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Abstract

Probability forecasts are becoming more and more common, as users fac-
ing decision problems under uncertainty are increasingly aware of the fact
that probabilistic forecasts provide much more information than “determin-
istic” (point) forecasts. Studying probability forecasts is likewise appealing to
mathematicians, as the calculus of probability offers an answer to every pos-
sible question a forecast user might have—at least in principle. The reality
of ensemble forecasting however, especially in the weather and climate sec-
tor, looks a little bit less rosy. The epistemological challenges the reality of
ensembles forecasting puts onto a mathematically minded person are consid-
ered. The procedures by which current operational centres produce ensemble
weather forecasts are revisited, which exhibit a number of deficiencies, some
being due to limited resources and some being due to inherent theoretical
limitations of the problem. We are thus lead to contest the view that the
resulting distributions should be considered probabilities, either in a frequen-
tist’s sense or a subjectivist’s sense, as these forecast distributions neither
coincide with observed frequencies nor could possibly represent any (reason-
able) forecaster’s opinion on future weather events. Nonetheless, ensembles
have been shown to contain invaluable information. How can the view that
current ensemble forecasts do not represent probabilities in any meaning-
ful sense be reconciled with the claim that, as rational humans, we should
be able to express our uncertainty concerning future events in the form of
probabilities?

1 Introduction

In this paper we will often speak of forecasts, which seems to imply that
what is to be forecast lies in the future, but what we have to say equally
well applies to “now-casting” and reconstruction of past events. The events
are nonetheless assumed to be generated by a dynamical process and hence
have a temporal component, like weather events. The forecasts investigated
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in this paper consist of probability assignments. These probabilities are
generated by what will be referred to as a probabilistic forecasting system
(PFS). This might consist not only of a model of the dynamics, but also of
a network of measurement devices as well as a mechanism to assimilate the
observations into the system.

The days when authors found it necessary to write introductory words
or even a section defending probability forecasts against deterministic ones
are over. The main arguments though are certainly worth being looked at
again. It seems that two main types of arguments can be distinguished.
The first one asserts that probability forecasts contain more decision rele-
vant information than deterministic forecasts. It has more than amply been
demonstrated that this is the case for currently operational medium range
weather forecast systems. But this is not necessarily a compelling argument
for probabilities. Decision relevant information might be produced and con-
veyed by other means, and we will discuss a simple example in Section 4.
The second argument asserts that probabilities are necessary for the frame-
work of decision theory to apply. Probabilities aid the user in calculating
his or her exposure to risks. By minimising his expected risk he or she can
arrive at an “optimal” decision. This argument might have been overrated.
It has to be kept in mind that in order to be usefully employed in decision
making, a probability has to satisfy certain requirements which go beyond
just being a normalised density function. In Section 3, deficiencies of cur-
rently operational ensemble forecasting systems are discussed. The main
point here is not that these systems fail to reproduce the true dynamics,
but that they fail to represent our knowledge (and ignorance) of the prob-
lem adequately. Although this is to some extend unavoidable due to limited
time and computational resources, it leads us to argue (in Section 4) that
currently available “probability” forecasts do not sufficiently fulfil the re-
quirements of probability theory. What remains (in our opinion) of the case
for probabilities is outlined in Section 2.

2 Why we want to issue probability forecasts

Although the usefulness of currently operational probabilistic weather fore-
casts has amply been demonstrated, the case for probabilities as the ideal
means to present forecast information is, at least in our opinion, less com-
pelling than the amount of work devoted to probabilities in weather fore-
casting might suggest. This section will still argue for probabilities, but tries
to do so using minimum amount of assumptions. The essential requirement
is that we, the forecasters, want to give consistent advice to our customers.
The math in this section closely follows [11], Section 8, although the inter-
pretation is slightly different. As will be demonstrated, a certain form of
consistency is ensured by basing this advice on probabilities. Beyond the

2



reasons stated in this section, we have not yet found any which favour prob-
ability over other concepts that convey the same amount of information to
the forecast user.

Suppose the highly idealised situation where the weather has only two
states, rain and sunshine. We give (or sell) decision support to two customers
A and B with weather dependent business. Depending on what decisions
they take in advance and whether it will rain or not, they will incur losses
(or wins, which we will count as negative losses). Hence the losses LA(a, y)
of customer A (resp. LB(a, y) of customer B) are functions of the act a taken
and the weather y which actually obtains. An example which assumes that
both customers can act in only two ways is summarised in the two panels of
the following table:

Cust.A Rain Sunshine
a = 1 3 1
a = 2 0 2

Cust.B Rain Sunshine
a = 1 1 1
a = 2 0 4

As forecasters, we are supposed to aid the two customers in reaching a deci-
sion. It should be intuitively clear that telling customer A to choose a = 1
while telling customer B to choose a = 2 (a decision which we will denote
by [1, 2]) is bad advice. The total loss for both customers is 5 for sunshine
and 3 for rain, which is in any case inferior to decision [2, 1], which would
give accumulated losses of 3 for sunshine and 1 for rain, respectively. The
customers could pool these losses and arrange for pay-outs which at any
rate would leave them better off than with decision [1, 2]. Such a strategy
would not require any knowledge of the weather but only of the loss struc-
ture. Another way to see the deficiency of decision [1, 2] is to think of the
customers A and B being in fact only one customer with two businesses. We
(the forecasters) would face embarrassment as soon as the customer behind
the straw men A and B reveals his true identity.

The problem in the above mentioned example is that the decision [1, 2]
is dominated by decision [2, 1] in that the overall loss incurred is smaller for
the latter, no matter if it is rainy or sunny. It seems to be a reasonable
minimum requirement that forecasters should only support decisions which
at least are not dominated by any other decisions. A sufficient criterion for
a decision a not to be dominated by another is that it is supported by a
probability p, by which we mean that

pL(a, 1) + (1 − p)L(a, 0) ≤ pL(α, 1) + (1 − p)L(α, 0)

for any other decision α (here 1 might stand for “rain” and 0 for “sunshine”).
In other words, a decision a is supported by a probability p if it minimises
the expected loss with respect to p. Indeed, if a is dominated by another
decision b, then L(a, 1) > L(b, 1) and also L(a, 0) > L(b, 0), whence for all p

pL(a, 1) + (1 − p)L(a, 0) > pL(b, 1) + (1 − p)L(b, 0).

3



� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

S
un

sh
in

e

R
ai

n

I(a;p)

I(b;p)

I(c;p)

p

J(p)

Figure 1: Possible decisions (a, b, c) and corresponding affine functions.

For the following considerations, the reader might find Figure 1 useful. For
any decision a, we can consider the functions

I(a; p) := pL(a, 1) + (1 − p)L(a, 0)

which are linear in p (three of those are plotted in Figure 1). They define a
concave function

J(p) := min
a

I(a; p).

We can say that a sufficient criterion for a decision c not to be dominated
by another is that there is a probability p̄ so that the linear function I(c; p)
is a line of support of J(p) at p̄ (cf. Figure 1). The converse is true only if
we assume the following:

Condition (C): Every linear function that is nowhere smaller than J(p) can
be represented as I(a; p), that is, corresponds to a decision.

Suppose that a certain a is not supported by a pa (for example I(a; p) in
Figure 1). This means that it is possible to draw a line between I(a; p) and
the function J(p) (for example I(b; p) in Figure 1). Because of condition (C),
this line represents a possible decision which dominates I(a; p).

In the preceding example of customers A and B, we were concerned with
two decision problems described by two loss functions LA and LB. Now any
pair of decisions [aA, aB] made by the customers A and B, respectively, can
be considered as a compound decision a for the loss function L := LA +LB.
This decision corresponds to the linear function

I(a; p) := IA(aA; p) + IB(aB; p).

As was argued before, the decision a = [aA, aB] is not dominated by any
other decision if there is a pa so that I(a; p) is a line of support of the concave
function

J(p) := min
a

I(a; p) = JA(p) + JB(p)
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at pa. In particular, this is the case if aA and aB are supported by the same
pa. However, the latter is also necessary if we again assume condition (C)
for both customers. Suppose that the decision a = [aA, aB] is not supported
by a pa. Hence a line λ(p) parallel to I(a, p) can be found which is a line of
support of J(p) at a certain pλ. Any such line can be represented as a sum of
two lines supporting JA(p) and JB(p) respectively at the same point pλ. As
was assumed in (C), both lines correspond to decisions which the customers
have at their disposal, and the combined decision (which corresponds to the
line λ(p)) dominates a.

To summarise this section, it has been demonstrated that supporting
decisions by probabilities provides a sufficient safeguard against incoherent
decisions, especially in more complex decision problems. Under condition
(C), which requires a certain richness of decisions available to the customer,
probabilities even naturally come about if incoherent decisions are to be
avoided. The presented arguments though by no means assert that proba-
bilities are a necessary or natural or even practical way to convey forecast
information to end users or to provide decision support.

3 Typical Deficiencies of Probabilistic Dynamical

Models

In this section some typical deficiencies of probabilistic forecasting systems
(PFS) in general and ensemble forecasting systems in particular will be
revisited. The deficiencies considered could be labelled either a priori or
a posteriori. Any modelling process inevitably involves approximating or
simplifying our understanding of the problem, often due to limited com-
putational resources. Hence the PFS is known to be deficient a priori or
before the model has actually been put to a test. In other words, a priori
deficiencies are those that would go away if the model faithfully represented
the forecaster’s knowledge about the process under concern. For example,
the fact that global circulation models use only finite grid resolutions could
be labelled an a priori deficiency. It is known that processes on a sub-grid
scale matter for the overall dynamics of the weather [15, 10]. However, a
priori deficiencies are not limited to inadequate representations of the laws
governing the phenomenon under concern. Another important reason for
a priori deficiencies is inadequate representation of the laws of mathemat-
ics and especially probability theory. A particularly interesting example is
the problem of assimilating observations into the system. In order to make
forecasts, the model has to be initialised at a suitable initial condition,
depending on the history of observations. These observations are usually
corrupted by noise, whence the initial condition is in fact a distribution of
initial conditions. Calculating this distribution is often referred to as data
assimilation in geophysics [9], while the term filtering is used in the engi-
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neering and stochastics literature [6, 8]. Data assimilation is known to be a
formidable problem. Ideally, data assimilation should yield the conditional
probability of the model’s state given the past history of observation. Ac-
cording to the laws of probability, this problem has a mathematically well
defined solution called the optimal filter, but calculating it typically involves
solving an infinitely large set of dynamical equations (see, for example [1]).
In other words, proper data assimilation is an infinitely complex problem.1

Obviously, any operational PFS needs to compromise here. Finally, it should
be noted that ensembles are in some sense but a simplified way to issue prob-
ability assignments. Often this is referred to as sampling error, although it
is doubtful whether currently operational ensembles are even only a sam-
ple from the probability distribution the forecaster would issue if he could.
Hence this not–sampling from the desired probability distribution could be
seen as yet another a priori deficiency.

By a posteriori deficiencies we denote disagreement between forecasts
made by the PFS and actual observations. These deficiencies evidently
require the PFS to have been compared to observations. For example, in
order for the forecasts to actually bear any connection with reality, the
issued probabilities should agree (up to expected sampling error) with actual
observed frequencies. To give a rather simple example, suppose the problem
is to forecast (on a day–by–day basis) the occurrence of rain in London.
Every day, our PFS issues a probability pn, where n enumerates the days.
Let us fix an interval B ⊂ [0, 1] and consider the collection IB of all days
where pn falls into B, that is

IB := {n; pn ∈ B}. (1)

Considering the observed frequency fB of rain over all days in IB, we should
expect fB to fall into B as well, or more precisely, we should expect fB

to be equal to the mean value of the set {pn; n ∈ IB}. This property
is often referred to as reliability or alternatively the forecasts are called
calibrated [14]. Reliability generalises to more complicated PFS thus: Let
the variable to be forecast be denoted by Yn and the range of values of Y ,
the observation space, by E. Examples are an only finite set of possible
outcomes (only two in the case of the previous rain/no-rain example) or the
real line. Suppose at time n, the PFS issues a probability assignment Pn over
E, which can be a probability density function, a cumulative distribution
function or even a measure. This Pn subsumises our current information on
Yn. Reliability (or calibration) means that Pn describes the distribution of

1It should be said that there are notable exceptions to this statement, namely linear
systems with Gaussian uncertainties. In this situation, the Kalman Filter provides a
complete solution to the optimal filter. In nonlinear situations though, the Kalman Filter
fails to apply, and with very few exceptions, optimal filtering is an infinite dimensional
problem.
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Figure 2: Relative skill of two forecasts for 2m–temperature anomaly at
London Heathrow, noon. Left panel: logarithmic AUC score, right panel:
Brier score.

Y conditioned on the currently available information, or in symbols2

Prob(Yn|Pn) = Pn. (2)

As checking reliability involves the estimation of a rather complicated con-
ditional probability on the left hand side of Equation (2), various simplified
measures of reliability have been proposed in the literature (PIT [2], Tala-
grand diagrams [14], minimum spanning tree histograms [4]) which generally
form but necessary conditions for Equation (2). Using these measures, it has
amply been demonstrated that operational ensemble forecasting systems are
not reliable. In the next section we will discuss a very simple experiment
that yields further evidence to that, but at the same time demonstrate the
immense potential value of the output of operational ensemble forecasting
systems.

4 The Interpretation of Probabilistic Forecasts

This section starts with the discussion of a very simple experiment which will
demonstrate (yet again) that the output of operational ensemble forecasting
systems does not reach its full potential if employed directly as probability
forecasts. Figure 2 shows the relative skill of probabilistic forecasts for
temperature anomalies at London Heathrow weather station. The event to
be forecast is whether the temperature exceeds a certain normal provided
by a third order harmonic polynomial fitted to the archive of observations.
Two types of forecasts are generated using the ECMWF global medium
range ensembles, consisting of 51 members. The first simply consists of the
fraction of ensemble members that exceed the normal. In other words, if

2A somewhat different formulation of reliability (and in fact of the entire forecasting
problem) has been given in [2]. We conjecture that the formulation though is entirely
equivalent to ours if the quantity Gn(x) in [3], “the distribution from which Nature draws”,
is replaced by Prob(Yn = x|Pn).
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xn = [x
(1)
n . . . x

(51)
n ] is the ensemble at day n, the first forecast investigated

is given by

pn :=
1

51

∑

i

{x(i)
n ≥ νn} (3)

where νn is the normal. This approach will be referred to as counting ap-
proach. The second forecast was generated using the ansatz

qn := f(xn; θ) (4)

where f is a linear combination of 15 different statistics generated from the
ensemble, such as the mean, standard deviation, interquartile range etc. The
coefficients θ where determined using regularised (ridge) regression (see [5]).
This approach will be referred to as regression approach (cf [13], where lo-
gistic instead of linear regression was used). The two forecasts where then
compared in terms of the difference of their respective scores, where the
forecast obtained through counting was subtracted from the regression ap-
proach. Two scores were considered, namely the logarithmic AUC score
(Figure 2, first graph) and the Brier score (Figure 2, second graph). For a
discussion of these scores see e.g. [14]. Both indicate a significant superiority
of the regression approach (note that the log-AUC score is positively ori-
ented, i.e. a higher score indicates a better forecast, while the Brier score is
negatively oriented). The obvious conclusion is that the ensemble contains
more information about the problem than what is revealed by the simple
counting approach, or in other words, considering the ensemble a bunch of
equally likely scenarios of the future weather under-exploits it.

Both because of the preceding example and what has been discussed in
Section 3 it seems at least questionable whether the pure ensemble should
be termed a probability forecast. First note that there are (at least) two
distinct interpretations of probability, namely the frequentist’s and the sub-
jectivist’s view, although both agree on Kolmogorov’s axioms as the proper
mathematical formalism for probabilities. The frequentist’s view essentially
asserts that probabilities are limiting observed frequencies of repetitive in-
dependent trials. The notion of probability only applies in situations where
limiting observed frequencies exist (or at least are a reasonable idealisation
of the true circumstances). In other words, a probabilistic forecast is a prob-
ability forecast only if it is reliable. As was already mentioned, currently
operational weather forecasts are not reliable. In particular, failure of the
counting approach demonstrates that the ensemble is not a sample from a
reliable forecast distribution. Hence, the ensemble fails to get the frequen-
tist’s seal of approval. It might be argued that what the forecast needs is
recalibration, thereby ensuring a better agreement with observed frequencies
(and hence, probabilities). This is certainly a reasonable approach for prob-
lems as simple as the one presented above, and the mentioned regression
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approach can be understood as a means to recalibrate the forecast. Recal-
ibrating more complicated forecasts though quickly becomes a formidable
program, invariably suffering from lack of data. In weather forecasting, large
recurrence times and frequent model changes already hamper the calibration
of one dimensional continuous forecasts, and estimating higher dimensional
conditional probabilities seems utterly impossible. Note that, in some sense,
the model changes even on a daily basis, as the configuration of the obser-
vation network can differ quite drastically from day to day. As a summary,
it seems quite hard to thoroughly carry out the frequentist’s program in
weather forecasting. The situation of the frequentist appears to be even
more challenging conceptually (to say the least) for seasonal or climate fore-
cast. It seems quite hard to interpret a probability assignment for the global
mean temperature in 2050 (be it conditioned on a certain CO2–scenario or
not) in a frequentist’s sense.

Another important interpretation of probability is the personalist ap-
proach [12, 7]. Personalist views hold that probability represents the de-
gree of someone’s belief that a certain proposition (for example that it will
rain tomorrow) holds true. That the laws of probability hold for personal
probabilities can be deduced from certain assumptions on the individuum
being “rational” (according to some axioms of rationality). This does by no
means assume the person to be omniscient or entirely logical. Two people,
equipped with the same body of evidence, might still hold different per-
sonalist probabilities on whether it will rain tomorrow. Personalist views on
probability aim at providing a framework of consistent behaviour in the face
of uncertainty. Consequently, various approaches to defining personal prob-
abilities proceed along similar lines as presented in Section 2 of this paper
(see [11]). Above the frequentist’s interpretation, the personalist view has
the advantage of being still well defined even under the above mentioned cir-
cumstances, which seems to suggest this interpretation as the more suitable
for weather and especially climate forecasting. The personalist approach to
probability does not give any kind of guidance though as to how possible
inconsistencies in the decision making process might be removed. The the-
ory only guarantees consistency of decisions if the laws of probability are
obeyed. In Section 3 however, we saw that doing so can be of enormous, if
not insurmountable difficulty in practice. Current data assimilation systems
work with a plethora of approximations, resulting in inconsistent probabil-
ities. Concessions due to limited resources are inconsistent with rational
behaviour, as required by the personalist view on probability. The person-
alist view does not take into account that scrutinising all possible courses of
action in advance might require prohibitively large amounts of time and com-
puter power. In a particular situation it is of course almost always possible
to devise a probabilistic model simple enough to allow for exact mathemati-
cal solutions and hence fully consistent probability assignments, but usually
at the cost of discarding essential knowledge about the phenomenon under
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Figure 3: Left panel: Ensemble forecasts for 2m–temperature at London
Heathrow for 2. Nov. 2002, noon and ECMWF’s deterministic forecast (cir-
cles). The verification is plotted as a straight line. Right panel: Forecast
summary (for details see text).

concern. We might for example propose that the temperature at London
Heathrow Airport at noon follows a white noise process (thereby obviating
any need for data assimilation). Such a model would be a valid personalistic
model, although an utterly useless one.

To finish this section, a simple example will be discussed how ensem-
ble forecasts can convey useful information without using probabilities at
all. The left panel of Figure 3 shows a set of ensemble forecasts for 2m–
temperature at London Heathrow Airport. The ensembles possess different
lead times (shown on the x–axis), but all of them verify on 2. November 2002
at noon. To be able to distinguish between the individual ensemble members
they have been plotted with a slight jitter along the abscissa. The circles
represent ECMWF’s deterministic forecast, generated by using a model with
a very high resolution. Finally, the verification (i.e. the actual temperature)
was about 14oC and is plotted as a straight line. Examining this figure
closely, a couple of interesting facts emerge. The deterministic forecast first
underestimates the temperature until it jumps to roughly the correct value
at lead time 168h. The ensemble though seems to anticipate the correct
temperature well before that, as a large fraction of ensemble members are
close to the correct value even at 240h. Hence, the error in the deterministic
forecast could have been anticipated. It is fair to say though that at lead
time 120h, a large fraction of ensemble members indicate a temperature of
about 8oC, whence the deterministic forecast is expected to overestimate
the temperature while it is in fact quite correct. A comparison with other
dates would furthermore reveal that the ensemble spread at lead time 120h
is unusually large, thereby indicating the whole synoptic situation to be un-
certain; a fact that is probably of interest to the user. A possible way to
summarise the mentioned features is presented in Figure 3, right panel. The
deterministic forecast is plotted, while black squares in the row above (resp.
below) the axes box indicate likely over-forecasting (resp. under-forecasting)
of the deterministic forecast. Furthermore, an exclamation mark in the row
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labelled < s > indicates an unusually large ensemble spread. Further sym-
bols could for example indicate when the ensemble shows bi-modality, which
seems to be present here for lead times 144h and 120h. Although we do not
deny that probabilities are implicit in this example as well (and even should
be, as was argued in Section 2), it shows that probabilities do not have to
be explicit in decision support. An enlighted user, if sufficiently instructed,
is able to form his own opinion about how to use the forecast product, or,
as a personalist would put it, form his own personal probabilities given the
provided information.

5 Conclusion

It was discussed how a small set of assumptions in principle compels the
forecaster to issue probability forecast. On the other hand, issuing proba-
bilities which are acceptable by either a frequentist or a personalist meets
with considerable difficulty. This is due to a number of typical deficiencies
in probabilistic forecasting systems. The problem is not our limited under-
standing of the phenomenon, but our inability to express our understanding
in the form of forecasts, mainly due to restrictions in time and computa-
tional resources. We noted that issuing the information at hand through
probabilities is but one possibility, and a probability–free way of summaris-
ing an ensemble forecast was presented. It should be obvious though from
this discussion that either a modified interpretation of the probability con-
cept or something different is needed, most likely obtained by relaxing the
requirements of probability somewhat. We are not only unable to say ex-
actly what will happen, but that we are even unable to say exactly what
we think will happen. This somehow has to be taken into account, lest the
forecast user be mislead about what the forecasts actually mean.
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