications, it is essential that
this dynamical system is finite dimensional, like the Kalman filter. It turns
out, however, that this is a very unusual situation. Especially for chaotic
systems, a finite dimensional characterisation of the optimal filter is impos-
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sible. The material of this chapter is cited from a series of partly recent
papers. The main aim of this chapter is merely to motivate the necessity
of approximations in nonlinear filtering.

The next two chapters form the heart of the thesis. In Section 4.3 a
general bound on the error between approximative and the optimal filter
is established. However, for this to be a useful bound, certain restrictions
on the filter have to be imposed. A basic property the optimal filter has to
satisfy is insensitivity to its initial condition. This insensitivity is charac-
terized by means of a (negative) Lyapunov exponent.? We will be able to
prove rigorous results only for special cases. However, our approach yields
a framework for more general results.

Chapter 4 provides a catalogue of approximation schemes. Different cir-
cumstances need different tools, and we explain approaches that apply to
many interesting situations. Concerning approximation methods for non-
linear filtering in continuous time systems significant work can be found
in the literature already, lacking however a complete error analysis. The
situation immediately carries over to continuous time signal processes with
discrete time observations. This case is obviously of high practical signif-
icance. Again an error analysis was, to the best of our knowledge, not
available so far. This thesis fills the gap.

Further approaches for approximating the optimal filter already present
in the literature are presented in Chapter 6, mainly for the sake of com-
pleteness. The last two chapters provide interesting applications of the
nonlinear filter. The first is estimation of an unknown parameter in the
dynamics. The relation of this problem to filtering is trivial. Our con-
tribution to the subject is mainly to present numerical results employing
approximation schemes presented in this thesis. The second application is
communication. In (tele)communication the objective is to estimate the
original message from the received information. For technical or security
reasons, the eventually transmitted data may be a quite complicated func-
tion of the message. Furthermore, noise is omnipresent in telecommunica-
tion, due to athmospheric disturbances, imperfect semiconductor elements
etc. Filtering is therefore an essential tool here. As the preceeding dis-
cussion conveys, approximations of the optimal filter are thus of practical
relevance in telecommunication.

4We are not going to define a Lyapunov spectrum for the nonlinear filter. If this was
possible, however, the largest Lyapunov exponent is required to be negative.
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To come back to the two challenges of statistical estimation theory in
science we mentioned in the beginning, namely the inductive inference of
natural laws and the control of uncertain systems, the thesis is intended
to be contribution to both of them. Although the theoretical considera-
tions will encompass quite a large part of the thesis we will finally end up
with some applicable algorithms. We will present numerical studies for pa-
rameter estimation in neuron dynamics as well as bit error performance in
telecommunication. This may hopefully give a strong indication that filter-
ing and parameter estimation is useful in engineerings practice as well as
the understanding of scientific experiments, and thus, of nature.



Chapter 2

Nonlinear Filtering

2.1 A few remarks on probability theory

Let us shortly discuss the main concepts of probability theory and stochastic
processes. This is mainly to fix notations. The general reference for this
chapter is the book of Breiman [7]. A measure space is a tuple (22, A), where
Q is a set of points w and A is a system of subsets of 2 called o-algebra
with the following properties

Qe A,
Ae A= A€ A,
A; e A,i € N= Ujen4d; € A

The elements of A are the measurable sets. The intersection of two o-
algebras is again a o-algebra. Thus for any arbitrary system C of subsets
of Q we can consider o(C), the intersection of all o-algebras of which C is
a subset. On any topological space E the so-called Borel algebra can be
introduced. It is defined as the smallest o-algebra containing all open sets
(or alternatively, all closed sets) and will be denoted by Bg.

A mapping f between two measure spaces (Q2,.4), (', A") is called mea-
surable, if for any measurable A’ € ), it holds that f~!(A’) is measurable.
Note that measurability of f depends on A4 and A'.

A random variable is a measurable mapping from (2, A) to (R, Br). For
any arbitrary f : @ — R, the smallest o-algebra on € such that f is a

17
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random variable is denoted by o(f). A mapping g :  — R is said to be f-
measurable if it is o(f)-measurable. Random variables are often denoted by
capital letters. Suppose X is a random variable and Y is an X-measurable
random variable. Then it can be shown that there is a Borel-measurable
mapping f : R = R so that Y = f(X).

A signed measure p is a mapping from A4 to R that is o-additive, this is
for any sequence A; € A, i € N for which 4; N 4; = 0 it holds that

wUi4;) = ZN(Az’)-

A signed measure is bounded if sup 4 4 |#(A)| < co. For non-negative
measures this means p(Q) < co. The space of bounded signed measures on
(Q, A) will be denoted by Mg and the subset of non-negative measures by
M, where the index may be omitted if clear from the context.

Suppose C is an arbitrary family of subsets of 2 and we are given a
non-negative function p on C that is additive. The question arises whether
i can be extended to a measure on ¢(C). This is indeed possible (theorem
of Hahn-Carathéodory). E.g. we can assign to any finite interval [a,b] C R
the value b — a. This assignment obviously is additive. But the system
of intervals is not a o-algebra. It is easy to extend this definition to all
finite collections of intervals, but we need the nontrivial result of Hahn-
Carathéodory to extend this assignment to a measure on the o-algebra
induced by all finite intervalls (the Borel algebra). The result is called the
Lebesgue measure. It is not possible to extend the Lebesgue measure to all
possible subsets of R in a consistent manner. For a proof of this nontrivial
fact see [13].

The measure p is called a probability measure if it is nonnegative and

p(§2) = 1.
Probability measures are denoted by P, @, ... usually and the subset of Mg
of probability measures is denoted by Pq. The triple (2, A, P) is called a
probability space. Any random variable X on a probability space induces a
probability measure Px on R called the distribution of X by the definition

Px(A) .= P({w; X(w) € A}).

Sets like {w; X (w) € A} or {w; X (w) < ¢} are often denoted by {X (w) € A}
or {X (w) < ¢} respectively. The function

Fx(z) := P(X < z) .= Px([—o0, %))
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is called the distribution function of X. A distribution function has the
properties

Fx(x+h)—Fx(z) >0 for h >0, (2.1)
Fx(z—) = Fx(x) “left continuity”, .
li_)m Fx(z)=1. (2.3)

A stochastic process is a family {X;}:cr of random variables on a com-
mon probability space indexed by a parameter ¢t € I, where I is either an
interval of R or an interval of Z. In the first case the process is said to be a
continuous time process, while in the latter case we will speak of a discrete
time process. A stochastic process gives rise to a family of multidimensional
distribution functions. Similar conditions like (2.1), (2.2) and (2.3) hold.
Furthermore, a certain consistency condition holds, due to the fact that

PX1€A,...,Xpn€An,Xnt1 €Q)=P(X; € A44,...,Xp€A,).

It can be shown that given a family of distribution functions fulfilling this
consistency condition there is always a probability space and a stochastic
process with these given distribution functions (Kolmogorov’s theorem).
For random variables on a probability space it is possible to define an
integral. The construction is explained in [13, 7] and will not be repeated
here. It starts with simple functions and is then extended to all possible
limits of Cauchy sequences. The integral of a random variable is denoted

by
/ XdP.

We will also call it the expectation denoted by E(X). For any measure u
and integrable function f also the notation u(f) is used. By x4 we mean
the function that is 1 on A and zero elsewhere. We will write

/A faui= [ Fxad

If f is a non-negative function integrable with respect to y we can introduce
the measure f * y by the convention

Frutd)= [ ranfu).
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Any distribution function gives rise to an integral on R. It holds that

/a:dFX :/XdP.

The space of random variables for which [ |X[PdP is finite is denoted by
L,. The L,-spaces are complete normed vector spaces.

An important concept in estimation theory is the conditional exrpecta-
tion. Suppose X is a random variable and E|X| < co. Suppose D is a
sub-c-algebra of A. A conditional expectation of X given D is any D-
measurable random variable Z satisfying

/ZdP:/XdP VD € D.
D D

Any two such Z differ on a set of measure zero. Thus we can speak of the
conditional expectation and write E(X|D) for Z. It can be shown that if
E|X|? < 00, then

E(X -E(X|D))? < E(X - Z)?

for any D-measurable random variable Z. Furthermore, equality occurs
only if Z = E(X|D) almost sure. Thus, E(X|D) is the best approximation
of X among all D-measurable random variables. If D = ¢(Y") for a random
variable Y we will write E(X|Y") instead of E(X |o(Y)). Recall that E(X|Y")
is an Y-measurable random variable and thus can be represented as f(Y).
The conditional expectation should thus be considered as a measurable
function f: R — R that minimizes E(X — f(V))2.

For any two random variables XY we can consider the special condi-
tional expectation

P(Y € AX) = E(xa(Y)|X).

This is called the conditional probability of Y given X. If X = z, then
P(Y € A|X) depends on the value z only, so we write P(Y € A|X = z).
It can be shown that there is a version of P(Y € A|X = z) which is a L;
random variable as a function of z and is a probability measure for any
z fixed. This version is called regular. Regular versions continue to exist
as long as Y takes values in a complete separable metric (so called polish)
space.

The proof of the existence of the conditional expectation relies on the
Radon-Nikodym theorem, which we want to finish this section with. A
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measure () is absolutely continuous with respect to P (write Q < P) if
P(A) =0 always implies Q(A) = 0. In this case there is a function denoted
by % (Radon—Nikodym derivative, see [7]) with the property

_ [ e

o= [ 5

(x)dP.
Two versions of j—g coincide P almost sure. If both < P and P < @,
they are called equivalent and we write P < Q).

2.2 Nonlinear filtering in discrete time

In this section we present the theoretical background of the thesis, namely
the theory of nonlinear filtering in discrete time.

In the introduction we considered already two filtering problems. The
basic issue here was to infere from the process Y,, to the process X,,, where
Y,, the measurement process, was a function of X,, corrupted with noise.
In both examples of the introduction the underlying systems were of the
form

Xn+1 = f(Xp) + noise.

The main point here is that, if X, is known, the probability distribu-
tion of X,,+1 depends on the noise only and not on further past values
Xpn_1,Xpn_2,.... Such processes are called Markov processes. More for-
mally, the central property of Markov processes is the following;:

P(Xn|Xn1...X1) = P(Xn|Xn_1).

The conditional probability P(X,, € A|X, 1 =) =: ¢,(A4,z) is called the
transition kernel. In this thesis,we consider exhaustively polish spaces, so
we can assume all conditional probabilities to be regular. Furthermore, if
not otherwise stated, we assume the Markov processes to be homogenous,
this is, ¢ does not depend on n.

Knowing the transition kernel is equivalent to knowing the state space
representation. To define a Markov process we need not only the dynamical
law but furthermore the initial value Xy. In general, Xj is as well assumed
to be random with distribution Px,. The question we consider now is this:
given a transition kernel ¢(A,z) and a probability distribution g (on the
state space), is there always a Markov process with transition kernel p(A, x)
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and initial distribution Px,(A) = u(A)? The answer is “yes”. The reason is
that if {X,}n>0 is a Markov process on a probability space (Qx, Px, Bx)
in discrete time (i.e. n € Ny) assumed to have values in a polish space
E equipped with a Borel o—algebra Bg, we can always assume the prob-
ability space to be canonical, i.e. Qx = E®, Bx = B¥.! According to
Kolmogorov’s theorem, Px is well defined by specifying the finite dimen-
sional distributions of {X,}. Since {X,} is Markov, the finite dimensional
distributions are determined by the distribution v of Xy and the transition
kernel by the equation

P)V((X() € Ag,..., Xy € Ak)

= / o(dzg, Tp—1) - - - p(dz1, To)v(dmo),
Ap XX Ag

where Ag, ..., A € Bg. The dependence on v is denoted by the superscript
and in fact we consider not only one measure Px on 2x but a whole family
P%. If v assigns probability one to a single point z € E we write P%.
Further properties of Markov processes (mainly concerning their ergodic
behaviour) are summarized in the Appendix A.1.

Now we turn to the measurement or observation process. Let {Wp},>1
be a process of ii.d. random variables having values in R. We assume
that the W,, have a probability density function g with respect to Lebesgue
measure A. Let the {W,} be of zero mean and unit standard deviation.
By using Kolmogorov’s theorem again we can assume the corresponding
probability space to be canonical, i.e. Qw = R>*, By = B*, where B is
the Borel algebra on R. The probability measure is defined by the finite
dimensional distributions:

k
Py(Wy € Ay,...,Wy € Ap) = H/ g(z)dz.
i=17Ai

Furthermore, let {W,,} be independent of {X,,}. It is well known that
the corresponding probability space covering both {X} and {W} can be
chosen as ) := Qx x Qw, P := P% x Py, B := Bx ® By. Expectation
with respect to P” or P? will be denoted by E, or E,, respectively.

1By E* we mean the oo—fold cartesian product of E with itself. E™ is the space of
all sequences in E. Basically the idea is to consider a stochastic process as a randomly
chosen sequence in E.
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Finally we introduce the measurement process. Let h : E — R be a
measurable function. Now define the process {Y,}n>1 by

Y, = W(Xp) + oWh.

The o-algebra o(Y1,...,Y}) is denoted by G,. Note that W,, and also Y,
are defined for n > 1, while X, is defined for n > 0.
To fix notations and conventions let us give the following general

1 Definition (Observed dynamical system (X)) Let {X,}nen, be a
homogenous Markov process on a polish space E. The transition kernel
will be denoted by (A, z). Furthermore, let {W,}nen be a process on R of
independent random variables having identical distribution with zero mean
and unit variance. We assume the distribution to be absolutely continu-
ous with respect to Lebesgue measure with density g. Moreover {W,} is
independent of {X,}. Then we define the process

Y, = h(X,) + oW,

where h is a measurable function on E and o a positive constant. Such a
setup will be called from now on an observed dynamical system. The process
{X,} is called the signal process, the process Y, is called the observation
process.

The basic question of nonlinear filtering now is the following

Assume a sample of values Yi,...,Y,, has been recorded.
What is the value of the system state X,, 7

Thus the aim of filtering is to estimate the “hidden” process { X} from the
measurements {Y,,} in a causal manner, i.e. the estimator X,, of X,, shall
depend only on Y3,...,Y,, that is, it shall be G,—measurable. Of course,
the answer to the basic question in filtering cannot be given with infinite
accuracy due to the unknown noise W,, (except if ¢ = 0). What is desired
are estimators (i.e. functions X,, = X, (Y1, ...,Y;,)) having a good average
performance. We have seen that for any such estimator

E[(Xn - Xn)z] > E[(Xn - E(Xn|gn))2]:

while if equality holds, X, = E(X,|G,) almost sure.
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To calculate conditional expectations we consider the filtering process
wr defined as
mr(A) .= P"(X, € A|G,),

n

where the conditioning on G,, can be viewed just as a shorthand notation
for Y7 ...Y,,. Define also

(f) = By (f(X)|Gn) = / f(@)w (dz)

for a given bounded continuous function f : E — R. The filtering process
is to be considered as a process on Ppg, the space of probability measures
on E. The problem now is to give convenient formulas for 7} as an explicit
function of Y3,...,Y,.

It follows from the Kallianpur—Striebel formula (see [39]) that

(f) = ¢ /E f(2)g(n= 2, /E oz, )m’_ (dz),  (24)

g

where ¢ is the normalisation constant
Y, —h(z v
o= [ o2 [ otz npm, (a0,
E g E

An informal derivation of Equation (2.4) can be found in [37]. If all m,’s
and also ¢(A, ) have densities with respect to a measure A we have for the
densities the formula

() = (D), /E (@, ) (2)dz.

g

Equation (2.4) should be considered as a dynamical law for the stochastic
process m,. For an abbreviated notation, define the operator

S:Rx Mg = Pr,
Sw=e [ (L=, [ wldzawtas)

A g

(2.5)

where ¢ is again the normalizing constant. So S(y,-) maps finite positive
measures to probability measures. With this definitions we have the itera-
tive formula

Tp1 = S(Yng1, 7).
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Furthermore, 7§ = v. A system will be referred to as regular, if for any
v having a density with respect to a measure A, then, for any y € R, also
S(y,v) has a density with respect to A.

As already mentioned, the filtering process 7% is a random process on
Pe and turns out to be a Markov process. Introducing the weak topology
on Pg, the transition kernel

II(A,v) := P"(n] € A)

turns out to be Feller, i.e. for any function F' : Pg — R bounded and
continuous in the weak topology, also IIF (v) := [ F(u)II(dy, v) is bounded
and continuous in the weak topology. To compute average quantities in
the filtering problem like average filtering errors or approximation errors,
ergodic properties of the filtering process are required. The main results
needed in this thesis are due to Stettner [69] and Kunita [47] to which we
refer the interested reader. A few results are summarized in Appendix A.2.
This section is finished with the presentation of three examples.

2 Example (CSK-scheme) As a very simple model of a message trans-
mitting device, let us consider the following setup. Suppose {M,} is a
sequence of independent identically distributed random variables assuming
only the values 0 or 1 with probability po and p;, respectively ({ M} should
be seen as a binary message). Moreover, let fo, fi be two continuous map-
pings of a closed interval I (which might be the whole real line) to itself.
Let Xy be a real valued random variable and define the process

Xont1 = Mo (Xn).
It is obviously a Markov Process. The measurement process is taken as
Y, =X, +ocW,,
where W,, has standard normal distribution. The transition kernel of X, is
©(A,2) = p16£,(2)(A) + Podsy(z)(A),

where the delta measure 0,(A) is 1if 2 € A and 0 else. Often I is chosen as
the unit interval and fo, f1 are piecewise expanding Markov maps (see [56]).
In this case this setup is called Chaotic Shift Keying (CSK) scheme. CSK-
schemes play an important role in telecommunication engineering [65]. In
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most of the work on this topic, however, it is assumed that M, remains
constant for more than one n. The number of n’s for which M, remains
constant can be seen as a reciprocal of the bandwidth. For small bandwidth,
the time series emerging for different M’s may be considered as independent.
This is usually assumed in the analysis of CSK—schemes. In our setup
however we can not assume the Y},’s to be independent. How to recover the
message from the Y,,’s is subject to Chapter 7.

If the distribution of X, has a density h with respect to Lebesgue mea-
sure, then so has the distribution of X1, and the Markov transition kernel
translates into an operator on L;, called the Frobenius—Perron—Operator
(FPO). The FPO of a CSK—scheme is given by

B h(y) h(y)
Lh(z) =p Z |f{(y)|+po Z |fow)|

et (@) yefy ()

If the distribution v of Xy has an L! density mo(x) with respect to Lebesgue
measure, then also the filtering process 7}, has a representation in terms of
densities (denoted by 7% (z)) given by

Yo.—x
o

T () = c-g( )Lmy, (),
where again ¢ is normalisation and g the density of W,.

Piecewise expanding Markov maps are thoroughly investigated in [56].
It is shown that there exists an invariant measure v on the unit interval
which has a density h with respect to Lebesgue measure that is of bounded
variation. Furthermore, if f is aperiodic, this measure is exact (in partic-
ular, ergodic and the only one having a density with respect to Lebesgue
measure). The density h is everywhere positive and for any continuous
function f

LhF(2) — / fdz-h(z)

uniformly in z. This analysis depends entirely on the FPO, and it turns
out that much of it carries over to our setup. Especially there is an invari-
ant measure v on the unit interval which has a density h with respect to
Lebesgue measure that is of bounded variation. The corresponding measure
PV is therefore stationary and the finite dimensional distributions have all
densities. Furthermore, it can be shown that under a modified aperiodicity
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assumption, any function g € L;(v) on the interval which is invariant under
 is v—almost sure equal to a constant. It follows then from Lemma 48 of
the Appendix that PY is even ergodic.

The relevance of CSK—schemes as models for a real time electronic trans-
mitting device may of course be doubted. They are hovewer subject to vivid
research on a more abstract level. They are used to generate signals having
desired statistical properties (see e.g. [43])

3 Example (Uniform ergodic process) Let W] be a process of iid ran-
dom variables on R? having a continuous and strictly positive pdf d(z) with
respect to Lebesgue measure. Let f : R? — R? be a continuous and bounded
function. Then the process

Xnt1 = f(Xn) + WTIL

is a Markov process for which the Theorem 45, namely the property (A.7)
holds. The transition kernel is given by

o(A,) = /A d(z — f(@))dz

and the FPO by
Lh(z) = d(x — f(2))h(z)dz.

R4
This setup can also be extended to a message transmission scheme by letting
{M,} be the usual message process and taking two functions fo, f; : R? —
R?, both bounded and continuous. {X,} is now defined by

Xnt1 = an+1 (Xn) + WTIL

Again {X,} is a Markov process satisfying the conditions of theorem (45).
The transition kernel is given by

¢(A,z) = popo(4, x) + prp1(4, )
= /APO'd(z = fo(x)) + p1-d(z — fi(x))d=z

and the FPO by

Lh(z) = /Rd (po-d(z — fo(2)) + pr-d(z — f1(2))) h(z)dz.
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Again, if the distribution v of Xy has an L' density mo(x) with respect to
Lebesgue measure, then also the filtering process 7% has a representation
in terms of densities (denoted by 7} (z)) given by

wh(2) = eg(~"— ") owy_y (o),

where again ¢ is normalisation.

4 Example (Linear Gaussian process) The first system class for which
the filtering process was calculated explicitely was of course the linear Gaus-
sian case, i.e.

Xn+1 =FXn+an+ ern

where W), has a Gaussian distribution with covariance matrices {R,,}, {Fy.}
is a sequence of dx d-matrices and {a, } a sequence of d-dimensional vectors.
Furthermore assume X, has a Gaussian distribution with covariance matrix
I'o. Let the measurement process be given by the equation

Yn = Gan + bn + Wn:

where W), has a Gaussian distribution with covariance matries Sy, {G} is
a sequence of d x [-matrices and {b,} a sequence of [-dimensional vectors.
Then

1

() = W exp [—0.5 (& — pa) Tyt (& — )],

where '), and pu,, are given by

T}, = (FaTWF' + Ry) ™ +GLS; Gy,
Hnt+1 = Fnl/zn + an
+ Fn-HGZS;l (Yn+1 - Gn(Fnﬂn + an) - bn) .

These equations are due to Kalman [40] and a direct consequence of Equa-
tion (2.4).

The Kalman filter is an example where the filtering process admits a
parametrisation. This is, 7, (z) = 7(z,0,) and 8, is given iteratively by a
finite dimensional dynamical system of the form 8,, = F(Y},,0,—1). We will
discuss in Chapter 4 that this is in some sense a very unusual situation.
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From an application point of view, the following example is maybe the
most interesting.

5 Example (continuous time system) Consider a continuous time pro-
cess on R? defined by the stochastic differential equation

dZy = f(Z)dt + p(Z,)dV,

where f: R¢ = R? and p: R? — R?X¢ are mappings of sufficient regularity
in order to uniquely define the stochastic process Z;, and V; is a Wiener
process. For a comprehensive treatment on stochastic differential equations
see [2]. Suppose we are given observations of the usual form

Yo = h(Z,) + oWy,

where t,, are equidistant time points. We can assume t,, = n-§, where § > 0
is the sampling interval. Define the process

Xn = Zt" -

It can be shown that Z; and especially X, are Markov processes. The
filtering problem for X, is given again by (2.4). It remains to specify ¢. It
turns out that

0(A,z) = P(Zy,., € AlZ, = 2) = ®(4,2,0),

where ®(A,z,t) is the transition probability of Z;. Imposing regularity
conditions it can be shown that this quantity has a density ¢(z, 2z,t) with
respect to Lebesgue measure that can be calculated from the Fokker-Planck
equation

6(,0 1 02
at (z, 2,1) Z or; (fip) + 5; 92,01, (T’LJSO)7

where r := pp”. In this case, p(A4, z), the kernel of X,,, has a density given
by
o(z,2) = p(z,z,0).
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Finite Dimensional Filters

3.1 Finite dimensional filter systems

In the last chapter the problem of nonlinear filtering was discussed and ba-
sic formulae where given. It was however already stated informally that the
filtering process in general has a very high complexity rendering it unfeasi-
ble for direct applications. We will make this a little more precise in this
section by discussing some well known results about (non)existence of finite
dimensional filters [28, 27, 58, 62, 49].

For this suitable approximations of the filtering process turn out to be
essential. This is the main subject of this chapter. The basic concept in fi-
nite dimensional filtering is the idea of parametric probability distributions
which will be presented in this section. A large variety of approximation
schemes however can be considered as an approximation of the true op-
timal filtering process by a finite dimensional filter, whence the concepts
introduced in this section also form the natural basis for the approximation
schemes we will be concerned with in Chapter 4.

The concept of finite dimensional filter systems emerges more or less
naturally when practical nonlinear filtering problems are considered. The
Kalman filter appears not as a functional equation for m, but, since m,
is known to be Gaussian, as a system of equations for the parameters of
this Gaussian, namely the mean and the covariance. Thus the parameters
obey a finite dimensional dynamics with the observations Y3, Y5, ... acting
as inputs. This representation of the filter is obviously very convenient for

30
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practical application. Encouraged by this example one may ask whether
such representations are possible also for nonlinear systems.

We will first precisely define the kind of representations we are striving
for.

6 Definition (Finite dimensional filter systems) Let © be a subset of
a vector space. Let

Q(,) :Bx0© —)RZO

be a mapping such that for any 6 € ©, Q(-,0) is a probability measure on
E. Recall that B is the set of all measurable sets on E. The pair (Q,0)
is called a parametrized family of probability distributions. Parametric
sets of probability distributions are well known in statistics, especially in
parametric estimation theory, see [1, 51]. A mapping

F:NxRx0© =0

is called a finite dimensional filter system for the observed dynamical system
(%) if 7, = Q(+,0,,), where 0,, is given iteratively by

on—l—l = Fn(Yn—H; on)a

and © (or more precisely its affine hull) is finite dimensional. The filter is
called autonomous if F' does not depend on n.

In many interesting cases, () has the form

where ) is a carrier measure and ¢ € C°(0;C°(E,R;)). We will say that
such a @ is defined by a family of densities. In [19] @ depends as well on
n, and

dQn(a 9) = qn(': a)d’\"

where ¢ € C'(0; C°(E,Ry)). Here the filter is autonomous if ¢ does not
depend on n explicitely. The reader may convince himself that the Kalman
filter is a finite dimensional filter system. In fact, @ is given by the Gaus-
sian densities and the Lebesgue measure as carrier measure. The filter is
autonomous if (X) is. The parameter § is given by u and T'.
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3.2 On (non)existence of finite dimensional
filter systems

The question considered in this section is on necessary and sufficient condi-
tions for existence of a finite dimensional filter system for a given observed
nonlinear system (X). We know that linearity of () is a sufficient criterion.
Consequently, all systems that can be transformed to a linear system by a
transformation of the state and the output admit a finite dimensional filter
system. A simple analysis yields that the emerging finite dimensional filter
systems are of exponential form, i.e.

dQ = exp(fc(z) —1(6))-dA,

where c(z) € C°(E,R?), © C R? and ¢ is a function to yield [dQ = 1.
Thus,
dmp,

ﬁ(g;) = eXp(enC(-fL') - ¢(9n))

Basically, all results concerning existence of finite dimensional filter systems
state that a filter is finite dimensional if and only if it is of exponential form.
If the signal process is a deterministic system, then Levine and Pignie [19]
proved that (X) is in a certain sense equivalent to a linear system if and
only if it admits a finite dimensional filter system.

Unfortunately, exhaustive criteria involving the state space representa-
tion of (¥) have not been obtained so far. The exponentiality criterion does
not lend itself to a useful description of all state space models admitting a
finite dimensional filter. Construction of a finite dimensional filter system
may be commenced with an exponential family. Equations for the filter
dynamics are then easily obtained, in contrast to the state space dynamics
the filter is connected to. Certain approaches to obtain state space models
have, however, been conceived and will be presented later in this section.

Before stating the mentioned results in detail, let us first make a few
necessary conventions.

7 Definition (Exponential families) A family (Q,©) of probability
measures on E is of exponential form with respect to a o—finite measure A
if

T(a;) = q(z,0) = exp(fc(x) — (9)),
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where ¢ : E — R? is a measurable function and ® C R%. The function v
is defined by the relation

1= [ dQc.0),
which yields
P(0) = log/exp(ec(a:))d)\.

We always assume
0 := {6 € R%;4(F) < o).

We will refere to d as the order of the exponential family.

An application of Holders inequality yields that © is convex and v as
well as exp o) are convex functions. By the exponential form of the relative
density, all Q(-,6) are mutually absolutely continuous. Further properties
will be discussed in Section 5.2.

The most general setup was investigated by Ferrante and Runggaldier in
[27]. A general observed nonlinear system (¥) with E C R™ is considered.
It is generally assumed that 7, has a density with respect to a dominating
measure A for all n. Since

Tnt1(2) = c:g(Ya; ), (),
we can assume that
b= om,(z)

has also densities with respect to A. Suppose now that m,, admits a k-
dimensional representation with a family of densities g(z,6) (see Equa-
tion (3.1)) and filter system 6,1 = F,(Yn41,0n)- Then the following
theorem holds

8 Theorem Suppose the following conditions are in force:

1. Suppose there is a point §y € © so that %(y,&o) exists and is in-
vertible for all y and n

2. qn(z;0) is differentiable with respect to 6 for all x and all § of the
form 6 = F,(y,6o)

3. The observation density g(y;x) is C* in y for all x
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Then g(y;x) is of exponential class of order k' < k.

The second theorem of [27], which we present without giving the least
restrictive regularity requirements, concerns the distribution }.

9 Theorem Suppose the following conditions are in force:
1. For any y and n, F,(y,-) are diffeomorphisms

2. If
Fn(ylael) = ... = Fn(ykaek) =,

then the matrix

OF, OF,
6—y(y1701)3 RN W(ykaek)

is nonsingular
3. n(z;0) and 7t (z;0) := pm(x;0) are of class C' in 8 for all x
4. The observation density g(y;x) is C' in y for all x
Then 7} is of exponential class of order k.

These theorems especially imply that 7, is of exponential form. They
generalize former results of Sawitzki [62] treating the case of one dimensional
filter systems, only.

An explicit formalism to construct systems admitting a finite dimen-
sional filter system was introduced in [58]. The problem considered in
this work is the following: Given g¢(y;z) of exponential class, construct
a Markov semigroup ¢ so that the corresponding filter is finite dimensional
(which then is exponential as well). Without going into the mathematical
details the idea will be explained now. The authors restrict themselves to
observation densities of the form

9(z;y) = a(z)b(y) exp(zy).
For the filter the ansatz

() = a(z)™ exp(x6,)-c,(0)
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is made, where ¢, () is for normalisation and
0n+1 = Fn(an) + Yn+1
with an F' supposed to be given. Application of the filtering equations yields

a(2)b(Vn1) exp(Vny1) [ ¢(7; 2)a(2)" exp(26n)cn (0n)dz
J[numerator] '

Tn+1 =

With the convention

we get, after a little algebra

a(z)" exp(2Yy41) [ Kn(z, 2) exp(26,)dz

Tp+1 =

J[numerator]
Now the crucial equation is
/ K,(z, 2) exp(0)dz = exp(eFp(6))6n (6), (3.2)
where the factor £,(0) ensures that ¢ is a probability kernel. It turns out
that (F.(60))
Cn n
€n(0) = “enld)

The technique now exploited in [58] is to apply the inverse Laplace transform
to exp(zF,(0)) and &,(0) and then by convolution of the results obtain
K(z,2).

This idea may be generalized to output densities g(x; z) of more general
form. Finally we remark that for linear output and Gaussian observation
noise, the state space model obtained with this approach is linear as well.

The paper of Levine and Pignie [49] now to be discussed gives a quite ex-
haustive treatment of finite dimensional filters for deterministic state space
models, i.e. without dynamic noise. The results are particularly interesting
in view of chaotic dynamics. It turns out that for a finite dimensional filter
system to exist the dynamics must be, in a certain sense (see Theorem 10),
equivalent to a linear signal process with (in general nonlinear) observa-
tions. This, however, is inconsistent with any common understanding of
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chaos which requires a nonlinear signal process. In [19] a system of the
form

Xnt1 = f(Xn)

Y, = h(X,) + o(X,) W, (3-3)

is considered, where f is a diffeomorphism on a simply connected smooth
manifold E, h is a continuous and ¢ a strictly positive function on E.
Consider the space H of functions generated by the functions

1
m(.ﬁ(]), k]ZO,].,
ho fk
m(iﬂ), k':O,].7

10 Theorem (Levine and Pignie [49])  The following statements are
equivalent

1. The system (3.3) admits a finite dimensional filter system
2. H is finite dimensional
3. Thereisr € N, ny...n. € H and R € GL(r) with the property

no f(z) = Rn(z), where n = (m ...n,),
1 T

—5(@) =0 ni(a),
i=1

h g0

@) =6 mi(@),
=1

where 0@ , Hgi) are real numbers.

The proof is analytical in nature and relies on a factorisation of the
unnormalized m,, in two terms that depend on the observations and on the
initial density respectively. Basically this is

() Pyi..Y.|Xx (Y1 ---Yn;2)Px, (2).
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It is then shown that if one (and hence all) assertions of the theorem holds,
the first factor is proportional to

exp <i 05? 0 (x)) .

Thus, 7, is exponential.

Of course, signal processes assuming only a finite number of states also
obey a finite dimensional filter system. Here 7, (k),k =1... N, where N is
the number of states, is, for any n, a normalized vector of N non-negative
components, in other words, it is an element of the N —1-standard symplex,
which itself can be viewed as the parameter space. The equations for the
parameters are given by the filtering equations.
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Approximations and Error
Bounds

4.1 General remarks on approximations

We have seen in the last section that an optimal filter being finite dimen-
sional is a very unusual event. At least, in a given application an infinite
dimensional filter is likely to appear, especially if the signal model is known
to be chaotic. Since an infinite dimensional filter is impossible to realize on
a computer, approximations are essential. The approximative filter has to
be of course finite dimensional and as optimal as possible. To the best of
our knowledge, all algorithms so far developed employ either Monte Carlo
like ideas or approximations of m,, by distributions of a finite dimensional
family. Monte Carlo methods are not subject of this thesis. We will present
however the basic ideas in Section 6.1. A detailed error analysis was carried
out by several authors, and the interested reader will find the references in
Section 6.1.

The purpose of the remainder of this chapter is to analyze schemes
featuring approximations of m, by members of a finite dimensional family
of probability distributions. The approximative filtering process will be
denoted by 7,. Although a large variety of methods have been conceived
they share a basic and quite natural idea. Let Q(-,0) be the parametrized
family and 7, = Q(-,6,,). The idea is to replace the exact prediction and

38
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update step by simplified prediction and update steps in order to keep 7,
a member of the parametrized family. Thus the process 7, is obtained
inductively as follows

1. Approximate g by 7.

2. Suppose 7y, is already given. Then approximate S(Yp41,7n) (the
correct prediction and update applied to 7,) by pq1.

Obviously, at every step an error is made. A priori it is not clear whether
this will amount to an infinite increase of the total error. To investigate
this, the distance between two probabilities has to be quantified. This will
be the subject of the next section. But suppose for a moment that a dis-
tance d(u,v) between two probability measures is given. Our goal is to
get a bound on the total error d(#,,m,). However, a direct calculation
is of course impossible since m, is unavailable. Our approximation algo-
rithm approximates S(Y,,41,7%n) by #nt1, SO what we may have at hand is
d(S(Ynt1,7n), int1), the approzimation residual, for any n. In Section 4.3
a connection between the total error and the approximation residuals will
be established. This leads to bounds on the total error, if certain stability
conditions on the nonlinear filter are imposed.

4.2 Metrics for probability distributions

We consider o-additive set functions on a polish space (E, B) and introduce
some metrics for o-additive set functions that will be convenient later for
investigation of the nonlinear filter.

4.2.1 The uniform metric and the total variation dis-
tance

Let v be a o-additive set function (signed measure) on B. By
|v| := sup [v(A4)]
AeB
one defines a norm for o-additive set functions. Let Mg be the space of

all o-additive set functions on E having a finite norm. By M}, we will
denote the set of all positive measures.! Obviously, M is a vector space,

IThe index E will be dropped if no ambiguity is to be expected.



40 Chapter 4. Approximations and Error Bounds

and |-| is a norm that turns M into a complete metric space. Let X be a
bounded measurable function. Let v7, v be finite positive measures on E.
If | X| < C is a bounded measurable function we get

/XdV1 —/Xdl/2 S 2C|V1 —I/2|.

Thus |-| controls the accuracy up to which expectations like [ Xdv, are
reproduced using v, instead of v;. If however v; € v, and X bounded,
then

|/Xdl/1 —Xdl/2|
< [ 1X1 5 - 1

d
< max|X|/|£ — 1|ds,.

The quantity TV(vi,vs) == [ |d"1 1|dvs is called the Total Variation
Distance. If vy, vy have densities v4(z) and vs(x) with respect to Lebesgue
measure it can be written in the form

TV(v1,vs) := /|1/1(;U) — v (z)|dz.

It turns out that TV is symmetric, convex in both arguments, vanishes iff
v; = v2 and satisfies the triangle inequality. The discussion suggests that
there may be a connection between |-| and TV(:,--). Although this fact is
easy to prove and apparently assumed to be true in the literature, a proof
could not be found.

11 Lemma

TV(,v) = 2l — 1]

PROOF  Set 3£ —1=1[3% — 1], —[$% —1]_. Since

[ L -1av=0
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/[j_/; adv = /[(31_5 —1] dv,

ST LT du
/'dl/ 1|I/—/[dy 1]+dy+/[dy 1]_dv
_o [{dm

Now there is a set B € B so that (u — v)(- N B) and (v — p)(- N B¢) are
positive measures (see [22]). Thus

we have

Therefore

(4.1)

sup [u(4) —v(A)|=  sup  |(u—v)(4) + (n—v)(A)|
A ACB,A'CBe¢
= max{(p — v)(B), (v — ) (B)|}.
But
(1= v)(B) + (u—v)(B°) = (u—v)(B) =1 -1 =0,
whence

sup u(4) — v(4)| = (u = v)(B). (4.2)

However, since g—ﬁ >1on B and ﬂ—’; <1 on B¢ we have

(5= 0)(B) = [15 - 1)y (4.3)
Now (4.1), (4.2) and (4.3) yield the result O

Two properties of the TV distance will prove to be useful in connection
with filtering. First it is easy to see that for any measurable set A we have

[t aavia) - [ ota,2)dua) < TV,
which implies the following (well known) fact:

12 Lemma
TV(pv, ou) < TV(v, p)
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Furthermore, let ;4 < v and let g be a non-negative function so that u(g)
and v(g) are finite. Define the measures g * u and g * v by the conventions

1
g* u(A) == @/Agdu,

1
g*xv(A) = —/ gdv.
v(g) Ja
Then the following holds:
13 Lemma
maxg max g
TV(g*p,g%v) < ——F—F~—— TV(i,v) < ——TV(i,v)
max{u(g),v(9)} min g
PROOF  See [48]. O
The total variation distance measures the mean deviation of fi—‘,f from

its mean value 1. Deviations however can be measured by means of other
functions than |-| as well. This is the concept of the f-distances introduced
in the next subsection.

4.2.2 The f-distances

In this section, let f be a convex function on R that vanishes at z = 1.
Let p,v two measures (i.e. positive members of M), and assume pu < v.
We define the f—distance between u and v by

Fuv) = / 7

Let v = v(E)-p, where ¥ is a probability measure (v(E) is by assumption
finite). Since

$u) =8) [ 1Eyav.

it suffices to consider f—distances for probability measures. We will do so
in the following.



4.2. Metrics for probability distributions 43

For, if p = v we have ‘;—’; = 1, we see that f(u,r) vanishes in this case.
Furthermore, f(u,v) is non-negative. Indeed, by Jensen’s inequality we

have du dﬂ
0=10) = £ Foav) < [ 1w = ).

We remark that f(u,v) may be infinite. Furthermore f(u,v) may vanish
even if pu # v. To exclude the latter, we have to impose further conditions

on f.
14 Lemma Suppose there is an a € R so that the function

9(x) := f(z) —a(z - 1)

is non-negative and vanishes only if x = 1, then f(u,v) vanishes only if
uw=v.

Proor  The function g(x) is convex as well. Furthermore f(u,v) =
g(u,v). But since g is non-negative,

dp
= dv
9(n,v) / 9(g,)dv
can only vanish if g(d—“) is identical to zero, which implies d—“ =1 v-as.

But this means p = v. d

The conditions can be relaxed, but we will not need it.
Common choices for f are

(Vr —1)? Hellinger—distance HE
|z — 1| total-variation—distance TV
z-log(x) Kullback-Leibler—distance KL

The total variation distance plays a central role, since all f—distances allow
for an estimate against TV. Although the following fact is quite useful and
easy to prove, it seems to be unknown in the literature.

15 Theorem For two probability measures u,v, it holds in general that

FUH STV (o) + £ = 5TV()) < Flo)
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ProOF  The proof of this fact is a generalisation of the method used in
[72] to prove the special case of the KL distance. Since f(1) = 0, we have
the general property that

f(z) = f(max{z,1}) + f(min{z, 1}).

To check the validity of this assertion consider the cases z < 1, z = 1 and
z > 1 separately. Using this fact and the convexity of f we get the general
estimate

S = [ 1w
= [ s v+ [ sning 1w
> ([ max( 2, 1)) + £ [ max{ L, 13,

Now use the facts

1 1-—
max{z,1} = W
l4z—|1—
min{z,1} = w
to complete the theorem. O

We fix an estimate between TV and KL as a lemma

16 Lemma (Bretagnole-Huber and Furstemberg inequality)

TV (1, v) < 2¢/1 — exp (—KL(p, v)) < 2¢/KL(g,v)
Proor  Follows from Theorem 15 as an easy consequence. O

A further useful estimate concerns the Hellinger distance
17 Lemma For the Hellinger distance HE the estimate
2 [(\/HE +1)2— 1] > TV

holds.
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ProOF  Theorem 15 gives the inequality

HE > (vV1+0.5TV — 1) + (V1= 05TV — 1)~

The function (v/1+z —1)? 4+ (v/1 — =z — 1)? is invertible on [0, 1] and the
inverse is monotonically increasing (recall that TV < 2 always). However,
the inverse function is transcendent and the resulting estimate not so con-
venient. But the right hand side is larger than (/1 + 0.5TV — 1), thus we

have
HE > (V1+0.5TV — 1),

which eventually yields the result. O

4.2.3 The Hilbert distance

In contrast to the former metrics, the Hilbert metric compares two prob-
ability measures on a point by point basis. Call two finite measures u, v
comparable, if there are positive constants ¢, ¢z so that cipu < v < ¢cop.
The Hilbert distance is defined as

H(u, v) := inf(log(cs) —log(c1)),

where the infimum is taken over all such choices of ¢; and cs.
As an obvious consequence of comparability, p < v. We will see that

dv
< —<c a.s.
dp

and furthermore

d d d d
H(u,v) := esssuplog el + ess sup log & _ esssup log Sh essinflog el

dv du dv dv
To see this, we need some remarks concerning essentially bounded functions.
Let f be integrable and p a non-negative measure. Suppose an estimate of
the form

/ Fdp < Cou(A)
A
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holds for all A € B. The infimum over all such C is called the essential
supremum of f. It holds that

esssup f = inf{C; u(f > C) =0}.
Furthermore, there is a set N € B which is a subset of a p-nullset and

esssup f = sup f.
zeS—N

The essential supremum of a given function depends also on the measure
- It is easy to see that if 4 < v, then esssup,, f < esssup, f. Back to the
Hilbert distance, if v < cop, then

g:du =v(4) < cop(A),
SO
esssup — S < Ca,
and the infimum of all such ¢ is ess sup . Furthermore
[ v =) < )
SO

d
ess sup d_u <1l/¢.

and the supremum of all such ¢; is 1/ ess sup g —‘i But

ess inf g—; = l/esssupj—ﬁ > .
This shows the stated assertions. Along the same lines it can be shown that
u and v are comparable if %% exists and esssup %ff and essinf %ff are both
finite.
The following easily seen facts make the Hilbert distance very useful for
filtering. It follows readily from the definitions that

H(cp,v) = H(p,v)
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for any positive constant ¢. Thus, the Hilbert distance is projective. Es-
pecially, when dealing with the Hilbert distance, the unnormalized filtering
process can be used. Moreover, it is easily seen that, if 4 and v are compa-
rable, then so are pu and v and it holds that

H(pp, pv) < H(p,v).

To see this, note that if ¢; < %% < ¢z, then

o [etows [ w(-,w)j—‘;(w)du@) <o [ot,a)an

The term in the middle howeveris [ (-, 2)du(z), thus dividing by [¢(-, z)dv
gives the assertion. Furthermore,

H(y* p,y*v) = H(p,v).

This will also prove to be a useful property for analyzing filtering processes.
The technique of using H in connection with filtering was (to our knowledge)
first used in [3].

Finally, the following is easily proved

18 Lemma Let u, v be mutually absolutely continuous measures so that
d d
essinf o <1< esssup el
dv dv

This e.g. holds if p, v are probability measures. Here esssup g ” may be
infinite. Then

KL(,v) < v(S)H(, v).

PRrOOF

KL(u,v) = / log(j—’"‘)d

Juos1-av - | [log<j—“)]+ v
/[log )+ dv + /[log

v(S) (ess sup[log( du)]Jr + ess sup[log(jl:)]_> .

IN

IN
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Now, if esssup 3% > 1, esssuplog(3%) > 0. Hence, esssuplog(3%) =

esssup[log(?i—‘,j)]Jr. As well, if essinf‘;—‘; <1, essinf]og(‘;—’;) < 0. Hence,
ess inf log(g—’;) = —ess sup[log(g—’,j)]_ which yields

KL(u,v) < v(S) (ess sup log(j—llj) — essinf log(j—Z)) ,

which is the desired result. O

4.3 A general error bound on the approxima-
tive filtering process

Now we are ready to embark for the first estimate on the error of our
approximative filtering process. We apply a technique that was used already
in [14] in very special circumstances. It essentially uses only the triangle
inequality. Let

1. m, be the true filtering process,

2. 7, be a process obtained by approximation with a parametrized family

Q,

3. SE(p) =8V, S(Yn—1,5(...S(Yy, 1) ...) be the n —k+1 fold iterate
of S with arguments pp and Y}, ... Yy, where, if £ > n we set S (p) = p.
We also write Sy, (u) := S(Yp, ). Recall that w4 = S”ﬂ“ (7n),

L

4. S be the family of measures
S:={m}uQU{S(y,¢);q€Q,y eR},
5. D be a metric for probability measures satisfying the triangle inequal-
ity,

6. D(S(y,u),S(y,v)) < D(u,v), for all y,v € S and y € R In other
words, S is a weak contraction w.r.t. D.
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Then a direct application of the triangle inequality yields
D(mp, ) < D(Sn(mn—1),7n)
+ D(Sn(mn-1), Sn(fn-1))-
The second term can be bounded as follows
D(Sn(mn—1); Sn(tn-1)) < D(Sp_1(Fn—2), Sn(Tn-1))
+ D(Sh-1(mn—2), Sp_1 (fn—2))-

Again the second term can be bounded in the same manner. Continuing in
this way we get

D(7Tn77~rn) S D(Sl?(ﬁ-kflxsl?—}—l(ﬁ-k))

WE

(4.4)

S

=1

+ D(ST (7o), ST (70))-

The term in the sum can be written as

D(Sk (Tk—1), Sk1(7x)) = D(Siy1 (SkTr—1), Sy (7))
D(Sgy1 (Skh—1)s Sgy1(Tk)) . .

= .D B
D(SkTk—1,7k) (Skk—1,7)
(D(Sl?ﬂ (1), Siy1(v))

D(u,v)

=77 - D(SkTr—1, k).

IA

sup

) -D(Ske—1,7k)
w,VeES

(4.5)

The second term of Equation (4.4) can be treated in a similar manner. The
term D(Sg7g—1,7x) will be called the approzimation residual in the metric
D. Thus, equations (4.4) and (4.5) establish a general connection between
the total approximation error and the approximation residuals in the sense
of Section 4.1, which reads as

D(mp,7n) < Y 15 - D(Sp@p—1,7k)
2 16)
+761D(7r0,7~r0).

The crucial point is now a sufficient smallness of the random quantity 7}
Whether the error is bounded or not will depend on whether, roughly speak-
ing, there is 7 < 1 so that for n — k large, — log(7f") = log T or not.



50 Chapter 4. Approximations and Error Bounds

The basic property of 7 is that it is submultiplicative, i.e.

k<7t n<l<keN

Since all 7’s are nonnegative we can write this as
log(r}) < log(ry,) +log(r{"), (4.7)

a property known as subadditivity. The central fact about subadditive pro-
cesses is the following theorem

19 Theorem (Kingman’s subadditive ergodic theorem)
Let Y1,Ys,... be a stationary, R-valued process and

g :RFE SR keN
measurable functions. Set
g = g (Va1 - Yorg) n €Ny, keN
Suppose the subadditivity condition
g <g+gF n<i<keN.

holds. We ask for convergence of

1 1
g1y, Ya) = b

n
to a limit random variable g..
1. If E[g1(Y1)]+ < oo, then convergence takes place a.s.

2. If inf %Egn(Yl ...Y,) > —oo, then convergence takes place a.s. and
in Ll.

In both cases, Eg, = inf L Egy'.
PROOF  See [15] O
For convenience let us introduce the abreviations

Dy, .= D(Sk7g—1,7k),
Dy := D(Sk70, 7o),
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that allow us to write the error bound (4.6) as

n
D(mn, 7n) < Ry := ZTI?DIC' (4.8)
k=0
This representation is also convenient since it allows for a separate inves-
tigation of the terms 77} and Dy. The error-damping 77 depends on the
dynamical system only and may be investigated without specifying an ac-
tual approximation process.

Since log 77} is subadditive and nonpositive, we can always apply the first
version of Kingman’s theorem to log 7;?. The limit log7, will be called the
Lyapunov exponent of the nonlinear filter. It may be that Elogr, = —oo.
The Lyapunov exponent depends of course on D and on §. Lyapunov
exponents are intensively studied in the theory of nonlinear deterministic
dynamical systems as well. For their significance in practical nonlinear time
series analysis see [41]. In a finite dimensional system a whole spectrum of
Lyapunov exponents can be considered (see [46]). In the remainder of this
section we want to discuss why log 7. may have a significance on the total
filtering error.

First let us mention what can be expected from equation (4.8). A fil-
tering error converging to zero is surely a bit too much to hope. At every
step k, the approximation residual Dy, is added to the error, and if Dy, does
not converge to zero for some intrinsic reasons of the approximation algo-
rithm, then also Ry will not. We see already from the trivial case where Dy,
is constant that a bounded error will emerge only if 77} is something like
t"~F with a t < 1. Thus let us assume that 77 < Ct"~* with ¢t < 1 and
nonrandom C' > 0. Furthermore, assume that Dy, is stationary, then it is
plausible from Equation (4.8) that we should have asymptotically

Ry = Cit"kak

k=0

n
=C) t"Dpy
k=0

~ Cit’“Dn_k.
k=0

We see that in the last equation it is necessary to define Dy, also for negative
values of k. This is indeed possible for stationary processes. More espe-
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cially, there is always a process on Z which has the same distribution as Dy,
on N. The process Y po o t* D, (if well defined) obviously is stationary,
so we see from the above considerations that Ry should have asymptoti-
cally a stationary distribution. Of course, the case of a random 7} requires
a much more elaborated analysis. Furthermore, the assumption that Dy
is stationary is usually not fulfilled. The approximation process (that Dy
essentially depends on) is initialized with some quantity that is probably
nonrandom. However, it may well be the case that this initialisation dies
away with time and thus, Dy is asymptotically stationary. Then the above
considerations again apply. That the process Ry is asymptotically station-
ary with a finite expectation is the best we can hope to hold under not too
restrictive assumptions.

We will not carry out these problems exhaustively in this thesis. The
sense of the preceeding discussion was merely to motivate the statement: To
obtain a stationary filtering error it is necessary that log 7., the Lyapunov
exponent of the filter, is negative. In the next section we will present a class
of systems where this actually can be proved. We will finish this section
by showing numerically that for a piecewise constant Markov map, the well
known tent map, the Lyapunov exponent of the filter is negative.

20 Numerical example (Tent map) Consider as a dynamical system
the iterations

Xnt1 = f(Xn)
of the tent map
f:10,1] = [0,1], x—1—|2z—1|.

For the observation noise we take random variable {W,} which are inde-
pendent, have a centered normal distribution with unit variance and are
independent of {X,}. The observations are assumed to be

Y,=X,+ocW,.
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w(x) v(z)

0 0.5 1 0 0.5 1

\-4— 9(0.25, x) S 4+ 9(0.25,x)
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/\5(0.25, w)(z) K(oas, v)(z)
0 0.5 1 0 05 1

Figure 4.1: Two probability density functions (first row), after application
of the Markov kernel (second row) and after application of the update step
(third row). The resulting two probability densities look quite similar.

We now took simply two probability density functions p(z) and v(zx)
and applied the filtering algorithm S(0.25,-). In Figure 4.1 the result is
shown. The probability density functions p(z) and v(z) are shown in the
first row. Application of the Markov kernel gives the solid lines in the
second row. The update density g(y,z) is shown by the dotted line, for
y = 0.25. Application of the update step yields two probability densities
which already look quite similar. This hints on the stability of the filter
associated with this system.
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Figure 4.2: The total variation distance TV of two filtering processes asso-
ciated with the tent map, but started at different initial conditions. The
ordinate is logarithmic, so the total variation distance decays exponentially
and the Lyapunov exponent of the filter is thus negative.

Figure 4.2 now gives a numerical estimate of the Lyapunov exponent
for the TV metric. We plotted log TV(STu, S7v) for two (actually quite
different) initial probability density functions p and v. To get this result,
the filtering process has to be calculated exactly for the required number
of steps. This was accomplished by using an extremly fine mesh. Although
the numerical accuracy of the result is not sufficient for a quantitative state-
ment the experiment shows that stability of the filter in this case is likely
to be present. We remark that the tent map is ergodic with respect to the
Lebesgue measure on the unit interval. The observations were taken from a
run of the tent map initialized with a randomly chosen init value, and can
thus be seen as ergodic. Therefore the generalisation from a sample mean
to an ensemble mean is possible. The definition of the Lyapunov exponent
however requires a supremum over S which we have carried out. The ex-
ample of the tent map also shows that the Lyapunov exponent depends on
the choice of S. If we take as initial probability distributions two measures
that distribute equal mass on the discrete points of two disjoint periodic
orbits of the tentmap, the filter will consistently reproduce the fact that
these orbits are invariant sets and the filtering processes will not become
equal asymptotically. The filter is thus insensitive to misspecified initial
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distributions of a sufficient regularity only. We conjecture that the initial
distributions need to be of bounded variation. We have however not lined
out the analysis.

In the next sections we will present an important case where the Lya-
punov exponent, of the filter can actually be proved to be negative.

4.4 On the stability of mixing processes

A large class of Markov processes enjoy a certain mixing property which

leads to strong results concerning the ergodic properties of these processes.

For a thorough discussion of the ergodic properties of Markov kernels see

[21], where especially Theorem 45 is proved. For our analysis we employ

the Hilbert metric. The results of this section are essentially due to [3].
The properties of H immediately yield for the filtering process

H(S(y, 1), S(y,v)) = H(pu, ¢v),

since the normalisation and the multiplication with g(---) cancels out (see
discussion page 47). Furthermore, the Hilbert distance has outstanding
properties in connection with positive operators. We have seen that if p,v
are comparable, then so are ¢pu, v and

H(op, o) < H(p,v).

Thus, S is a weak contraction for H. Furthermore,

H A
sup Ripn pv) < tanh(—), (4.9)
0<H(p,v)<oco H(/L,I/) 4
where
A:= sup H(pu,pv) (4.10)
u,vEPE
is the projective diameter of ¢. This fact is due to G. Birkhoff (see [3, 6, 26]).

It can be shown that if ¢ posesses a density ¢(z, z) with respect to a measure
A, then

p(z,2)p(a',2)
AT IR DI e e ) .
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A Markov kernel with the property that there is a finite measure n and
positive constants ¢, c; with the property

an<e(,z)<cm  VrEE

will be called mizing Markov kernel. For such a kernel we have A <
2log(c1/c2), whence
H{pp, pv) < tH(p,v).

where t = tanh(%) <1.

Our analysis shows that such Markov kernels have a negative Lyapunov
exponent with respect to the Hilbert metric. According to the properties
of the Hilbert metric, this behaviour immediately carries over to the filter
and yields the following statement

21 Theorem For mixing Markov kernels we have

n

k
H(mp, Tn) E " H(Skk—1, k).
k=0

For this to be a useful bound we have to assume that Sy7,_1 and 7 are
comparable. This is a drawback of the above result that can however be
overcomed using the total variation distance.

A connection between the Hilbert metric and the total variation distance
is given in the following lemma

22 Lemma In general

TV(u,v) < H(u,v),

2
log 3
where the right hand side is maybe infinite. Furthermore, if ¢ is a mixing
Markov process, then

Hign, pv) < 2log(1 + ZTV(u,v)).
1

PrOOF  The first inequality is due to Atar and Zeitouni [3]. The second
inequality is due to Kushner and Budhiraja [14]. O

These results together yield
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23 Theorem The process 17} for the TV distance and mixing Markov ker-
nels satisfies

TR < ctvk
with )
¢ = tanh (‘L)) <y
and e
=4— .
tcr log 3

PRrROOF  Let p,v be two probability measures. Then S}}(u) and S} (v) are
always comparable as long as n < k. Thus for any 1 <k <n

TV(SE (1), Sk (v))
3 H(SE (), S¢ (v)

——t""FH(Sk (1), Sk (v))

_1
- 10g3

——t"""H
< 10 3 (¢, pv)

< n—k 21y :
< fog 3t log (1+ o (u,v)

Where we first applied the inequality of Atar and Zeitouni, then the cited
contraction properties of the Hilbert metric and eventually the inequality
of Kushner and Budhiraja. Here

Since log(1 + £2z) < 2 we get finally

t" R TV (u, v).

C2
n n <
TV(SE (), SE0) <42

Thus

(TUSH-SE0D) ¢4z o

n
<
Tk-1 = SUP TV, v) cilog3

wn,veEP

Y

which yields
n 4 C2 n—k
— tcylog3

Finally we will give two important examples of mixing processes.
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24 Example Consider again the model of Example 3. Then the transition
kernel has a finite projective diameter if

d(z — a)

—< < .
iz =) <D Va,be {z e R |z| < C}

log
This condition was overseen in [11]. However, we already mentioned that
Theorem 45 holds (see [21], chapter V,§5 Case (b)) without this condition.
To see that this condition amounts to a finite A, employ equation (4.11).
This yields

B Az — ()’ — £(2))
A =log [i‘,?? eSS e — f(2))d(a f(z’))]

=lo su ess su d(z — z)d(«' — 2)
& |Z|SC,|E’|§C z,x’ P d(a: — Z’)d(x’ _ z’)

<2D.

The second example is basically a discretely sampled continuous system.

25 Example We have seen in Chapter 2 that discretely sampled stochastic
differential equations amount to interesting nonlinear filtering problems.
Let § be the sampling time. The question is whether ®(A, z,4) is a mixing
Markov kernel. A sufficient condition is that E, the state space of the
stochastic differential equation is compact and the generator of ¢ is strictly
elliptic, i.e. the diffusion coefficient is strictly positive. Then (see [3] and
references therein) we have

¢ < (,O(ZL',Z,(S) <c
for positive ¢; and c2 depending on §, which especially imply the mixing
property.
4.5 Does stability depend only on ¢?

It was shown in the last section that Markov kernels satisfying a certain
mixing condition lead to filters having a negative Lyapunov exponent. This
negative Lyapunov exponent tells us that the filter is insensitive with respect
to its initial condition. The approach used solely depends on the Markov
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kernel. Why mixing Markov kernels imply a negative Lyapunov exponent
of the filter can be also understood as follows. The mixing condition is well
known to imply an exponential decay of correlations in the process X,, (see
[21]). This essentially means that the future evolution of the process is only
weakly dependent on its values in the remote past, or determinism is weak
in this process. It is therefore quite logical that also the filter does not need
to take into account initial values, which means that the distribution of
initial values should not determine the long time behaviour of the filter. In
this analysis it does not play any role how the observations are taken. As a
very extreme example consider the following (completely useless) system:

Xn+1 = Vn;
Y, = h(X,) + oW,,

where V,, are iid normal random variables. In this filter 7,1 does not
depend on 7, thus it has Lyapunov exponent —oo. However, to obtain good
estimates, the optimal filter usually exploits the underlying determinism in
the dynamics. But since there is no determinism in this system, filtering is
quite frustrating since even the optimal filter (which is easy to built in this
case) yields poor results. So we may be led to the conclusion that the filter
is the more stable the weaker the determinism in the dynamics and thus
the larger the filtering error.
This however is not generally true. Consider again the Hénon system

1
X

2
=1-a[xP] +0x,
2
XT(HZI = Xr(bl)’

with observations
Yo =XV 4+ oW,.

Now if the noise amplitude o was zero, then we would have the equalities

xM =y,
1 A
@ _ 1 _ 2
XP =+ (Yn+1 1+ a[Y,] )

so the filtering problem is actually solved in two steps, no matter what
the initial distribution of (X(gl),X(gz)) was. Thus again here the filter is
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insensitive with respect to its initial condition. But now this is due to good
observations. We see that stability of the filter may be due to either a weak
determinism in the Markov process or good observations.

It should be noted that low noise does not necesarily imply good ob-
servations. What we mean by good observations actually is not so easy
to define. In the above example, the underlying system is deterministic,
so if the observation noise goes to zero, filtering theory actually becomes
obsolete. For general filtering problems it is necessary to investigate how
the observations enter the process 7'. For one-dimensional systems a nice
result was obtained in [3]. They considered a mixing Markov process on the
unit interval with transition density ¢(z,2) and observations of the form

Y,=X,+ocW,.

We know alrady that T,f <t < 1. To study the influence of the observations
on 7}, the idea in [3] is to consider

H Sk+1 Sk+lnu
Tllﬂc—i—l _ sup (Sk 1 Si )

O<H(u,r)<oo H(,LL, V)

Since Birkhofl’s estimate (4.9) is true for any positive operator we have that
A
it < tanh(Tk),

with

Ay, =log [supesssu (2,2, ) (', 2, i)
k=08 z,zI;) w’w,p(I)(,x,z’,Yk)(I)(x’,z’,Yk) ’

where

3.2 %) = [ ol 2o (e e

g

This can also be written as

where

) [0
Vi := |SUDESSSUD @ V)8!, o/, Ya)
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Basically what is proved now in [3] is that if o goes to zero, then

€_Yn

1
—g(
ag ag

where ¢ is the Dirac function. Thus

) - 6(§ - Yn)a

(I)(.Z',Z,Yk) - (p(.Z',Yn)QO(Yn7Z)

Replacing this in the expression for ¥, we see that this goes to one, thus
T,f“ goes to zero. In [3] moreover the rate of convergence is computed.

This ideas can be generalized to systems of a form that strongly resemble
systems in observer canonical form (see [36]). We will present the central
idea, omitting technical details. Suppose a Markov process on the d—cube
[0,1]¢ has a transition kernel that can be represented as a product of d
terms as follows:

d
p(x,2) = o1 (@1; 20) [T r (@20 L2070 (D), (4.12)
k=2

where z(*¥) means the k’th component of z. Moreover, let the observations

again be of the form
Y, = X9 4 oW,.

Now the idea is to consider T,f“Ld. We get exactly the same formulae but
now with

Yy (z,2; Yk, Yey1, - - Yiya—1)
(d)
1 T —Yk
= [+ [ @) o)

g

(d)
1 x — Yk
X 90(531,332);9(%“)

X ...
X p(xg,2)dzy - - - dzg.
Now, again we use

1 z—y
—g(
g

) 5 5z - ).

Due to the structure of ¢, it turns out that ¥y factorizes in two terms
depending only on x and z respectively. Thus, T,erd goes to zero again.
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The connection with deterministic control theory is as follows. A system
of the form
Tnt+1 = Amn + f(yn);
Yn = Cmn:

with 2, € R?, y,, € R is said to be in observer canonical form if the
observability matriz

0 :=[C,CA,CA>...CA*]

is invertible. A system in this form allows for a “deterministic filter”, a so
called observer, of the form

Eny1 = ALy + f(yn) + K(n — yn),
.'l)n = Ci’n
It is readily seen that for the error signal e, = x,, — &, the dynamics
ent1 = (A— KC)e,

holds. The nonsingularity of the observability matrix O now ensures that
there is a vector K so that the above equations are stable and thus ez — 0.

Any system in observer canonical form can be transformed to the rep-
resentation

o)y = @),
5”5?11 =z + fo(z{?),

(4.13)

29, = 2@ 4 (o),

n
Yn = x%d)'

If we add independent dynamical noise on the right hand side of this equa-
tion, we get a Markov process with transition operator of the form (4.12).
Thus we see that there is a connection between deterministic observer the-
ory and stability of the filter.

In control theory now a great deal of work is done to identify conditions
that guarantee the existence of a state space transformation which brings
the system into canonical observer form. Identifying conditions guarantee-
ing that a Markov kernel can be transformed to the form (4.12) with a
transformation of the state space remains an interesting open problem.



Chapter 5

Parametric
Approximations

5.1 Basic definitions

Consider a parametrized set of probability distributions
Q :Bx0O — RZO’

where O is a subset of a finite dimensional vector space. The parametrisa-
tion is called faithful if 6, # 65 necessarily yields Q(-,61) # Q(-,62). Let us
denote the set of measures {Q(-,6);60 € ©} by O.

The basic idea of parametric approximation is to chose a parametrized
family and replace 7, by a finite dimensional filter system. As already dis-
cussed in Section 3.1, in general this can be carried out only approximately.
We will consider two different classes of Q’s, namely exponential and lin-
ear families. They will be introduced after the general schemes have been
explained.

26 Definition (Scheme I) The idea in this scheme is to project m, on

a parametrized family by means of a minimisation technique. Recall the
notations of Section 4.3, namely, set

S:={m}tUQU{S(y,q);q€ QyeR}

63
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and let D be a metric on S that however is not assumed to satisfy the
triangle inequality. Suppose that for any p € S the minimisation problem

has a unique solution denoted by m(u). The value mingeg D(u, Q(+,0)) will
be called the projection residual. Then we set recursively

7io == Q(-,m(mo)), (5.1)
Tnp1 = Q(m(S Yy, n)))- (5.2)

The finite dimensional filter has the dynamical variable § and reads as

0n+1 = m(S(Yn-H; Q(aen)))

The second scheme differs from the first only due to the fact that the ap-
proximation is applied between the prediction and update step.

27 Definition (Scheme II) Now let, different from Scheme I,

S:={m} U QU {p(g(;y) *xq);q € Qy € R}

Thus, S contains all of () plus all measures that emerge from @ by first
updating and then applying the Markov kernel. D is a metric on S that
again is not assumed to satisfy the triangle inequality. Suppose again that
for any p € S the minimisation problem

min D(u,Q(+,0))

has a unique solution denoted by m(u), where again mingco D(ps, Q(+,0)) is
referred to as the projection residual. Then we set recursively

’I~TO = Q(',m(ﬂo)), (53)
dftng1 := c-g(2, Yny1)dQ(, m(pfn)). (5.4)

Thus the approximation takes place between prediction and update step.
To define finite dimensional filter system we can consider the affine family
Q defined by

dQ(,0,y) := c-g(z,y)dQ(-, 0),

! Recall that by definition g * ¢ A) Ja 9da/q(g) (see Section 2.1).




5.1. Basic definitions 65

with normalisation c. The finite dimensional filter now has dynamical vari-
ables (0,,,y,) and reads as

9n+1 = m(‘PQ(; enayn))a
Ynt1 = Ynq1.

A few remarks seem to be in order.

1. The reason why we dropped the triangle inequality is that we will
use, among others, the Kullback-Leibler distance for D. However, due
to theorem 15 we will establish a relationship to TV and thus make
applicable the analysis of Section 4.3.

2. The difference between the two schemes has important practical and
theoretical consequences. The first scheme is appealing from a the-
oretical point of view since the quantity that is minimized is in fact
what we have called the approximation residual D(Sgi1(7x),7) in
Section 4.3. However, the second scheme has the nice property of
performing the update step ezactly which may be a conceptual ad-
vantage.

3. Filtering problems arising from discretely sampled continuous time
problems allow for another scheme called projection filtering. This
scheme was proposed by Brigo, Hanzon and LeGland in [9, 8. It
however applies to exponential families only and will be discussed in
the corresponding Subsection 5.2.2.

In this thesis, for Q only linear and exponential families will be considered.
It is furthermore assumed from now on that the system is regular. As
already mentioned this means that S(y, 1) has a density with respect to a
dominating o-finite measure A if g has. For both families we will discuss
some choices of the metric D, possible restrictions on @ and how to solve
the minimisation problem to find §. The Table 5.1 gives an overview over
the discussed setups. In the remainder of this section we will explain this
table columnwise, referring to the case of, for example, exponential families
and the KL-distance as Case 1A etc.

To each case, a small subsection is devoted. The subsection considers
restrictions on g and Q ensuring that the minimisation problem

min (s, Q(,6))
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can be solved. The considerations will imply then restrictions on S. Since
S is determined by the family Q and the dynamical system, we discuss
which choices of systems and Q yield suitable S. An exhaustive treatment
of all possible cases however cannot be given here. This would amount to a
treatise on convex analysis. We will merely demonstrate the usefulness of
the concepts by some examples.

Furthermore, for each case a connection to the results of Section 4.3 is
established. The analysis carried out there requires a metric that fulfills
the triangle inequality. Of the metrics discussed in this thesis however KL
and HE do not share this feature, but play an essential role in parametric
approximation methods. So the problem is basically to establish a con-
nection between the projection residuals computed in this metrics to the
approximation residuals with respect to one of the metrics considered that
fulfills the triangle inequality.

A: Exp. Families

B: Linear Families

Regular systems, es-
pecially of exponen-
tial form. Establish
bound on approxima-
tion residual in TV
norm.

Regular systems. Es-
tablish bound on ap-
proximation residual
in TV norm.

Discretely observed
continuous time
systems.  Establish
bound on approxi-
mation residual in

TV norm.

Strictly regular sys-
tems, especially on
compact sets. An
explicite solution
of the minimisation
problem is not given.

Strictly regular sys-
tems, especially on
compact sets.

Table 5.1: Possible metrics, families and the systems they are applied to
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5.2 Exponential Families

Exponential families are very important in statistical estimation theory,
since many important random quantities obey an exponential distribution
law. A thorough discussion of this subject is given in [4]. Their applica-
tion to filtering of discrete time series was discussed in [12]. We already
mentioned the succesful application to the continuous time case in [9, &].
Furthermore, existence results on finite dimensional filters established in
Chapter 4 yield that exponential families are in a certain sense a natural
choice.

Let A be a o-finite measure on E. Recall from Section 3.2 that a family
Q(-, ) of probability measures on E is of exponential form with respect to

Aif
990 (4) = 42, 0) o= exp(te(a) — v(6)),

where ¢ : E — R? is a measurable function and ©® C R?. The function 1 is
defined by the relation

- / dQ(-,0). (5.5)

It turns out that ¢ as well as exp(1)) are convex functions on the convex set
0 := {# € R¢;4(8) < oo}

By the exponential form of the relative density, all Q(-,0) are mutually
absolutely continuous.

If we require the components c;(z) of ¢(x) to be affinely independent,
i.e. the function 6y + Y 6;¢;(x) vanishes identically if and only if all § are
equal to zero, then the parametrisation turns out to be faithful. Taking the
derivative with respect to 6; on both sides of (5.5) one obtains

0 = / ci(2) q(z,0) dA(z) = g—;pi(e). (5.6)

The n; are called the c;—moments or expectation parameters, in contrast to
the 6;, which are called canonical parameters. The ¢;’s are called canonical
statistics. One easily obtains the following identity:

. 0Oni _ [Ologgdlogq 0%
9= 59.= | ~a6, o6, ‘Y 26,06,
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Since the ¢;’s are affinely independent, the functions 0log ¢/0; are linear in-
dependent and therefore g;; is a nonsingular positive definite matrix, called
the Fisher metric. Hence, the function 1 is strictly convex. Furthermore, it
is easy to see that the expectation parameters 7 and the canonical param-
eters # are connected by a Legendre transform of the function v which is
defined as

Y*(n) = sup [6n — 1 (6)] -

In fact, if (5.6) holds, then € is a critical point for y—1(6). But this function
(for n fixed) is strictly concave. A strictly concave function, however, can
have at most one critical point. The Legendre transform of a strictly convex
function thus uniquely connects 8 and 7, hence the expectation parameters
1; are globally diffeomorphic functions of the 8;. Therefore the expectation
parameters form another coordinate system for Q, which is of great use in
the following. It can be shown that

_ W

_ oy
= 36

if and only if 0= .
an

Thus we see that a given i can be transformed to 8—coordinates if it is in
the domain of %@. This domain is not convex and usually smaller than
the effective domain of ¥*, the region where it is finite. It can be shown
that it is larger than the relative interior of the effective domain of ¥*,
which is convex. Similary, the domain of g—g’ is smaller than O, the effective
domain of 1. Nevertheless, it is larger than the relative interior of ©. Thus,
pathological points appear only at the boundary. For this assertions see the
book of Rockafellar [57].

Unfortunately, for many interesting exponential families there is neither
a closed form expression for 1 nor for the diffeomorphism 6(n). Therefore
numerical schemes have to be employed to compute them. We will briefly
discuss some possible approaches in Appendix A.3.

We have seen that in the approximation scheme II 7, is not a member
of the parametrized family. One may ask if for some special cases one can
achieve that even in scheme II, 7, stays in the parametrized family. This
is possible if g(y,z) as a function of z is of exponential type. One may
then chose an exponential family containing also g, and since the multipli-
cation of two exponential densities again yields an exponential density the
update step in scheme IT will keep 7,41 a member of the exponential family.
Following the conventions in [8], such families will be called convenient.
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5.2.1 The Kullback-Leibler distance (Case 1A)

We consider now Table 5.1, row 1, column 1. Let Q(-,6) belong to an
exponential family and g be an arbitrary measure having a density with
respect to A. Since Q(-,8) < A, p has a density with respect to @ as well,
thus

KL(1.@) = [ §55 105 35 40

/d“l d“d,\ 0/ 2)du — ¥(9)).

Minimizing this expression w.r.t. 8 is again related to a Legendre transform
of ¥ and therefore a convex optimisation problem. Setting equal to zero
the derivative of this expression with respect to § we get the condition

mmi/me (5.7)

We are thus faced with two problems:
1. KL(x, 8) has to be finite for at least one 6.

2. The quantity [ ¢(z)dp has to be in the domain of 8(n), which, as we
have seen, coincides with the domain of %.

We will not carry out a detailed analysis on choosing the family and the
system so that 1 and 2 hold for all elements of S but from now on merely
assume that this is the case. At the end of this section we will give an
important example where the method can be seen to work and furthermore
we will give a hint how more general systems can be found to which the
method is applicable.

To solve the minimisation problem, apply the diffeomorphism 6 to Equa-
tion 5.7 and get the expression for m (see schemes I and II)

mwzm/mmm

We now discuss scheme 1. The finite dimensional filter system in case of
scheme I now reads as

Ont1 =10 (/ c(x)-c-g(Yn+1,$)/cp(dx,z)q(z,é?n)d)\(z)) .
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At first sight this looks messy, but it is possible for some cases to carry out
the integral over d\(x) explicitely. Define the functions

Ny, 2) = / oy, 2)p(dz, 2),
ey, 2) = / o(2)-g(y, 2)p(dz, 7).

These functions can be computed offline, which means that their calculation
does not require the explicit value of Y,,. This is important in applications.
If o(z, z) and g(y,x) are normal densities in z, then this calculation can be
carried out even explicitely. The finite dimensional filter then reads as

J 7e(Yng1, 2)a(z, 0,)dA(2)
0n+1 (f 71 n+1; (Z,en)d)\(z)) : (58)

The finite dimensional filter system in case of scheme II reads as

buir =6 ( [ @) [ oz eatm, atz0005) )

Ynt+1 = Ypi1.

Here we can define the functions
1(2) = [ ela)p(da, 2

in order to write the finite dimensional filter as

f’yc ym )q(zagn)d/\(z)
frt1 = ( J 9(yn; 2)a(z,6,)dN () )

Ynt+1 = Yn+1-

(5.9)

To show that despite the mentioned open problems the method is useful
consider the following

28 Example (Gaussian exponential family) Let an observed dynam-
ical system in Ry be given by the relations

Xnt1 = f(Xn) + pVa,
Y, =X + oW,
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with standard normal random variables V;, € R¢, W,, € R. Here X,(Ll) means
the first component of X,,. Assume px,, the probability density of X¢ has
finite first and second moments. For @ we consider d-dimensional Gaussian
families. Thus XA is Lebesgue measure and ¢(z) = (z,z;z;),i,j = 1...d.
The domain of () consists of all pairs (g, I'), where p € R? and T';; — pi
is positive definite, i.e. a covariance matrix. Furthermore, 6(n) can be given
in closed form. It turns out that

9(y,x) = exp(= — =)

and

1 1 TN -1
p(x,2) = ———exp |—=(z — f(2))(pp x— f(z
(z,2) V2] det 5@ = f(2)(pp") " (z = f(2))
Now a straightforward but lengthy calculation shows that for scheme I g
and . are well defined and moreover the argument of 8 in the right hand
side of (5.8) actually is in the domain of 6.
For scheme II this is even more obvious. It turns out that

e(2) = (£ (2), pp" + f(2)f(2)T).

Now integrating this over a normal density (as required in (5.9)) gives always
an n of the required kind. In fact, the finite dimensional filter can be
represented in 7-coordinates, which amounts to equations for I and u. For
scheme II, for example, they read as

1
it = [ £tz Bz + 5 TnssenWass = [ £, T)d),
I+ = ppl + / £ F(2) a2, iy T}z — 1T i

_ -1 1
Fn—il-l = (F:) + ;6{61.
(5.10)

if the integrals over f and ff7 can be carried out either numerically or even
explicitely (as it is the case for polynomial f) this is a very fast algorithm.
If the underlying system has N dimensions, the filter has N + w
dimensions and is implemented straightforwardly. This filter does not need
more CPU-time or storage than the Extended Kalman Filter but shows

superior results, as we have seen already in the introduction.
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29 Example (Systems of exponential form) The systems of the last
example where of exponential form, this is

p(x,2) = exp(T(2)e(z) —P(T(2)))

for certain functions ¢(z) and T'(z). Assuming that

exp(fc(z) —(6))dA

forms an exponential family with a nontrivial parameter set ©, we can
consider the Case 1A for this setup. We restrict our attention to scheme II.
For v, we get

Ve = /C(ﬂf) exp(T (z)e(z) — P(T'(2)))dA = n(T(2))-

Now, assuming that T'(z) € O for all z € E we compute the argument of ¢
in Equation (5.9) and obtain

S n(T(2))g(yn, 2)q(2,6n)dA
[ 9(n, 2)a(z,0,)dN

Note that this is a convex combinaton over several 5. In order to define
the finite dimensional filter Equation (5.9) we have to require that the
expression (5.11) is in the domain of 6(n) which is equal to the domain of

(5.11)

%/’n—*. Now n(T'(z)) is always in this domain for any z, by construction. As
we mentioned already, this domain is not convex. However, we do not loose
much if we require 5(T'(z)) to be in the relative interior of the domain of
1* for all z, which amounts to the requirement that T'(z) is in the relative
interior of © for all z. In our case this is just the topological interior of ©.
With this requirement, the algorithm of scheme II is well defined.

30 Numerical example (Hénon system) The mentioned Hénon system
can be analyzed by Gaussian density functions. The noise reduction results
where already shown in Figure 1.1b and also the dash—dotted SNR im-
provement curve shown in Figure 1.2 was computed in this way. The finite
dimensional filter allows for an explicite representation since the Hénon
system is polynomial, thus the right hand side of equations (5.10) can be
calculated explicitely.
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Error analysis of Case 1A

The purpose of this section is to make the error bound of Section 4.3 ap-
plicable to Case 1A. The projection residuals are in the KL-metric, which
does not satisfy the triangle inequality. Thus, the analysis of Section 4.3
is not applicable directly. Therefore, a connection to the TV-metric will be
established now. To the approximation residual TV(Sg7g_1,7) we apply
the Bretagnole-Huber inequality (Lemma 16) to get

TV(Skﬂ'k_l,ﬂ'k) S 2\/1 — exXp (—KL(Skﬁ'k_l, ﬁk))

But in scheme I KL(Sk7—1,7x) is exactly the quantity we minimize.
The minimum value is

KL(SkQ(7 0/6*1)7 )‘) - ¢* (ek)7

where 1*(6)) is the Legendre transform of ). This Legendre transform can
be computed in course of the calculations necessary for carrying out the
minimisation of KL. However, the first term of the above equation requires
application of Sk to Q(-,0k—1), i-e. one filtering step has to be carried out.

Scheme II does not explicitely minimize the approximation residual.
Hence there is no advantage of computing the approximation residual in
the KL-metric rather than the TV-metric.

The interesting question whether the approximation residual is station-
ary or ergodic may now in principal be investigated. It is quite possible
that conditions on the system can be identified for which the compound
process (X,,,0,) satisfies the conditions of Theorem 45. Then ergodicity is
established. However, we have not carried out the analysis in more detail.

5.2.2 The Hellinger distance (Case 2A)

We consider now Table 5.1, row 2, column 1. The Hellinger distance was
used in the investigation of the projection filter by Brigo, Hanzon and LeG-
land in [9, 8]. The projection filter is a device applicable to continuous
time systems. We will give only a very brief explanation of the concept.
We suppose the setup of Example 5. Furthermore, we assume A to be the
Lebesgue measure. The exponential family is as well fixed and assumed to
be convenient. This is we assume g(y,z) to be of the form

log g(y, ) = 71 (y)-c(x) +72(y)-
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A finite dimensional filter for this setup can be established straightfor-
wardly if the solution ¢(z,z,t) of the Fokker—Planck equation is available
at t = 6, the sampling time. Usually however this is not the case. The
technique proposed in [9, 8] to overcome this problem is to project the
Fokker—Planck equation onto the tangent space of the exponential familiy.
An exponential family in fact admits the structure of a differential Rieman-
nian manifold. Eventually this amounts to a differential equation for the
parameter 6. A “shortcut” to obtain these equations goes as follows. Sup-
pose p;(x) is a solution of the Fokker—Planck equation with initial condition
q(z,0) of exponential form. Write this as

P (@) = Lpi(a)

with the differential operator £ given by the right hand side of the Fokker—
Planck equation. Usually p¢(x) will not be of exponential form for ¢ > 0.
Nevertheless we may calculate

= /c(m)pt(m)dw.

Differentiating with respect to ¢ gives

i = [ @im@)s = [ £ @pis,

where £* is the adjoint of £. Now we assume pi(z) to be of exponential
form with time varying parameter. Thus

i = [ c@)tmiz)de = [ etz 00)d.

The right hand side is now a function of 8;. On the left hand side we apply

the identity
: de
0 —
t = an —Ne =9 nta

where g is the Fisher metric. Thus we get the following differential equation
for 6; (written out in coordinates)

Zg, 197 = /c*cj q(z,0;)dz (5.12)

A finite dimensional filter is now established by the following scheme



5.2. Exponential Families 75

1. Set 6y = m(mg) where m is defined using the metrics KL or H.

2. Solve 5.12 on the interval ¢ = [0, §] with initial condition 6. Call the
result ;. At ¢t = § the first observation Y; is available.

3. Set
6, := 06_ + 7 (Yl)

4. Repeat steps 2 and 3 using now 6; as initial condition etc.

31 Numerical example (Lorenz system) As in the discrete time case
(Case 1A) the normal densities are a special case of exponential densities
and lead to useful filters. Especially for polynomial systems, the finite
dimensional filter allows for an explicit representation. We developed a
software tool for the automatic generation of such finite dimensional fil-
ters. This package provides a matlab m-file that generates a C-code for the
Equation (5.12) from symbolic information about the system under con-
sideration. This C-code can then be compiled and linked to matlab to be
solved with an ode solver.
We applied this tool to the Lorenz system

X, =s(Xy — Xy),
X2 = T’Xl - X2 - X1X3,
X5 = X1 X, — bXs,

with s = 10, »r = 28 and b = 8/3, the standard parameters. Observations
where taken according to

Y, = Xl(tn) + UWn;

where we used in fact not equidistant ¢. This makes no difference except for
Equation (5.12), which simply has to be integrated from ¢, to t,+1. The
results are plotted in Figure 5.1. This result was obtained for SNR = 20,
which amounts to a ¢ of about 0.8. In fact, we furthermore assumed the
parameters s, r and b to be unknown as well. How the estimation of the
parameter was accomplished is discussed in Section 6.2.
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Clean Signal Error Parameter Estimate

20 20 15

a) d) g)

10 Lo 5
0 0 WMW

5

-20 -20 0
0 20 40 0 20 40 0 20 40

20 20 30
b) e) h) /“/___o

Ow 0 20/
0

20 20 10
20 40 0 20 40 0 20 40
60 60 4
f .
<) 40 )0 i) h\w o
A >
20 20 2
0 0 tﬁ!!h“mﬂ“hh‘mmwuﬁﬁw*
20 -20 0
0 20 40 0 20 40 0 20 40
time ¢ time ¢ time ¢

Figure 5.1: Results of an approximative filter using exponential families. The
first column shows the three components of the Lorenz system. The second
column shows the error between the filter output and the true signal. Small
fluctuations remain, but the bias is negligible. The third column shows an
estimate of the parameters s, and b. The correct values are marked with
circles on a line. We see that a small bias remains.

Error analysis of Case 2A

The error analysis for the approximative solution of the Fokker—Planck
equation given by Equation (5.12) was carried out in [48] where the fol-
lowing result is obtained
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32 Lemma Let t € [0,4] and p; be a solution of the Fokker—Planck equa-
tion. Let g = q(x,6;) be of exponential form, where ; is a solution of the
corresponding Equation (5.12). Then

HE(g:, pe) < IRe(Varll,

where ||-|| denotes the Lo—norm with respect to x and R is the projection
residual operator. This operator is a differential operator and turns out to

be
1 1Lg 1 )
L) = 5~ Lcta) — o

In the filtering algorithm we have the same initial conditions, i.e. g(-,600) =
Do, which means HE(gp, po) = 0. The lemma then yields

§
HE(gs,ps) 5/0 IR (/a2 dt.

We have then applying Lemma 17

2
4]
TV(gs,ps) < 2 (/ ||R<¢q7>||dt+1) 1

To obtain eventually an estimate for the approximation residual TV we
apply the result of Lemma 13 and obtain

33 Theorem For the projection filter the following approximation residual
is obtained

2
ax g(Yz, J
TV(Skitn_1,7) m"g( = (/ ||R<fqt)||dt+1> ~1],
0

fqa

where qo(z) := 7p—1(x).

This error bound looks messy. However, a direct calculation of the left
hand side would amount to calculate Si(7) which requires to solve the
Fokker—Planck equation in the interval [0, d] ezactly.



78 Chapter 5. Parametric Approximations

5.2.3 The Hilbert metric (Case 3A)

We will not say much about this case, and a few numerical problems will be
left open. Recall from the definition of H that H(u,v) may be set to oo if
v and v are not comparable. However, useful bounds will emerge of course
only if this quantity is finite. If y is comparable to Q(-, 8.) then by defining
the “recentered” exponential family

Q'(-,0) = Q(-,0 — b.)

we can always assume 6, = 0. The reader may convince himself that Q'
is in fact an exponential family with parameter space ®' = © — ¢, and
A" = exp(fec(z) — (0c))A

For the filtering problem we will have a nontrivial S if the system is
supposed to be strictly regular, defined as follows

34 Definition A system is strictly regular with respect to a o-finite mea-
sure A if, for any p comparable to A, then, also S(y,u) is comparable to A
for any y € R

Note that this definition implies that A is finite. On a compact state space a
system is regular if S(y, 1) has a positive density with respect to A whenever
p has. This is a practically quite relevant case.

The following lemma gives conditions under which the problem of finding
the minimum of H(u,Q(-,6)) is a convex optimisation problem.

35 Lemma Suppose p is a finite measure that is comparable to A\. Then

is convex.

PrOOF  Obviously, if p is comparable to A, then u(z) := g—‘; exists and

H(p, Q(-,6)) = max(log(u(z)) — 8¢(x)) — min(log(u(z)) — 0c(w)).

This expression may be infinite but is definitely finite for § = 0. Thus
H(u, Q(-,0)) is a function of § having values in RU {oco}. We will show that
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it is convex. For any ¢ € [0,1] it holds that

max (log p(z) — (861 + (1 — 1)82)c(2))

= max ((¢ + (1 - 1)) log pu(z) — (861 + (1 = 1)62)c(2))

= max (t(log u(z) — b1¢(2)) + (1 —t)(log u(z) — O2¢(x)))

< tmax (log u(z) = bic(2)) + (1 - t) max (log p(z) — O2¢(z)) .

The same appears to be true for min with the >-sign. Thus

Error analysis of Case 3A

There is not much to say since the Hilbert metric satisfies the triangle
inequality and thus the error bound (4.6) is directly applicable. Furthermore
it should be remarked that the projection residual is in both cases (scheme I
and scheme IT) the same as the approximation residual in (4.6). For scheme I
this is clear, but for scheme II this is true as well since the update step
applied after the minimisation does not change the value of H.

5.3 Linear families

The use of these families is motivated by the quite natural idea of approxi-
mating the pdf 7, by a piecewise constant function. For systems with finite
state space, the exact filter has this form. The piecewise constant function
can also be considered as a convex combination of fixed characteristic func-
tions. To generalize this idea, let A be a o-finite measure, p;(z),i =1...k be
a set of normalized positive functions, i.e. [p;(z)dA =1foralli=1...k.
Then the resulting linear family Q consists of all convex combinations of

the form
k

q(z,0)d\ =Y fipi(w)d),

i=1
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where the 0’s form the convex simplex

k
O={0eR;0<6;,<1,) 6; =1}

=1

As a special class of linear models we consider only the case of nonover-
lapping support of the p;’s. This is, for example the case when a pdf is
represented by a piecewise constant function (histogram) on a grid.

5.3.1 The Kullback-Leibler distance (Case 1B)

For any probability measure p having density p(z) w.r.t. A the Kullback—
Leibler distance KL(Q(-,8), u) reads as

KL(Q(-,0), 1) = Zei/pi(x) logZHip m)d/\.

i
w(z) e

Note that KL(Q, 1) is used instead of KL(u, Q). The reason is that KL(Q, i)
works as well if () has only compact support, i.e. is zero outside a compact
set. Thus using this approach is useful if truncating the probability densities
is desired. Furthermore, the mentioned piecewise constant functions have
compact support. Problems will appear if p has noncompact support, but
g—g has to be considered. This quantity is then undefined.

Using the method of Lagrange multipliers it is easy to see that to mini-
mize the Kullback—Leibler distance we have to set

ai =c eXp(—KL(Q(, ei)a /J’))a

where ¢ is a normalisation to fulfill the requirement ), 6; = 1. This ex-
pression is always defined. It yields the quite reasonable criterion that p;(x)
should be weighted the less, the larger its KL-distance to u. The finite di-
mensional filters for scheme I and scheme II can now be written down in a
straightforward manner.

Error analysis of Case 1B

The error analysis of Case 1A in principle carries over to this case. The
main point here was the Bretagnole-Huber inequality. Let us calculate the
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minimum value of KL. It turns out that for nonoverlapping supports,

(2

If KL is minimal we have to replace 6; by c-exp(—KL(Q(-, e;), ) which
yields

KL(Q(-,0), ) =loge = — IOgZexp(—KL(Q(-,ei),u))-

This quantity can be calculated during the approximation process without
any further effort.

5.3.2 The Hilbert metric (Case 3B)

The Hilbert metric may well be used in approximation using the linear
families. Let Q be a linear family with carrier measure A and suppose all
Q(-,e;) have mutually nonoverlapping support. Suppose now that u is a
measure having a density u(z) with respect to A and that u is comparable
to Q(-,0) for at least one §. Denote by A; the support of Q(-,e;). Then we
can write (due to the nonloverlapping supports)

g sup, [D_; 0ipi(x) /()]
inf, [3°; 0ipi(x)/ ()]
max; 0; Sup, ¢ 4, [pi(z)/ p(z)]
min; 0;inf e 4, [pi(z)/p(z)]

We will now show that this expression is minimized if

0; = ¢4/ sup u(:c)] - inf [u(m) ] (5.13)
TEA; p,(.’E) zEA; pl(x)
To see this, note that for any we have Z—: < mfn’% , whence max % < %";’

This yields
x; _ maxb;x;
max — < —

y; ~ minfy;

However, equality appears here if
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Thus, this 6 must be the minimizer. Replacing ; by sup,¢ 4, [pi(z)/u()]
and y; by infye 4, [pi(z)/p(x)] in this calculation we get the assertion.

Equation (5.13) can now directly be applied to get a finite dimensional
filter. Of course we have again to require that the system is regular with
respect to A. Furthermore, in order to ensure that all § are always well
defined we need to require that

sup [pi(x)/u(@)] <oco  VwES,

which is essentially a restriction on .

Error analysis of Case 3B

The same remarks as for the Case 3A apply here.

5.4 Concluding remarks

It turns out that the presented framework unifies a lot of known different
approaches. E.g. approximation by linear families (in our language) was
already proposed in the 1970’s (see [67]). Furthermore, using exponential
families amounts to compute a few moments of the actual distribution and
discard the higher order ones (see the Appendix). This is in fact the main
idea behind the assumed density principle (see [37, 74]). This approach has
however been carried out only for Gaussian densities. Based on the assumed
Gaussian density filter, a further simplification has been proposed by Julier
and Ullmann (the unscented filter, see [38]). The main idea here is to replace
the exact calculation of the moments by an approximation that is applicable
also in cases where the discrete time dynamical system equations are not
given in mathematically closed form (e.g. if a continuous time system is
investigated and a numerical integration scheme is employed).



Chapter 6

Further Approximation
Schemes and Applications

6.1 Monte Carlo methods

Classically Monte Carlo methods where conceived to evaluate certain inte-
grals that can be understood as the expectation value of a random quantity.
Suppose for example f is a function and p a probability density and we want
to calculate

[ f@ iz da.
The idea of Monte Carlo simulation simply is to generate a large number
of other independent random variables X1, Xs,..., X (called the ensem-

ble) featuring the same statistical properties, that is in this case having the
distribution p(z). Then (according to the law of large numbers) the ex-
pectation is approximately given by the empirical mean over the ensemble,
which in our case means

1 M
[ 1@rpie)da = 7 2 )

The problem is of course how to generate the ensemble, which may be quite
difficult for complicated p.

83
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These ideas can be modified for the purpose of state estimation in two
ways. The idea of weighted particles is, roughly speaking, to work with a
large number of independent Markov Processes featuring the same statisti-
cal properties as the original signal process {X,}. The ensemble does not
provide an approximation of 7, but allows for approximative calculation
of any integral of the form

[ t@ymi()ds

by a weighted average over the ensemble of Markov processes. The weights
depend on the observations Y.

The SNR improvement result in Figure 1.2 denoted “Monte C.” was
computed with the weighted particle approach. The decrease of the SNR
improvement around 40 dB is due to the (finite) ensemble size of M = 1000.
Using more “particles” one may achieve better SNR improvement also for
higher SNR of the time series (with higher computational costs, of course).

An alternative is the method of evolutionary particles which in contrast
to the weighted particles directly provides an ensemble approximating m,.
This method consists of two steps resembling the prediction and the update
step. The ensemble points are not independent like in the weighted particle
method.

The general drawback of Monte Carlo Methods is the required computer
power. It is necessary to store the ensemble points and, as we will see,
some weight vectors associated to each ensemble point. Furthermore, the
dynamical equations (e.g. iterated maps or stochastic differential equations)
have to be solved for all ensemble points in parallel. This obviously requires
more power than the previously discussed low dimensional filters.

6.1.1 Weighted Particle Method

The method of weighted particles was proposed and investigated theoret-
ically in [19]. The idea is to generate M independent Markov processes
{Xﬁk)}ngovkzl_"M, where n is, as before, the time and k denotes the k’th
member of the ensemble. All copies have the same statistics as the original
signal process {X,}, i.e. the same initial distribution and the same transi-
tion pdf. Let f : R? — R be an arbitrary function. As already mentioned
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before, the method provides an approximation to the quantity
B Yo) = [ §@)ma(a) do

by a weighted average over the ensemble points {X&k)}kzlm u for the fixed
time n, i.e.

/ (@) ma(@)do = S w®-f(X0).
k=1

It only remains to give an expression for w%k). Define the quantities

g = g(v; = M(XM))  forallj<0,k=1,...,M.

Theoretically one can prove that
n
k
j=1
where c¢ is a constant chosen to yield
S ub = 1.
k

A profound analysis of the problem however shows that this method tends
to diverge, and one should rather implement a limited memory version of
the filter, where the memory depends on the ensemble size M. This is done
as follows: Let gas be a certain positive integer depending on the ensemble
size M. Then define the weights to be

o= I1 o,

Jj=n—qum
where we define g](-k) := 1if j is negative or zero. Practically this method can

be implemented as follows: Choose M and gr = integer closest to 24/log(M).

Initial condition: Let Xél), e ,XSM) be independent samples of the pdf
Px,- For each k =1,..., M allocate a weight vector

k
9® =g, g}

and set all entries equal to one.
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(1) (M)

From n to n + 1: Assume the ensemble X, ’,..., X, ' and the weight
vectors g™,..., g™ for time instant n are given. For each k =
., M let

1. XT(LJr)1 be a sample point of the pdf cp(-,XT(Lk)),

2. gj(k)—gj(k) forj=1,...,qm — 1,

3. 90) = g(Vnps — H(X))).

Then X7(11421> ) Xfffl) is the new ensemble and gV, ..., g™ the new
weight vectors at time n + 1, which are renamed g, ..., g™ for the

next time step.

For any function f, the conditional expectation then is approximately given
by

k k
S, T2 lgj’ Fx)

E(f (XY ... Ya) =
' Ek:l J= 19](k)

6.1.2 Evolutionary Particle Method

The evolutionary particle method uses an ensemble of particles generated
by a sampling procedure resembling the prediction/update mechanism of
equation (2.4) which renders the ensemble a particle approximation of 7,
itself. Let again X,(ll), e X,gM) denote the ensemble at time n. Fix another
positive integer M called the number of children. The dynamics of the
particle ensemble is given by the following evolutionary process:

Initialisation: Let X(gl), .. ,XéM) be independent samples of the pdf px, .

Prediction step: For each ¥ = 1,...,M fixed produce an ensemble
X,E’ii), X,(llijluc) of M¢ children of Xr(bk) by sampling M¢ times

independently from the pdf go(-,XT(Lk)).

Update step: To each Xn +1 assign the probability

91 = h(X))
>, [numerator]

Pk, =
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and select M of the children X,(l’ill) each with probability py;. This

gives the new ensemble X 7(121, X 7(1141) .

For any function f, the conditional expectation then is approximately given
by

As far as we know, the Evolutionary Particle Method remains to be inves-
tigated numerically as well as theoretically. Hopefully, also large deviation
results like in [19] can be obtained.

6.2 Estimation of unknown parameters

So far we assumed the measurement function h and the dynamical system
(or equivalently the transition Markov kernel) to be known. Of course, the
presented approaches cannot be applied directly if the underlying equations
are not known. Therefore, in this and the next section we shall briefly
discuss different approaches for filtering with limited pre-knowledge.

All methods assuming no or little knowledge of the signal process need
a certain idea of what kind the signal process should be. Basically it is
implicitely or explicitely assumed that the underlying signal belongs to a
certain class D. Then the method finds the member of D that is “at most
in accordance” with the given data with respect to a certain measure of
accordance.

If a model for the data is available (derived from first principles, for
example) and only some parameters are unknown, then the filtering task
can be incorporated into the framework of this thesis. The idea is to specify
the model up to an unknown parameter vector a and to treat this a as a
further state vector to be reconstructed. So suppose the dynamical system
has the following form:

Xpy1 = F(Xn,a) + Rpt1-
Now introducing a further state equation of the form

Opt1 = Qp,



88 Chapter 6. Further Approximation Schemes and Applications

the unknown parameter can be considered as a part of the unknown state
and is recovered by the usual filtering process. More general, if X, is a
Markov process with transition kernel ¢(A;z, a) for a fixed but unknown
a, then also the compound process (X,,, ;) is a Markov process with tran-
sition kernel

P(Xp41 € Ajany1 € BlX, =z,a, = a) = p(4;2,a,)-08(a).

Recall from the discussion about general probability theory that the best
estimator of the parameter in a mean square sense is the conditional expec-
tation E(a|Y; ...Y,). Using the filtering approach mentioned above, we can
calculate E(X,, an|Y1...Yy), if the optimal filter was possible to use. But
due to the underlying dynamics of a, namely a,+1 = a,, this expectation
is equal to E(X,,ao|Y1...Y,), and the last component of this vector is the
desired quantity. Therefore the filtering approach to parameter estimation
yields in principle the optimal estimator.

Usually the optimal filter is impossible to realize, and this of course re-
mains true if a further parameter in the dynamics is unknown. However,
using the approximation schemes presented in this thesis, reliable parameter
estimation is still possible. We have already presented the Lorenz system
(numerical Example 31), where the three parameters were assumed to be
unknown. Although the estimate was quite good, it turned out that still
after a long time a small bias remained. However, the exact conditional
expectation should be bias free in average over many realisations. So the
small deviation from the correct values could be either due to the approx-
imation we used or the fact that the system parameters are not uniquely
defined by the outputs, i.e. even an infinitely long series Y7, Y5,. .. of mea-
surements does not determine the parameters uniquely. We will show a
further example where this seems to be the case as well.

36 Numerical example (Hindmarsh—Rose system) For the activity
of biological neurons many models have been proposed. Recently nonlin-
ear deterministic dynamical systems received an increasing attention, al-
though dynamical equations describing the action potential activity where
proposed already by Hodgkin and Huxley in 1952 [34]. As simplified three
dimensional neuron model that nevertheless is capable of reproducing many
essential features of the neuron dynamics was proposed by Hindmarsh and
Rose [33]. Although the model is phenomenologically in the sense that it is
not derived from first biological principles but merely by trying to reproduce
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aop ai a2 as
model -2.19 0 3 -1
estimate | 9.2795 | -0.2793 | 3.1196 | -1.1580

bo b1 ba Co C1
-1 0 5 -0.001 0.004
0.8189 | 3.0950 | -0.3338 | 0.0125 | -0.0001

Table 6.1: Estimated and true parameters for the Hindmarsh-Rose model

the dynamic behaviour by means of simple components, it has already been
shown to produce results consistend with action potentials of real neurons.
This, however, requires a careful tuning of the free parameters the model
has. Thus, for systematic construction of a Hindmarsh-Rose model that
simulates a given real neuron, systematic parameter estimation is required,
and unfortunately this turns out to be a difficult problem.

A general three dimensional Hindmarsh-Rose model looks as follows:

. 2
U =ag+ a1v + axv +a3v3—m+y,

T = box + biv + b2’U2,

Y = coY + c10.
The problem now is to estimate the parameters ag ...as, bg ...b2 and cg, ¢1
from a sample of the first component v, ,vq,,... probably corrupted by
noise. First results to achieve this goal where obtained in [71]. The results

of our approach using Gaussian exponential families is shown in Figure 6.1.
The left column panels show the output of a Hindmarsh—Rose model with
parameters as in Table 6.1, first row. The error between filter output and
the Hindmarsh—Rose model is shown in the right colum. As can be seen,
the error in the second component is already significant and in the third
component it is quite large. Furthermore, some of the estimated parameters
(Table 6.1, second row) are very different from the true parameters. A free
run of the Hindmarsh-Rose model using the parameters estimatied by the
filter is shown in Figure 6.2. It turns out that the model running with the es-
timated parameters gives (at least on medium time scales) qualitatively the
same output behaviour as the original model. E.g. the frequence of spikes
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Figure 6.1: The results of our approach using Gaussian exponential families.
The left column panels show the output of a Hindmarsh-Rose model with
parameters as in Table 6.1, first row. The error between filter output and the
Hindmarsh—Rose model is shown in the right colum. The error in the second
component is already significant and in the third component it is quite large.

in each spike train is too small compared with the original data. Thus, it
seems that some of the parameters have in fact a very weak influence on the
output, at least on short time scales. It may be doubted whether any pa-
rameter estimation method is able to overcome this problem and to recover
the true parameters. In fact, other methods seem to suffer from exactly the
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Figure 6.2: A free run of the Hindmarsh-Rose model using the parameters
estimatied by the filter. The model running with the estimated parameters
gives (at least on medium time scales) qualitatively the same output behaviour
as the original model. The frequence of spikes in each spike train is too small
compared with the original data.

same problems (see [71]), so our observation seems to be a general problem.
In a certain sense, the filter does its best to give us what we deserve: A
model that is able to reproduce the data. So probably it is necessary to
think about the model again. A model should either be motivated by phys-
ical (or biological) considerations, whence the parameters can be identified
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with meaningful physical quantities (but may be hard to estimate) or the
model should be chosen in order to allow for an easy parameter estimation.
A model that is just phenomenological and has furthermore the problem of
being hard to cope with is probably not worth to struggle with. This ends
the discussion of the example.

The method of parameter estimation considered here is by far not the
only one possible for parameter estimation for Markov processes. Let us
mention three further approaches. First, one may ask whether a direct cal-
culation of the probability P(al|Y7,...,Y,) is possible. An expression for
it can in fact sometimes be given (if the dynamical system is deterministic
and the noise appears only in the observation), but it turns out to feature
an enormous complexity, rendering a calculation of the expectation by di-
rect quadrature an impossible task in practically all cases. In [18], however,
an interesting Monte Carlo approach to this problem was suggested. The
difficulty is of course to sample from the very complex conditional probabil-
ity. This is a general problem often encountered also in other fields where
Monte Carlo methods are applied, for example thermodynamics. There-
fore sophisticated methods have been conceived to overcome this problem,
namely the Markov—Chain—-Monte—Carlo or Metropolis—Hastings method.
For a general introduction into these methods see e.g. [31]. To our knowl-
edge, parameter estimation using this techniques has been investigated only
by [18], and we think that this approach merits further research.

A further quite appealing method was presented in a paper by Bibby
and Soerensen in [5]. They proposed estimators which conserve the mar-
tingale property of the conditional expectation. A stochastic process &, is
a martingale with respect to the observations Y, if, for k& < n,

E(an|Yi,...,Ys) = G

In connection with estimators this means that, if only measurements up
to time k are available, the expected future value of the estimator should
be the present value. The optimal estimator E(a|Y1,...,Y:) is obviously a
martingale. The authors of [5] now consider estimators which are subopti-
mal, but conserve that property. It should be mentioned that in this work
continuous time systems are considered only. Stochastic analysis is exten-
sively used here. Furthermore, the approach works only if the observations
are of the form Y; = X; + noise, so a full state information is necessary.
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In the case of an observed dynamical system in a state space with only
a finite number of states, the whole model can be described by a finite set
of parameters. Such models are known as Hidden Markov Models. Iden-
tification of Hidden Markov Models has been subject to vivid research. A
general reference for this topic is [23]. For a problem with a continuous
state space however, identification of the dynamics can be considered as es-
timating an infinite dimensional parameter. A small account on approaches
for this problem is given in the next section.

6.3 Approaches for unknown dynamics

If no dynamical equations are known for the data, some modeling has to
be done in combination with or previous to filtering. In the common lit-
erature on nonlinear time series analysis' this modeling is usually done
assuming the dynamics to be esssentially deterministic. For determinis-
tic dynamical systems state space reconstruction from scalar time series
is possible using delay coordinates [54, 70, 61, 60]. The resulting states
Zn = (Yn,Yn-1,...,Y,_q) consist of sequences of measurement values and
provide a faithful representation of the underlying dynamics if the dimen-
sion d is large enough.

Having successfully embedded the underlying dynamical system in a re-
constructed state space one may approximate the induced flow using glob-
ally or locally defined models. Global modelling using a superposition of
radial basis functions has, for example, be used in Ref. [35] for subsequent
smoothing.

Most smoothing methods based on delay reconstruction, however, use
local approximations of the flow in reconstruction space [63, 59, 24], or of
some (sub-)manifold containing the reconstructed states [16, 15], because
local approximations are very efficient and flexible (and suffer not from
a possible poor choice of basis functions). Well written reviews comparing
different implementations of the basic idea may be found in Refs. [44, 42, 30].
Such methods have been applied succesfully for denoising speech signals [32]
or EEG data [64] and in studies on chaos based communication schemes
[25]. However, they have to applied very carefully to avoid artefacts and
misinterpretations [50]. When applied iteratively (what is typically done)

1Usually in nonlinear time series analysis, smoothing (often referred to as “Noise
Reduction” in these contexts) is considered rather than filtering.
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most of the algorithms first improve the SNR but start to destroy/scramble
the data completely when iterations are continued.

Finally we want to mention some recent approaches for noise reduction
exploiting the existence of (unstable) periodic orbits in chaotic systems [73]
and the availability of some simultaneously measured reference data set

[65].



Chapter 7

Communication

7.1 Introduction

Since the invention of telecommunication its technical aspects have been
subject to vivid research. Usually the telecommunication engineers goal is
to quantify and to optimally payoff between the demands of low cost, low
error and high rate of information transfer. Of course, to obtain nontrivial
results certain restrictions on the given setup have to be imposed.

A new area of information theory was heralded by the pioneering works
of C. E. Shannon and W. Weaver [66] and N. Wiener [75]. The book of
Shannon and Weaver contains the basic ideas and results on channel (and
source) coding. Wiener’s work adresses the problem of reconstructing a
stationary time series that was received in error due to corruption by noise.
Although the aim of both works is to combat a nonreliable transmission
channel, the respective setups and assumptions are quite different in detail.
While Wiener solves his problem by salient handling of elaborated stochastic
tools, Shannon applied elementary methods and a couple of completely new
and ingenious ideas.

We will briefly review both concepts now. The main reason is that
the reader may have the (completely justified) question, how the presented
results are related to Shannon’s theory. Probably to his or her disappoint-
ment, however, it will turn out that this chapter, although concerned with
the transmission of messages, is more in spirit of Wiener’s work. The re-
mainder of the introduction is intended to explain why and how the con-
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nection to nonlinear filtering emerges.

In channel coding theory the problem of information transmission over
a not fully reliable channel is considered, i.e. it is assumed that with a
certain probability the transmitted message is decoded in error. It is pretty
obvious that some errors can be corrected at the receiver’s side if a certain
amount of the transmitted message is redundant. E.g. every bit (assuming
the message is represented as a stream of zeros and ones) can be send twice.
The surprising result of Shannon and Weaver was that a fixed amount of
redundancy is sufficient to achieve an arbitrarily small amount of errors.
The basic idea is to use a code as follows (see also Figure 7.1). Consider all
possible words of, say, N bits. There are 2"V such words. Let R < 1 and
specify a subset containing only 2L%V! words. Here |-| means the integer
part. This subset is called a code of rate R. The elements of this set are
called code words, hence there are 2lEN) code words. We can transmit
a message using this code by simply dividing the message into blocks of
length |RN| (at most 2LEN] different blocks can appear) and assigning a
code word to each such block. Now the code word can be sent through the
channel. Recall that the code word has length N, but the message block
that is assigned to the code word has length | RN |, only. So using the code
effectively reduces the transmission rate by a factor of R. In Figure 7.1 we
used N =6 and R = 2/3, i.e. 1/3 of the bits are redundant.

If a code word is transmitted, at the receiver’s side a word of N bits
obtains. However, some of the N bits are received in error (in Figure 7.1
the last bits of both code words are incorrect). So a received block of
N bits forms a word that is usually not a code word (although this may
accidentally be the case). Here in general a decoder is needed that maps any
word of length N back onto a code word. For example, we may take the
code word that has the smallest amount of bits different from the received
word (minimum Hamming distance). Finally, inverting the message—code
assignment, we get back what is supposed to be the transmitted message.

For a given channel, the performance of this scheme obviously depends
on the rate R, the length N, the chosen set of codewords and the decoder.
The outstanding theorem of Shannon states that associated to the channel
there is a number C' called the capacity with the following property: By
taking N sufficiently large we can find a code of rate R arbitrarily close
to C and a decoder yielding arbitrarily small transmission error. This is
called the direct part of the coding theorem. If R is larger than C, the error
is bounded away from zero. This statement is called the converse part.
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All Words code words
of Length 4 | of Length 6

0000 010001 ...]0101]1001]... Message

0001 000011 4

0010 010100

0011 000111 T

0100 011001 ...|001010/100011|...  Correspondig code words
0101 001010 1

0110 011101

0111 001111

1000 110000 + ,

1001 100011 . |001011l100010\ . Transmitted code words
1010 110101

1011 100110 [ Decoder |

1100 111001 T

1101 101011 ...|0101/1001]. .. Decoded Message

1110 111100

1111 101111

(b) Communication Scheme

(a) Codetable

Figure 7.1: The panel 7.1(a) shows all words of length 4 (first column). The
second column contains possible code words of length 6. Panel 7.1(b) shows
a communication setup using the code.

Actually, Shannon and Weaver proved this result (together with an explicit
expression for C) in the case of memoryless channels, i.e. the probability
that a transmission error occurs at time n does not depend on what has
happened in the past.

Note that in a practical situation to establish a reliable communication
with rates close to the channel capacity it is necessary to manipulate the
information carrying quantity before and after it is sent. The situation
considered by N. Wiener that will now be described briefly does not permit a
manipulation of the signal before transmission, which from a communication
theoretic viewpoint constitutes the main difference between Wiener’s and
Shannon’s setup.

Asin Shannon and Weavers work, Wiener considers a stationary stochas-
tic process X,,n € Z as the quantity carrying the desired information. In
contrast to Shannon however, it is not explicitly attributed to as a message.
He assumes that at the receiver the process Y,, = X,, + S,, obtains, where
Sy, is the unwanted part or the noise. Hence effectively he assumes a very
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specific form of a channel.
Wiener now considers the problem of reconstructing X,, from Y, in a
linear manner. More specifically, taking the ansatz

Xo= Y a"n (7.1)

k=—o00

and the least mean square optimality criterion

A

E(X, — X,)? = min!
he obtains an equation (Wiener—Hopf equation) for the coefficients, a;"),
where E(-) denotes the mathematical expectation. It turns out that only
auto and cross correlations of X, and Y,, enter the Wiener—Hopf equation.
Wiener studies a variety of related problems, mainly differing in how much
Y’s enter the right hand side of the ansatz (7.1). The resulting Wiener—Hopf
equations are tackled by spectral methods.

Wiener finished his work already in 1942, but due to its significance
for war time issues (radar tracking, automatic fire control) it was classified
and published not until 1950. Since then, a huge amount of improvements
and generalisations to Wiener’s theory have been conceived. The most im-
portant where probably the Kalman filter [40], where Gaussian processes
admitting a state space description where considered and the extension to
nonlinear stochastic differential equations given by Stratonovich and inde-
pendently by Kushner (see [37] for an overwiev).

Basically, the theory of nonlinear filtering can be seen as a generalisa-
tion of Wiener’s work. Nonlinear filtering is an attempt to the solution of
the general problem: Which was the signal that led to the aquired data?
Looking back to Shannon’s setup, we see that this is basically the decoding
problem: which was the codeword that led to the received data? Actu-
ally, Shannon’s result can be established using a quite suboptimal receiver.
Nevertheless, the trade—off between N and the error depends heavily on
the decoder, which is important in practical applications. Furthermore,
Shannon’s result is valid in full generality only for memoryless channels.
For channels having memory, the problem turns out to be quite difficult. In
general, a different C' appears in the direct and the converse part of the cod-
ing theorem, i.e. it is stated that at rates < Cp, reliable communication is
definitely possible and at rates > C» definitely not, but in general C; < Cy
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[29]. Furthermore, the results usually depend heavily on the employed
decoders. In general, to obtain a larger C in the direct coding theorem,
more sophisticated decoders are necessary, probably having a complexity
prohibiting their practical implementation.

Thus for practical application and extension of Shannon’s theorem, good
decoders are mandatory. By good we mean as reliable as necessary to
obtain the direct coding theorem at high rates, but as simple as possible
to be implementable in applications. Of course, in this thesis we will not
solve the problem completely. The basic aim of this chapter is to convince
the reader that a possible route to good decoders goes via the theory of
filtering.

7.2 Message transmission

In general message transmission is done employing a (usually electronic)
device called the transmitter. The internal state of the transmitter at time
instant n € N is assumed to be determined by a variable X,, in an ap-
propriate space. The state X, depends on its predecessors Xi...X,—1,
the message to be transmitted and some additional random influences. In
this chapter we will only allow for the simplest possible messages, namely
a sequence {M,} of independent, identically distributed random variables
assuming the values 0 or 1, only. Furthermore, we assume M,,, the message
element at time n, to be independent of X; ...X,, 1, whence the message
element has influence only on the present and future evolution of the trans-
mitter state.

Based on this general considerations a lot of transmitter models can be
considered differing basically in how much past information enters the future
evolution of X,,. The simplest model of interest for a channel with memory
obtains if we assume that X, is, up to random disturbances, determined by
Mn and Xn—l-

Usually a transmitter is necessary to generate a signal that is capable of
passing through a channel. For example, consider a radio transmitter. The
channel here is the atmosphere and the signal transmitted by the channel is
the voltage at the antenna, which is a function of the transmitter state. Of
course, atmospheric disturbances will take place and lead to a corruption of
the transmitted signal. In our model channel noise is taken into account by
additive iid random variables. Thus our model of a transmission channel is
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again a very simple one, namely we assume that the channel output Y, is a
function of the transmitter state corrupted by additive noise. As a simple
example let us consider the following stochastic process on the unit interval

Xnt1 = [, . (Xn), (7.2)
where
fo:[0,1] = [0,1], z — |2z —1],

f1:00,1]=[0,1), z—1-|2z—1|, (7.3)

are the usual and the inverted tent map. As received signal we take simply
X, itself. As random noise due to channel disturbances we take random
variables {W),} which are independent, have a centered normal distribution
with unit variance and are independent of {X,,}. The signal arriving at the
receiver is assumed to be

Yo =X, +0Wh,

where ¢ is a given positive constant. The basic question, the receiver prob-
lem, now is:

Assume a sample of values Y7,...,Y, has been recorded.
What is the value of the message M,, ?

It will turn out that this problem can be encompassed by calculating the
conditional probability of X, given Y7, ...,Y,. This in turn is the main aim
of filtering theory. How it can be employed to solve the receiver problem
will be explained now.

Let us first formalize our basic model of a transmitter. Let (Q, P, A)
be a probability space. Let E be a complete separable metric space and
{Xn}nen, : @ = E (the transmitter state) as well as {M, }nen: @ — {0,1}
(the message) be random processes. Furthermore we assume that the joint
process {Mp41, Xn}nen, is Markov, the variables {M,} are all identically
distributed and M+ is independent of {Myy1, Xi }r=o..n—1. In practice
this is accomplished by means of compression. Let u(A4) := P(X, € A)
and p; := P(M,, = i), where i = 0 or 1. Then the initial distribution of
the process {M,+1, X} is given by P(Xo € A, M; = i) = p(A)p; and the
transition probability is

P(Xn € A, Mn+1 = ’I:an_l = .CL',Mn = ]) :p@(PJ(A,IL'),
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where we define
p;j(A,z) = P(X, € A|X,, =z, M, =j). (7.4)

It is easy to see that {X,} alone is a Markov process with transition prob-
ability ¢(A,z) := P(X,, € A|X,, 1 =) =}, (A, z)p;.

The channel in this context is nothing more than the usual observations,
i.e. the information obtained at the receiver is the process Y;, given by

Y, = h(X,) + o W,.

7.3 The optimal receiver

The receiver is any device that produces a reasonable estimate M, for the
actual message M, based on the time series Y7, ...,Y,. We will show that
this problem can be solved if the conditional probability p,(m) := P(M,, =
m|Gyp) is known.

We now give an expression for p,(m) in terms of the filtering process.
This establishes the beforementioned condition between the receiver prob-
lem and the theory of nonlinear filtering.

37 Lemma Let
© = p1¥1 + Po¥o

be the transition kernel defined as before. Then the conditional probability
of receiving zero (m = 0) or one (m = 1) at time instant n given the
observations Yy ...Y, is given by

dﬂomﬂ';—l

o (da).

p; (m) = Pm

where the superscript (as in Section 2.2) indicates the initial probability
distribution.

ProOOF  This follows easily using change of measure like in the Kallianpur—
Striebel formula. An informal derivation is given in [12]. O
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38 Remark (Concerning notation) For simplicity of notation we write
from now on ¢; instead of ¢;-p; for both j = 0 and j = 1. So formally we
(re)define

(p](A,.’L') = P(Xn (S A,Mn+1 = 7:|an1 = .'L',Mn = J)

The performance of a binary communication channel is usually measured
by the Bit Error Rate (BER), which is defined as

N
1 N
BER = Nk_i . |Mk - ]\4']‘,|7

where Mj, is the transmitted message and Mj, is the received message. It
should be kept in mind that in general the bit error rate is a random quantity
and depends on N. It is an interesting question whether the bit error rate
converges to a (possibly random) limit or not. We will briefly consider this
question now for M beeing the optimal receiver.

In any case (ergodic or stationary or nothing) we will call

PY(Mj, # My)

the bit error probability (denoted by BEP}) where M, is used as an esti-
mator for My and v is the distribution of Xo. We now define the receiver
M}, we will use throughout the rest of this chapter.

39 Definition We set My, = 1 if p¥(1) > p%(0) and My, = 0 else. Since in
fact My depends on v we will write M} in the following.
Obviously, My, is a function of Y; ...Y},. Furthermore, this estimator turns

out to have a certain minimum property. If M, is an estimator depending
on Y; ...Y} and taking the values 0 or 1 only, it can be shown that

P"(My, = My) = E,(p} (M),
whence we have that for any such estimator
P(My, = My) < P(Mj, = My).

Hence the estimator M + yields the least bit error probability and, in this
sense, provides an optimal estimator. Our first theorem concerning ergod-
icity of the bit error rate can be obtained using ergodic theory of nonlinear
filtering.
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40 Theorem Suppose p is a p—invariant measure. Furthermore suppose
that the compound process (My, ) is stationary. Then the bit error rate

N
1 ~
BERy = > My — 1|
k=1

converges almost surely to a (possibly random) limit. If u is even a unique
p—invariant measure satisfying condition (A.8), then the limit is almost sure
equal to a constant.

PrOOF  If u is p-invariant it follows from Theorem 1 in [69] that the
distribution of 7# converges to an invariant measure of II, the transition
semigroup of the filter. Calling this invariant measure @ it turns out that the
joint random variable (Mp1,7},) has asymptotic distribution p;-®. Since
| M}, — My| can be expressed as a function of My, 7}, and 7_; it turns out
to be stationary as well. The first assertion now follows from Birkhoff’s
theorem. The second assertion follows if the filtering process turns out
to be ergodic. Under condition (A.8), the invariant measure @ of IT hav-
ing barycenter u is unique (see [69], Theorem 2). However, any other IT-
invariant measure must have a barycenter which is p—invariant. Since there
are no such measures except for g it turns out that & is the unique invariant
measure of the filtering process. By Lemma 47, (3) the filtering process is
ergodic. |

The stationarity of the compound process (My41,m) will not be investi-
gated here. However, we conjecture that the stationarity of the compound
process (My, pr(m)), which is needed in Theorem 40, can as well be de-
duced without further assumptions. A proof of this may proceed along the
following lines: First, as discussed in Section 4.3, the stationary processes
Y,, and X, can be extended to —oo in time. It is then quite logical that the
process (M, P(M, = m|G,)) has asymptotically the same distribution as
(M, P(M,, = m|Yn,n € Z<y)) which is stationary. Concerning the asymp-
totic properties of the bit error probability we have the following theorem

41 Theorem If u is an p-invariant measure satisfying condition (A.8),
then the BEPY, is convergent and decreasing in k. Call the limit BEP¥. If
furthermore v satisfies the assumption vpF — u, then BEP) — BEP¥.
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ProoF  This follows from the fact that the bit error probability BEP},
can be written as

BEP”
=%&P_/\/§ﬂl§ﬂmm—mhnﬂmmy,

which is an expectation over a concave function of 7%_,. The theorem now
follows from the results in [69]. O

We remark that the transmitter model introduced in Example 3 actually
satisfies the conditions of Theorem 45 (see Appendix), hence there is a
unique invariant measure satisfying the condition (A.8). Thus, both theo-
rems apply.

Theorems 40 and 41 may be of restricted practical use since a quite re-
stricted receiver model is assumed. However, the main purpose was to show
that theoretical methods of nonlinear filtering translate into the framework
of message transmission.

To tackle a message transmission problem numerically one has to cal-
culate the conditional probability p”(m) replacing 7, by any of the ap-
proximations 7, introduced in the preceeding sections. We will now give a
numerical example.

42 Numerical example (Bell shaped map) Figure 7.2 shows in the first
panel the Bit Error Rate that is achievable with approximation of the opti-
mal filter for a chaotic signal contaminated by additive Gaussian noise. The
model was as follows: The dynamical system constituting the transmitter
is given by a bell shaped map

mmza%—@l%gﬁﬁfk

For h we used the identity map, i.e.
Y, =X, + 5,

We first set B = 0.3. In this case the map is chaotic for mm = 0 as well as
for m = 1. To approximate the optimal filter and the optimal receiver we
applied a simple approximation on a grid, i.e. a linear family with piecewise
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Figure 7.2: The panels show results for the receiver problem for the bell
shaped map. The optimal receiver was approximated on a grid. The first
panel a) shows BER/0.5 on a log-scale over SNR. The performance is more or
less the same for different grid sizes (100, 200, 400 . . . 6400 points). The second
panel b) shows BER/0.5 for different offsets B. In a nonchaotic regime the
preformance is much better than in the chaotic. The third panel shows the
estimated Lyapunov exponent of the filter for the TV-norm.

constant functions. It turns out that increasing the number of grid points
does not significantly improve the resulting BER obtained for only 100
gridpoints (see first panel of Figure 7.2). We conjecture that this is due to a
negative Lyapunov exponent of the nonlinear optimal filter associated with
this system. An approximation of the Lyapunov exponent of the filter was
calculated as well using a very fine mesh and is plotted on panel ¢). It turns
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out to be negative for all considered SNR values. Thus the “good news” is
that a 100-point approximation already yields a reliable approximation of
the optimal receiver. On the other hand we can conclude that no receiver
will be able to outperform the (in fact a little disapointing) results plotted
in Figure 7.2, first panel.

An interesting result is shown in the second panel b). Here we varied
the value of B from 0.3 to 0.7 in steps of 0.05. For B = 0.3...0.5 the
transmitter is chaotic for both values of m, for B = 0.55 the map is chaotic
only if bit 0 is sent and for larger values of B the map is periodic. The BER
performance does not depend so much on the value of B but on the regime
the map operates in. The curves of good BER performance correspond to
nonchaotic, the other ones to chaotic behaviour. Thus we see that chaos
strongly degrades the performance of this transmitter.

This numerical example is another example of a chaotic-shift-keying
(CSK) scheme already mentioned in Section 2.2. As was already discussed
there, our receiver model corresponds to a very wide transmission band-
width setup. Several contributions in Refs. [43] and [65] consider setups
with smaller bandwidth (i.e. M, is kept constant for longer epochs), where
it is assumed that the signal blocks with different values of M,, are indepen-
dent. This however is only justified if the transmitter is a mixing system.
Thus, in a certain sense, nonchaotic-shift-keying schemes cannot be investi-
gated with this approach. We think that this is a reason why a comparison
between chaotic and nonchaotic transmitters has not been carried out yet.

7.4 A Bound on the Bit Error Rate

We have seen how to build the optimal causal receiver using the nonlinear
filtering process. Since the nonlinear filtering process cannot be calculated
in general, we suggested several approximation schemes. In Section 4.3 we
gave a bound on the error between the true and the approximative filtering
process. In this section we show the implications of this result on the bit
error rate obtained by receivers based on approximative filtering processes
rather than the true one. Consider the function

£u0) =1 [ 292D = oy (@)
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From Section 7.2 we know that

BEP? = [1— / Faly dy].

we now have using the triangle inequality
[ 2o =2 1 — gy (a0)
= / 1 g(LW)
— u)(r i+ 7)) (7.5)
<| / Y =MDy ) — gyt (d)]

+ [ ;g(yf,’”)xwl — o)ty — 7y ().

The second term can be bounded using the triangle inequality

| [ 262D - o)y - 7o)

</ Loy | ) |(da).

o o
The integrant is an integarble function of  and y so we can replace the

second term in (7.5), integrate over y and reverse the order of integration
in the second term to get

1] 20201 - gopmt s @l
< [1] 2= 01— oy @iy

+TV (p’”n 17(,071'” 1)

< [1 ] 2ot =H Dy, @iy

+TV( T — 17 n— 1)



108 Chapter 7. Communication

since TV(p-, ) < TV(:,--) (Lemma 16). In exactly the same manner
(exchanging the role of 7 and #) one obtains

e 1g<y‘—h(“’))< — o)ty (dn)ldy
> [1] 202D - iy @iy

- TV( Tp—1s ﬁ'n 1)
If we define the quantity
BEP,

which is the same as BEP} but with 7 replaced by 7 we can write our
estimate as

IBEPY — BEP}| < ETV( L),

We assume now the setup of Theorem (23) with a deterministic 7. Then
we get

n
IBEP} — BEP,| < C'> 7" "E, (Ry).
k=0
So far this estimate is of restricted practical use since both the approximated
bit error probability BEP as well as the right hand side of the above estimate
involve the true expectation E,,.

Under the additional assumption that the compound process {Y;,,6,}
is ergodic, then we can compute E, R, and BEP,, in an offline experiment,
since R, is a function of 6,,_; and Y,,, and furthermore BEP,, is the expec-
tation over a function depending on 6,1 only. Then both BEP,, and E, R,
are asymptotically equal to a constant depending on the system and the ap-
proximation algorithm and can be computed numerically by an empirical
mean over a long realisation.

Note that we obtained the bound without actually using any direct
bound on |p, (m)— pr(m)|, the error between the true and the approximated
conditional probability. In order to do this, the TV norm turns out to be
not so convenient. Using the Hilbert metric however one can, starting from
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the representation of p,(m) in Lemma 7.5, establish a bound on |p,(m) —
pn(m)|. The main ingredients is the observation

exp(—H(u,v)) < < exp(H(u,v))

for two comparable probability measures p and v. Thus, for any positive
function f

exp(~H(u») [ fav < [ fau < expiu,v) [ sav
From this comes
exp(—3H(7rn, 7~Tn))ﬁn("n) S pn(m) S ﬁn(m) eXp(3H(7Tn, 7~Tn))7

which gives the desired relation.
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Concluding remarks

This thesis is devoted to a couple of aspects concerning the optimal nonlin-
ear filter. We presented the optimal filter as a statistical estimation problem
for dynamical systems. In particular, the objective is to reconstruct the cur-
rent state of the system by means of noise corrupted observations in a causal
manner.

The first chapter was concerned with standard textbook material on
probability theory. We presented important statistical concepts such as
measure spaces, measures, integration and the conditional expectation.
These concepts are necessary for a rigorous formulation and treatment of
the nonlinear filtering problem, which was done in Section 2.2. We empha-
sized the viewpoint of considering the optimal filter as a dynamical system
on the space of measures on E, the state space of the underlying system.

The second chapter again presented known material, which is quite rel-
evant in applications and was also intended to be a motivation of the sub-
sequent chapters. The main point in the discussion was that filtering of
nonlinear systems is, in general, an infinite dimensional problem. In other
words, the filter, seen as a dynamical system, cannot be represented in a
finite dimensional state space. Especially for chaotic deterministic systems
the filter dynamics is always infinite dimensional. In applications, however,
a finite dimensional representation is mandatory, thus approximations are
essential for nonlinear filtering to be an applicable tool.

Investigating new and existing approximation schemes in a general frame-
work was the issue of the next two chapters. Any approximation of the
optimal filter can be (as the filter itself) considered as a dynamical system

110
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on the space of measures on E (denoted by Pg). In order to quantify the
quality of the approximation, a metric has to be introduced on Pg. This
was done in Section 4.2. Actually, for several reasons a couple of met-
rics where considered, all having advantages and drawbacks in connection
with nonlinear filtering. The metrics are all used in the literature. Con-
nections, bounds and properties of these metrics where partly taken from
several publications, but partly are (to the best of our knowledge) new. In
the next section an error bound for a wide class of approximation schemes
was established. The “generic approximation scheme” was assumed to be
a projection of the dynamical equation governing the nonlinear filter on
a space of parametrized probability distributions. Roughly speaking, we
assumed a finite dimensional set of probability distributions Q to be spec-
ified. By projection we mean that if the optimal filter dynamics is applied
to a member of Q, then the result is projected back onto Q by a minimum
error criterion. Thus we get an approximative filter dynamics on Q. The
objective of Section 4.3 then was to establish a connection between the to-
tal error between the correct and the approximative optimal filter and the
approximation residual measuring the error that is made by applying once
the approximative filter dynamics rather than the true.

The error bound is established basically using only the triangle inequal-
ity. Similar techniques where used already by other authors in more spe-
cial circumstances. The error bound is a sum over two multiplied terms
depending only on the optimal filter and the approximation algorithm, re-
spectively. It turns out that a basic property of the filter to yield small
total approximation errors is a stability of the optimal filter dynamics, i.e.
an insensitivity with respect to misspecified initial conditions. This stability
can be quantified by a Lyapunov exponent. The existence of the Lyapunov
exponent is guaranteed by Kingman’s ergodic theorem. If the Lyapunov
exponent is negative, then, roughly speaking, one step errors made by the
approximation algorithm are damped out by the filter dynamics, leading to
a bounded (or more general asymptotically stationary) filtering error. This
statement was made rigorous for special so called mixing Markov processes.
The Lyapunov exponent for optimal filters of mixing Markov processes was
already investigated in the literature. We think, however, that the general
approach and the representation of the total error in this way are new. We
furthermore presented a generalisation of an interesting result of Atar and
Zeitouni [3] where it is shown that low noise observations lead also to a
negative Lyapunov exponent of the optimal filtering dynamics. Our anal-
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ysis shows that this continues to be true for systems that can in turn be
considered as a stochastic analogon to systems in observer canonical form
known in deterministic control theory.

In Chapter 4 we presented a large variety of approximation methods,
which are partly new. As parametrized sets of probability distributions we
used only exponential and linear families. We gave to some extend exhaus-
tive formulas of the emerging finite dimensional filters. Much more needs
to be done here, which will probably require sophisticated methods from
convex analysis. We would like to point out that for the case of continuous
time dynamical systems with discrete time observations (which is a prac-
tically very relevant case) a satisfying error analysis could be established.
The problem of how to incorporate the update step into the error analysis of
the prediction step (which was carried out already in [48]) could be solved.

In Chapter 6 we considered further approximation schemes based on
the Monte Carlo idea. These known results where included mainly for the
sake of completeness and for comparison. Furthermore, in this chapter we
presented the interesting application of the nonlinear filter to parameter
estimation problems. The connection between filtering and parameter esti-
mation is not difficult to see, but using approximations of the optimal filter
it becomes an applicable tool for this important task. We investigated nu-
merically two nonlinear differential equations with unknown parameters. It
turned out that for the first, the Lorenz system, reliable parameter estima-
tion was possible, although the results where not unbiased. For the second
example, the Hindmarsh—Rose neuron model, parameter estimation turned
out to be difficult. We however have strong indication that for this example
any parameter estimation method will suffer from the same problems as
ours.

The last chapter was devoted to problems in telecommunication. It
was shown that for certain receiver models the optimal receiver can conve-
niently be represented by the optimal nonlinear filter. Thus this problem
emerges as an interesting sub-problem of the theory of nonlinear filtering.
We demonstrated that this leads to fruitful interesting theoretical results
concerning the least possible bit error probability. Furthermore, by apply-
ing some algorithms proposed in the preceeding chapters we could establish
approximatively optimal receivers. A bound on the bit error rate using the
bounds on the filtering error was obtained as well.

The appendices concern known material on ergodic theory of Markov
processes and the filtering process. The appendix on exponential families
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contains suggestions how to cope numerically with exponential families.

Outlook

Let us shortly mention the problems and questions that in our opinion merit
further investigation, that we could not carry out due to lack of time or that
we simply failed to solve.

First we think that the approaches mentioned in this thesis merit more
numerical simulations to check how tight the error bounds are in practice.
The bounds, nonetheless, have theoretical significance as well since they
show that the better we carry out the one step approximation, the better
the total error will be.

Concerning the general error bound, the central question is still open:
Which requirements on the Lyapunov exponent of the filter and the approx-
imation residuals have to be imposed in order to yield an asymptotically
stationary error? It is clear that the largest Lyapunov exponent needs to
be negative and the residuals need to be at least asymptotically stationary.

Lyapunov exponents for nonlinear filters have been investigated already,
but a general approach seems not to be available. Interesting problems for
future research would be to investigate, e.g., piecewise expanding Markov
maps or other non—-mixing models.

Furthermore many problems involving the approximation schemes are
still to be investigated. We did not fully address the question for which se-
tups the approximation algorithms are actually well defined. Especially for
the exponential families in connection with the Hilbert and the Kullback—
Leibler distance these are challenging problems. As already mentioned,
more convex analysis seems to be necessary here.

How to cope with parameter uncertainties remains still a challenging
task. We have seen that problems appear also for our parameter estimation
approach when the parameters have only weak influence on the output.
We think that before applying any parameter estimation algorithm it is
necessary to investigate a model more theoretically and establish a kind of
“canonical parameter estimation form” in which parameters with weak or
no influence on the output can easily be recognized. Furthermore, we think
that for parameter estimation problems it should be possible to establish
a reduced nonlinear filter that circumvents the unneccessary estimation of
all dynamic variables. It is a paradigm of estimation theory to estimate as
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much as necessary, but not more.

In communication, the connection to coding theory is interesting and,
to our knowledge, completely open. Another interesting question is how
does chaos actually affect the performance of the optimal receiver? Our
results provide a framework to investigate this question. It was shown how
to build approximately optimal receivers and how to calculate the error
between these and the optimal receivers. Thus, by numerical simulations
an estimate of the maximal achievable bit error rate for a given transmitter
model can be established. This may be subject to future research. As a
preliminary result it was shown that the bell shaped map shows much better
performance in the nonchaotic than in the chaotic regime.
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Appendix

A.1 Ergodic Theory of Markov Processes

We recall some results about ergodic properties of Markov processes. We
will keep the same notation as in the thesis, namely let

E a polish (i.e. complete separable metric) space

Bg the Borel field

Pg the space of probability measures on E

Cy(E) the spaces of continuous bounded functions on E

B(Pg) the Borel field of Pr enowned with the weak topology

We write as usual
[ t@pan)
for the integral of f over P.
43 Definition A random process {X,} is stationary if, for any k and sets
A; € Bg the probability P(X,41 € A1,...,Xntr € Ar) does not depend

on n, i.e. is invariant with respect to time shifts.

44 Lemma A Markov process is stationary iff the probability measure
v(A) := P(X, € A) has the property

v(A) = /go(A,:c)u(dx).

Such a measure is called invariant.
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PROOF  See [7] O

The question arises whether for a given transition kernel ¢(A,x) there is
an invariant measure v so that the canonical process on (E*, B, P”) is
stationary. A fruitful idea is to consider iterates of the kernel: Define
oM (A, z) := (A, ) and iteratively

FA2) = [ o, 26 (dz,a).

The following theorem gives conditions under which the sequence (™ (A, z)
generated by a Markov transition kernel converges to an invariant measure:

45 Theorem Suppose there is a finite nonzero measure y and a set C € E
with u(C) > 0. Let ¢(x,z) be the density of (A, z) with respect to p.
Suppose now that

p(x,2) >0 for all z € E and x € C. (A.6)

then there is an invariant probability measure s absolutely continuous with
respect to p. Furthermore, there are constants K > 0 and 0 < 6 < 1
independent of x with

sup o™ (4, 2) — s(A4)| < Ko™, (A7)
A€BE

PrROOF  The theorem is a slight modification of results presented in [21],
chapter V,§5. O

A trivial verification shows that if ¢(")(-, ) satisfies the conditions of The-
orem 45, then we also have the property

tim [ 1f¢"@) - s(Plstds) =0 VICWE).  (A8)
n—oQ
Condition (A.8) (which is weaker than the result of Theorem 45) will prove
to be essential for ergodic properties of the filtering process.

Starting with s as the initial distribution, the resulting probability on
the probability space (E*°, B¥) is denoted by P?*, as for every probability
measure v on E the resulting probability on (E*°, BY) is denoted by P”.
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Stationary processes may or may not be ergodic. We recall the basic
concepts of ergodic theory. Let { X, }nen be a stationary process. An event
A is invariant if there is a fixed B € By, so that for any k, A can be
represented as

A= {w € Q; (Xk;Xk+1, .. ) S B}

The invariant events form a o—algebra denoted by Z. This is the basis for
the following famous result:

46 Theorem (Birkhoff’s ergodic theorem) Let X,, be a stationary pro-
cess, E|X1| < co. Then the following limit holds a.s. and in L;:

1 n
m > Xk = E(X4|D).
k=1

PRrROOF  See [7] O

If X, are iid random variables, all invariant events have probability zero or
one (Kolmogorov’s zero—one law). Obviously, then E(X;|Z) = E(X}), and
Birkhoff’s ergodic theorem translates into the strong law of large numbers.
To generalize this, call a process ergodic, if all invariant events have prob-
ability zero or one. Obviously, a process is ergodic iff all random variables
measurable with respect to Z are a.s. constant. Hence, if E|X;| < oo and
the process is ergodic, E(X1|Z) = E(X;) and Birkhoff’s theorem gives

1 n
— > Xy — E(X1)
"=

both a.s. and in L;.
Obviously, conditions for ergodicity are quite essential:

47 Lemma 1. Let f : E°° — R be measurable. Then the process
Yy o= f(Xny Xty .- .)
is stationary (ergodic) if X,, is stationary (ergodic).

2. A stationary process X, is ergodic iff all random variables measurable
with respect to I are a.s. constant.
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3. If a process X,, admits a unique stationary measure it must be ergodic

Back to Markov processes we have the following more special criteria

48 Lemma 1. If E is compact, there are always invariant measures for
©.

2. If an invariant measure v for ¢ is unique, then P¥ must be ergodic

3. Let v be an invariant measure for . Then if any f € L,(E,v) with
the property
fo™(2) = f(2)

is v—almost sure constant, then P” must be ergodic.

A.2 Ergodic Theory of Filtering Processes

We will briefly review the basic results about invariant measures for filtering
processes. The basic references are [17] for compact state spaces and [69]
for noncompact but locally compact state spaces. We will keep the same
notation as in the previous section. Let {X,}nen, be a Markov process
with transition probability ¢(A4,z) and Feller transmon semigroup, i.e. for
any f € Cy(E) we have that fo(™(2) := [ f(z)¢(™ (dz, 2) € Cy(E).

For a measurable function h : E —+ R and an iid process {W,}nen
independend of {X} define the measurement process

Yy, = h(Xp) + W

Let G, :=0(Y1...Yy).

49 Definition For any v € Pg we define the minimal and maximal filtering
processes given by

T,(f) = By (f(Xn)|Gn)

and

T (f) = By (f(X3)|Gn, Xo)
respectively, for f € Cy(E). By

m%(A) := P,(r" € A)

n
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and
MY (A) =P, (7 € A)

we denote the probabilities of the minimal and maximal filtering process,
respectively. Finally, the transition semigroup of minimal and maximal
filtering process is the same and is denoted by II(A, u).

It turns out that both the minimal and maximal filtering process are Markov
processes on Pg with Feller semigroup, i.e. if u; — p in the weak topology
of Pg, then II(A, u;) — II(A, i) in the weak topology of P(Pg).

50 Definition Let ® € P(Pg). A measure v € Pg is a barycenter of ® if
for every f € Cy(E) we have

v = [vnewa).
The central theorem on invariant measures of II is the following:

51 Theorem Assume p is p—invariant. Then m¥ — m* and M¥ — M*
as n — oo in the weak topology, where m* and M* are Il-invariant and
have barycenter p. Furthermore, if ® is any other Il-invariant measure with
barycenter u we have

mh(F) < ®(F) < M*(F)

for any F € C.(Pg).

A.3 Design of exponential families

Let p(z,6) be the parametrisation of an exponential family with canonical
statistics ¢;(x), ¢ = 1...k and carrier measure X\. Let ¢ be an arbitrary
measure with density g(z) and define the quantities

n; = /ci(a:)-q(:v)-d)\, i=1...k.

Then for the Kullback-Leibler distance KL(p, q) we have

dq k
KL(p,q) /10&’; B\ d)\d/\ (Z;Hﬂh' —¢(6)> .
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So the minimisation of the Kullback—Leibler distance is equivalent to

k
P*(p) = st;p[z Bimi — ¥(0)), (A.9)

which is a Legendre transform of . This appendix will be concerned with
numerical methods to compute ¢ as well as the Legendre transform, or
more exactly the minimizing argument 6*.

Suppose first that convenient expressions for ¢ as well as its first and
second derivatives, i.e. the expectation parameters n and their jacobian
%791 respectively, are available. To solve the maximisation problem (A.9),
consider a scheme of the form

gt = g(n) 4 5. A,

where A,, is the Newton—direction

on -1
Ap = — —n(6™
wimgg [1=n@™),
and 4, is a damping factor taken from the one dimensional maximisation
problem

6, := argmax [(0<n> AL — (O™ + 5An)] .

So 4§ is chosen to maximize the problem not globally but along the Newton—
direction. This scheme can be proved to converge globally. Locally the
convergence is even quadratic, i.e. the number of valid digits doubles at
every iteration step. There are further modifications simplifying both the
computation of § as well as the Newton—direction, which may be both very
costly.

Note that the Newton algorithm in principle cannot fail. However, the
problem is that all quantities needed for the Newton scheme are given only
approximately, and we observed that computing 1) and its derivatives far
from the usual range with necessary accuracy is not easy. Therefore, if the
Newton scheme does not converge, the reason is often failure of the routines
computing the quantities entering Newtons scheme. We will now turn to
the problem of computing them for a certain class of families called adapted.
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Design of exponential families

The exponential family we want to use for a state estimation problem is not
given in general but has to be designed. Usually it is required that certain
functions ¢;(z),i = 1...k are among the canonical statistics. Is it possible
to extend them to canonical statistics of an exponential family? Suppose
the following growth condition

lle@)ll < K(1+ |2*)

is fulfilled for a certain s > 0 and K > 0. Then setting

d
@) =Y lail

with r > s, we have that

k
p(z,0) = exp(z bici(z) — Orr1&(z) —(0))

is an integrable exponential family with parameter space
0= {(01 .. .0k+1) € Rk+1,0k+1 > 0}

and A(z) = 1. We can also set 8541 to a constant positive value a and
define an exponential family

k
p(z,0) = Ax) eXP(Z Oici(z) — ¥(0)),

with A(z) = exp(—a&(z)). We will call both exponential families adapted to
the ¢;(x). Of course, our growth condition and function £ is only one pos-
sible choice to get an exponential family with a prescribed set of canonical
statistics. However, our ¢ has the advantage to factorize.

The potential function for adapted exponential families

We now proceed to derive a power series expansion for the function ¢ :=
exp(v) for adapted exponential families. The notation ¢ will be adopted
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only in this appendix and is not to be confused with the transition pdf.
The coefficients in the power series expansion of ¢ are closely related to
higher moments of p(z, §). For calculations involving higher order moments,
the concept of multiindices is useful. A k—dimensional multiindex a =

(a1,...,01) is an element of N*. For a multiindex o use the following
notations
al ar!l-ag!,
o] = a1 +...+ag,
« « 67
T = zyt-oexpt,
olel glel
= a1 g
Oz 0z - -x))
Now we let

0(6) = / ¢a(@) p(z,0) dz = / oy (2) o (2) p(2, 6) d.

Defining the point 8 := [0...0, §x+1] we have the following straight forward
identity

»(0)

k
/exp <Z Oici(x) — 9k+1§(x)> dz
=1

/ Z $(91 e 0) %o () | exp(—bOkr1&(x)) dx
a€Nk

> ina(@)(e1 0%, (A.10)

a€eNk

where 1y := . This reduces the problem of computing ¢ at an arbitrary
point 8 to the computation of ¢ as well as higher order moments at a certain
fixed point 8 = [0...0,60+1]. For these quantities we have

na(0) = / ca (@) exp(=B51£(x) — $(8))-da,
0@ = / exp(—Bi41£(2))-d.
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Now ¢ is a homogenous function of degree r. Substituting

T = G;erz, dz = O,fordz,

we get
o(0) = H;f{r/exp(—f(w))dm.

The integral is a constant which may be computed offline. So far we used
only the homogenity of £&. Now for our adapted exponential families we

have p

[ epiganan = ( [epirar) = (2,

which finally yields

21’(%) log(0k+1)
r )~ r : ) )

0(0) = a- (o

To calculate the 74 (#) it can be very helpful to exploit symmetries and
invariance properties of the ¢;’s. For example, the ¢;’s may be functions
that factorize into functions depending on one coordinate only. Then all ¢,
factorize as well, and finally by choice of &, all n,, factorize into integrals over
only one coordinate. If for example the ¢;’s are monomials, these integrals
can be expressed in closed form using again the I'-function.

The problem of representing ¢ is now solved. In principle we could get
the moments 7, (6) for general # from computing higher formal derivatives
of the power series for . i.e. use the general equation

1 gl
Na(0) = @%90(

and apply it to Eqation (A.10). The approximation by taking a truncated
power series expansion for ¢ and compute formal derivatives is however of
less order than the approximation for ¢ itself. There are, however, other
methods exploiting the fact that the moments cannot be completely inde-
pendent in general.

We will investigate ¢ = exp(«)) in the following for the special case that
the canonical statistics are monomials and ) is the Lebesgue measure. To
denote these monomials, let A = {a(!)...a(} be a set of d-dimensional
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multiindices, i.e. each a® denotes a whole d—dimensional multiindex and
oz;z) denotes the j'th entry so that the canonical statistics can be written

as ¢;(z) = 2.

k .
p(0) = /exp(ZGixa(l))dx,
i=1

It is readily seen that ¢ satisfies a set of partial differential equations in this
case. The partial differential equations will be valid in the interior of the
parameter space, so we can assume it to be open. Now substitute z; := 7;z;
for every j =1,...,d and 7; close to one. Then we have

o (1) € ()
»(0) /Texp 20 dz =1p(t% "61,...,7% 6),

where 7 := 71 - - - T4. This property will be referred to as the invariance prop-
erty of p. Now take the gradient of both sides with respect to (71, ...,74)
and set them all equal to 1, which yields

(g, 2% Oy i=1,....d A1l
+ Z 80 ? J A . ( * )
This is the desired set of equations. These equations can be extremely
helpful for computing higher moments. Since 7; = go(@)_la%% we get from
the preceding equation

k
0=1+> a0m;, j=1,....d

i=1
by dividing through ¢(6). This equation may be analyzed by linear tools for
the solution space. To obtain similar relations for higher order moments,
take the derivative 6‘ L of eq. (A.11) and aqain divide by ¢(#). There are
again further symmetnes in this problem: Let 3, be two k—dimensional
multiindices. Now if

BraM + .+ Bra® = y10M + .+ el

then ng = 7,. The problem of course becomes more and more involved and
may require computational algebraic methods. It seems that symmetry
plays an essential role here, and maybe employing group theory one can get
more general results.
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