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Abstract 
It has long been known that the information content of weather forecasts extends beyond the model-variables 
that share the same name as the forecast target-variables of interest.  Traditional model output statistics 
(MOS) algorithms extract information from any model-variable deemed relevant to estimating a given target-
variable, especially when the “corresponding” model-variable, taken at face value, forecasts “poorly”.  
Mathematically, this form of MOS can be seen as adopting a “projection” operator between model-state space 
and observations that is more complex than the identity operator.  Ensemble forecasts allow the introduction of 
a new twist.  Typically, one treats each individual ensemble member as a viable scenario, projecting it into 
observation space as a (dressed) forecast, and then combining all ensemble members; an alternative 
approach is to condition the probability forecast of the target value upon properties of the joint distribution of all 
the ensemble members (in a potentially multi-model ensemble).  Thus eMOS goes beyond MOS in that it not 
only aims to locate information in each individual model run, but also considers the ensemble as a whole, not 
merely as a collection of scenarios.  The approach is illustrated in precipitation forecasts, and more general 
interpretations relevant to THORPEX's core aims are noted. 
 
1.  Introduction 
 
Models are not identical to reality; precipitation in a 
model, for example, is just not the same thing as 
real-world precipitation.  There is a need, then, for 
interpretation of the results of numerical weather 
prediction. This need for interpretation is well 
known in the case of the correspondence between 
model-variables and the forecast target-variables:  
The practice of "bias correction" is widespread.  
Techniques such as model output statistics (MOS) 
(Glahn and Lowry 1972) go further, building a 
statistical relationship between the target-variable 
of interest, and any number of model-variables felt 
to provide relevant information to prediction of the 
target variable. 
The purpose of this paper is to draw attention to 
another issue of interpretation:  With the increasing 
availability of results from ensemble prediction 
systems, we are faced with not merely the problem 
of interpreting the model variables within each 
ensemble member, but also with the question of 
the appropriate interpretation of the variations 
between ensemble members.  The ensemble 
members are a sample drawn from the ensemble 
generating process, but what relationship exists 
between this process and our real-world 
uncertainties? 
 

We will consider the interpretation of ensembles in the 
realm of probabilistic forecasts, that is, the forecast 
should provide probabilistic information (say a 
distribution) for the target-variables.  This question can 
be explored through the consideration of a simple 
taxonomy of ensemble interpretation methods.  In the 
next section, we will look at these in the context of a 
simple precipitation prediction problem. 
 

1. Direct Interpretation.  Model-variables are 
treated as corresponding directly to target-
variables.  Furthermore, the distribution 
provided by the ensemble is treated as 
providing the appropriate forecast-distribution 
— if (for example) model-precipitation occurs 
in 50% of the ensemble members, then the 
probability forecast for (the target variable) 
precipitation is also 50%. 

2. Scenario MOS. The direct correspondence 
between model and target variables is 
dropped. Ensemble members are assumed to 
correspond (individually) to plausible 
probabilistic scenarios. Quite a degree of 
interpretation can go into generating each 
scenario – a historical dataset can be used to 
produce a relationship between model-
variables in each member and the appropriate 
corresponding scenario, hence “MOS”. The 
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weightings used to combine the scenario 
distributions into the forecast distribution 
need not be constant – for example, the 
weight given to the control may differ from 
that given to the rest of the ensemble. 
When there is a symmetry between 
members, however, (say we consider the 
ECMWF ensemble without the control) it 
may be reasonable to give the individual 
scenarios equal weighting. This is the case 
we consider in what follows. 

3. Ensemble MOS (eMOS). Any ensemble 
interpretation method can be viewed as a 
function from the information present in the 
ensemble to the probabilistic forecast for 
the target-variable. Viewed from this 
perspective, methods 1 and 2 encompass 
only a small proportion of such functions. 

In the next section, we will see that the ability to 
make the forecast depend upon the ensemble 
taken as a whole can have definite advantages. 

 
2.  Simplified Example 
 
We will examine the three approaches to ensemble 
interpretation in the context of the prediction of 12 
hour precipitation measured at a certain weather 
station (specifically, Helgoland; WMO10015), at 
given lead times.  In this section, we consider a 
vastly simplified version of this problem — we 
predict the (target) probability of precipiation 
greater than 0 mm using only the number of 
members in the ECMWF ensemble (excluding the 
control) in which the (model) precipitation fell 
above 0 mm.  This simplification is illuminating as it 
allows us to, relatively easily, determine the 
optimal application of each approach — thus we 
will not be comparing "strawmen".  We will return 
to more realistic versions of the problem in the next 
section. 
For all results in this paper, we show the 
performance of our predictions over the test period 
1 May 1998 to 31 April 1999.  Where a training 
period is required, we used only historical data 
between 1 May 1997 and 31 April 1998.  To 
evaluate the performance of predictions, we use 
the ignorance (Roulston and Smith 2002), a skill 
score for probabilistic forecasts defined by the 
negative logarithm (in base 2, say) of the predicted 
probability for the actual outcome.  Thus, if a 75% 
chance of precipitation is predicted, and 
precipitation actually occurs, we score –log(0.75), 
or approximately 0.415; if precipitation did not 
occur, we would score –log(0.25)=2 — smaller 
ignorance is better.  Ignorance should be 
considered as a relative score — we will always 

consider the difference in ignorance between two 
forecasts.  (One of the forecasts might be 
"climatology", in Figures 1 and 4, for example, the 
performance of climatology defines the zero-line.) 
 

 

 
Figure 1.  Comparison of  the ignorance of different 
ensemble interpretation methods with respect to climatology 
over the test period for different leadtimes.  The intervals 
shown are plus and minus one standard deviation of the 
bootstrap (Efron and Tibshirani 1986) average ignorance 
relative to climatology.  Lying above the zero-line indicates 
performance worse than climatology, lying below indicates 
better performance. 
 
In Figure 1, we see the performance of the direct 
interpretation of the ensemble with respect to 
climatology.  Climatology takes the proportion of 
observed "wet" instances in the training period as the 
predicted probability of precipitation.  
An examination of Figure 1 indicates that the direct 
interpretation of the ensemble is not only significantly 
worse than climatology, but the forecasts exhibit "anti-
skill" — performance with respect to climatology 
actually improves with leadtime.  One would 
reasonably expect that precipitation would generally 
become harder to predict rather than easier at longer 
leadtimes.  This merely confirms that model-
precipitation is just not the same as real precipitation, 
and that a more sophisticated interpretation is 
required. 
Under the scenario interpretation of an ensemble, one 
maps each individual member into a probabilistic 
forecast of the target, and then combines these into a 
final forecast.  In our simplified setting, the possible 
scenario interpretations are very limited.  We have 
only two types of ensemble members ("model-wet" 
and "model-dry"), and we wish only to forecast a 
binary event ("target-wet" or "target-dry").  The 
scenario interpretation is completely determined by 
just two parameters — the forecast probability for 
target-wet given model-wet and the forecast probability 
for target-wet given model-dry.  These are the 
parameters of the "scenario MOS".  For a given 
leadtime, these parameters may be fit in order to 
minimise ignorance over the training period.  Again, 



Figure 1 shows the results:  Performance is now 
generally better than climatology, and (sensibly) 
prediction becomes generally more difficult with 
increasing leadtime. 
It is important to note that in this simplified setting, 
we have been able to cover, with our two 
parameters, essentially every possible scenario 
interpretation.  In a more realistic setting (such as 
will be considered in the next section), we would 
have only been able to cover a subset of the 
possible interpretations.  The results shown in 
Figure 1, therefore, represent the best that can be 
expected of the scenario interpretation in this case.  
It is natural to ask, then, if by relaxing the 
assumptions of the scenario interpretation even 
better performance might be possible? 
If we assume that the ordering of the members of 
the ensemble contains no predictive information, 
then the relevant information in the ensemble can 
be summarised by a single integer in the range 0 
to 50 — the number of model-wet members.  Any 
interpretation is then just a function from the 
number of model-wet members (or equivalently the 
proportion) into the predicted probability for target-
wet.  The direct interpretation (viewed as a function 
on the proportion of model-wet members) is 
essentially the identity. The scenario 
interpretations can also be simply described:  Let x 
be the number of model-wet members of the 
ensemble, a be the scenario-MOS parameter for 
the predicted probability of target-wet given model-
wet, and b be the parameter for target-wet given 
model-dry.  Then the scenario forecast for the 
probability of target-wet is 

. This is just a 
linear function.  Requiring linearity is a very strong 
constraint on a function.  The idea of eMOS is to 
appropriately allow a wider class of functions 
(interpretations).  By breaking the scenario 
assumption, eMOS, is able to interpret the 
ensemble as a whole.  In this simplified setting, this 
is simply to allow the use of a non-linear function 
between the ensemble summary and the 
probability of precipitation. 
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What class of non-linear functions should we pick 
from?  It is possible to parameterise all the 
functions in the simplified setting, but it requires 51 
parameters, and there is simply is not enough 
training data to fit them all.  Instead, we content 
ourselves with choosing a smaller set of functions 
with only a few parameters.  Unlike the case with 
scenario-MOS, we are not guaranteed to cover all 
possible variations of eMOS.  Our aim here is 
merely to show eMOS sometimes outperforms the 
scenario approach. Rather than discuss the most 

appropriate functional forms for eMOS, we make three 
observations: 
1 The interpretation will not depend upon the ordering 

of members in the ensemble. 
2 The function should be reasonably “smooth”: small 

changes in the ensemble should not make large 
changes in the forecast. 

3 The function should be monotonic: as the number 
of model-wet members increases, the forecast 
probability of target-wet should not decrease.  

In any case, we fit the parameters of our chosen 
eMOS by minimising its ignorance across the training 
period.  (An alternative method is presented in 
Roulston et. al. (2001), in which the function is buit up 
by the method of “analogues” — the proportion of 
historical cases “near-by” the current case is used as 
the function value.  This method does not guarantee 
monotonicity.)   A typical result is shown in Figure 2.  
Here we plot the functions corresponding to the the 
three types of interpretations for a leadtime of 108 
hours.  One can clearly see the non-linear nature of 
the eMOS interpretation, and the scenario 
interpretation can be fairly easily imagined to be the 
“best” linear approximation to the non-linear eMOS.  
Clearly the direct interpretation is far from optimal. 
 

 
Figure 2.  Plots of functions corresponding to the three types 
of interpretations for a leadtime of 108 hours.  The direct 
interpretation corresponds to the identity, the scenario 
interpretation is linear, and the eMOS interpreation is non-
linear.  Also plotted are the historical cases in the training 
period, their position being given by the number of 
historically wet ensemble members — at the top of the plot 
are the cases that were actually wet, the dry cases are on 
the bottom. 
 
The performance of eMOS with respect to climatology 
is displayed in Figure 1 — it appears eMOS is out-
performing the scenario interpretation. To be sure we 
should directly compare the two methods. Such a 
comparison is provided by Figure 3.  For most 
leadtimes, the best scenario interpretation performs 
significantly worse than the eMOS. 
 
 



3.  Using More Information 
 
In the preceding section, only the binary 
information of model-wet or model-dry was used.  
Once this is extended to using the model-amount 
of precipitation in each member, it is no longer 
possible to summarise the ensemble by a single 
number: the ensemble can now be viewed as a 
one-dimensional distribution of model-
precipitations.  This could be approximately 
summarised by the selection of a number of its 
quantiles, say the 10%, 50%, and 90%.  We now 
build our quantile eMOS as a function from these 3 
quantities into the predicted probability for target-
wet. We fit by minimising ignorance on the training 
period.  The results are shown in Figures 1 and 3.  
The quantile eMOS generally outperforms the 
eMOS of Section 2, especially for leadtimes of up 
to about 3 days. 
 

 
Figure 3. Comparison of the scenario interpretation and 
the quantile eMOS of Section 3 versus the eMOS of 
Section 2.  Plotted are bootstrap intervals for the 
ignorances relative to the eMOS of Section 2 — the zero 
line represents the performance of this eMOS. 
 

4.  Other Thresholds 
 
Figure 4 displays the result of applying the quantile 
eMOS to the forecasting of a range of other 
thresholds.  Generally, some skill over climatology 
is maintained even for target-thresholds of up to 10 
mm, although as the threshold increases skill tends 
to decrease — it should be pointed out that only 
about 6 instances of precipitation at a rate greater 
than 10 mm in 12 hours occur in the training 
period.  Better performance might be expected 
here if a larger historical archive of comparable 
quality was available. 
 
5.  Conclusions 

There is useful information in ensembles that can 
be exploited only by interpreting the ensemble as a 
whole, rather than as a sampling of individual 

scenarios. This fact has implications for the design and 
use of operational ensemble prediction systems.  

 

 
Figure 4.  Ignorance of quantile eMOS vs climatology for a 
range of thresholds. 

As with any statistical procedure, the quality of the 
training set is of paramount importance, the quality of 
the results are limited by the number of examples of 
the event one wishes to predict in the training set.  
This argues in favour of the generation of a large 
forecast-verification archive for any operational 
ensemble forecasting system to better meet 
THORPEX goals of socio-economic application. 

Future work will involve extension of these methods to 
the interpretation of multiple sources of forecast 
information, and the consideration of targets of more 
direct economic importance.  Also, by combining 
information from a number of different threshold 
targets (such as were produced in Section 4), more 
continuous forecasts of targets such as temperature 
could be made.  In general, interpretation of the joint 
distribution of multi-model multi-initial condition 
ensembles could lead to a significant increase in the 
information content of current forecast products. 
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