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Abstract

Scoring rules are an important tool for evaluating the performance of
probabilistic forecasting schemes. A scoring rule is called strictly proper
if its expectation is optimal if and only if the forecast probability rep-
resents the true distribution of the target. In the binary case, strictly
proper scoring rules allow for a decomposition into terms related to the
resolution and to the reliability of the forecast. This fact is particularly
well known for the Brier Score. In this paper, this result is extended
to forecasts for finite–valued targets. Both resolution and reliability are
shown to have a positive effect on the score. It is demonstrated that res-
olution and reliability are directly related to forecast attributes which are
desirable on grounds independent of the notion of scores. This finding can
be considered an epistemological justification of measuring forecast qual-
ity by proper scores. A link is provided to the original work of DeGroot
and Fienberg (1982), extending their concepts of sufficiency and refine-
ment. The relation to the conjectured sharpness principle of Gneiting
et al. (2005a) is elucidated.

1 Introduction

Brown (1970) argues that it seems reasonable to value forecasts (be they proba-
bilistic or other) by a scheme related to the extent to which the forecasts “come
true”. Scoring rules provide examples for such schemes in the case of prob-
abilistic forecasts. After pioneering work by Good (1952) and Brier (1950),
scores were thoroughly investigated in the 1960’s and 1970’s. The score was
effectively thought of as a reward system, inducing (human) experts to provide
their judgments or predictions regarding uncertain events in terms of probabil-
ities (Brown, 1970; Savage, 1971). In this respect, scoring rules were devices to
elicit probabilities from humans.

The importance of using proper scores (see Section 2 for a definition) was
recognised already by Brier (1950) (see also Brown, 1970, for an entertain-
ing discussion and “some horrible examples”). The central argument is that
a forecaster’s probability assignment should be independent of the particular
reward system, which is guaranteed if the reward system constitutes a proper
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score. Savage (1971) (following de Finetti, 1970) points out that this universality
property allows for an alternative definition of subjective probability, which is a
concept of probability independent of the notion of relative observed frequency.

Over the last decades, computer power has increased enormously. Thus
it became feasible to produce probabilistic forecasts for dynamical processes
numerically, employing models of ever increasing complexity. Since it is ob-
viously irrelevant whether probabilities are produced by humans or machines,
scores provide a tool to evaluate probabilistic numerical forecasting systems,
too. In weather forecasting, scores had already been used to evaluate subjective
forecasts (issued by expert meteorologists), for example of rain, long before nu-
merical weather forecasts became available (Brier, 1950; Winkler and Murphy,
1968; Epstein, 1969; Murphy and Winkler, 1977). Nowadays, scores are widely
applied also in the evaluation of numerically generated probabilistic weather
forecasts (Gneiting et al., 2005b; Gneiting and Raftery, 2007; Bröcker et al.,
2004; Raftery et al., 2005; Wilks, 2006a; Bröcker and Smith, 2008).

In contrast to the expert–judgment–forecasts considered in earlier works
on scores, weather forecasts are often issued over a long period of time under
(more or less) stationary conditions, allowing archives of forecast–observation
pairs to be collected. Such archives allow to calculate observed frequencies
and to compare them with forecast probabilities. For example, if we were to
forecast the probability of rain on a large number of occasions, we would like
rain to occur on a fraction p of those instances where our forecast was (exactly
or around) p. A forecast having this property (up to statistical fluctuations)
is called reliable (Murphy and Winkler, 1977; Toth et al., 2003; Wilks, 2006b).
If a large archive of forecast–observation pairs is available, reliability becomes
a sensible property to ask for. As has been widely noted previously though,
it is not difficult to produce reliable forecasts if no constraint is put on the
information content or resolution of the forecast (the exact meaning of these
terms is often left vague, though). In any event, the grand probability (aka
climatological frequency) of the target will always be a reliable forecast, and
despite the difficulties with the term “information content”, many people would
presumably agree that this forecast is not very informative.

But how do these virtuous forecast attributes pertain to proper scores? Do
proper scores reward reliable forecasts? Does a “better informed” forecaster
really achieve a better score? In this paper, these questions are answered in the
affirmative (using the appropriate formalisation of “better informed”). In Sec-
tion 2, after recalling the notion of reliability, it is shown that proper scores allow
for a decomposition into terms measuring the resolution and the reliability of
the forecast. In particular, reliability turns out to have a direct positive impact
on the score. In Section 3, the concept of sufficiency is introduced, generalising
similar notions of DeGroot and Fienberg (1982). Sufficiency formalises the idea
of “being more informed”, and is shown to have a direct positive impact on the
resolution term of the score.

The decomposition of Section 2 is well known for the Brier score (see for
example Murphy and Winkler, 1987; Murphy, 1996; Blattenberger and Lad,
1985), a widely used score for forecasting problems with only two categories.
The Brier score presumably owes much of its popularity to this decomposition,
rendering its interpretation very clear. DeGroot and Fienberg (1982) have de-
rived a similar decomposition for any proper score in the case of binary targets.
The relation to the conjectured sharpness principle of Gneiting et al. (2005a) is
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elucidated. The appendix contains several more technical points. Appendix A
briefly revisits the conditional expectation, a concept that is made extensive
use of. Appendix B provides an equivalent characterisation of reliability. In
Appendix C, the equivalence between sufficiency according to DeGroot and
Fienberg (1982) and as used in this paper is shown. Finally, the derivation of
the decomposition (15) is presented in Appendix D.

2 A general decomposition

In this section, a general decomposition of proper scores will be derived. To
facilitate the discussion, some convenient notation will be introduced first, sup-
plemented with a brief reminder on proper scores. Let Y denote the quantity
to be forecast, commonly referred to as the observation or target.1 The ob-
servation Y is modelled here as a random variable taking values in a set I.
For the sake of simplicity, I is assumed to be a finite set of alternatives (e.g.
“rain/hail/snow/sunshine”), labelled 1 . . .K. Values of Y (i.e. elements of I)
will be denoted by small lowercase letters like k or l.

A probability assignment over I is a K–dimensional vector p with nonnega-
tive entries so that

∑

k∈I
pk = 1. The set of all probability assignments over I

is denoted by PI . Elements of PI will be denoted by p, q, and r. A probabilistic
forecasting scheme is a random variable γ with values in PI . In other words, the
realisations of γ are probability assignments over I. The reason for assuming γ
to be random is that forecasting schemes usually process information available
before and at forecast time. For example, if γ is a weather forecasting scheme
with lead time 48h, it will depend on weather information down to 48h prior
to when the observation Y is obtained. Designing a forecasting scheme means
to model the relationship between this side information and the variable to
be forecast (see Murphy and Winkler, 1987; Murphy, 1993, 1996, for a related
discussion).2

It was already mentioned what reliability means in case that I contains
only two elements (1 and 0, say). In the case of more than two alternatives,
this definition of reliability generalises as follows: On the condition that the
forecasting scheme is equal to, say, the probability assignment p, the observation
Y should be distributed according to p, or in formulae

P (Y = k|γ = p) = pk (1)

for all k ∈ I. In particular, a reliable forecasting scheme can be written as a
conditional probability. As is demonstrated in Appendix B, the reverse is also
true: every conditional probability of Y is reliable. In view of Equation (1), we

will fix the notation π
(γ)
k := P (Y = k|γ) , k = 1 . . .K for the conditional prob-

ability of the observation given the forecasting scheme. Like every conditional
probability, π(γ) is a random quantity. Hence, π(γ) is a probabilistic forecasting
scheme like γ itself. In terms of π(γ) and γ, the reliability condition (1) can
be written simply as π(γ) = γ. Since π(γ) is reliable, it trivially holds that

π(γ) = π(π(γ)). In any case, π(γ) is a function of γ, independent of whether γ is
reliable or not.

1Italics indicate that an expression is to be considered a technical term.
2We will not consider forecasting problems which are explicitly dependent on time, as

would be necessary for example to take into account seasonal effects.
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A scoring rule (see for example Matheson and Winkler, 1976; Gneiting and
Raftery, 2007) is a function S(p, k) which takes a probability assignment over I
as its first argument and an element of I as its second argument. For any two
probability assignments p and q, the scoring function is defined as

s(p, q) =
∑

k∈I

S(p, k)qk. (2)

The interpretation of the scoring function is that if Z is a random variable of
distribution q, then s(p, q) is the mathematical expectation of the score of the
assignment p in forecasting Z. It is our convention that a small score indicates
a good forecast. A score is called proper if the divergence

d(p, q) = s(p, q) − s(q, q) (3)

is nonnegative, and it is called strictly proper if d(p, q) = 0 implies p = q.
The interpretation of d(p, q) as a divergence is obviously meaningful only if the
scoring rule is strictly proper. From now on, scoring rules are assumed to be
strictly proper. It is important to note that d(p, q) is, in general, not a metric,
as it is neither symmetric nor does it fulfil the triangle inequality. The quantity

e(p) = s(p, p) (4)

is called the entropy of p.3 Table 1 gives a couple of frequently used scoring
rules along with the corresponding divergences and entropies.

Table 1 on top of this or the next page

For strictly proper scores,

e(p) = inf
q

s(q, p). (5)

Since s(q, p) is linear in p, Equation (5) demonstrates that for strictly proper
scores, the entropy e(p) is an infimum over linear functions and hence con-
cave (Rockafellar, 1970). For the particular cases listed in Table 1, it should be
fairly obvious that the entropy is a measure for the uncertainty inherent in a
probability assignment p. For the Brier score and the Ignorance, the entropy is
indeed a very common measure of inherent randomness of a distribution. Fur-
thermore, suppose p and q are two probability assignments featuring the same
entropy, then intuitively, any mixture of p and q should have a larger inher-
ent uncertainty than any of the individual probability assignments, an intuition
which the entropy supports, due to the concavity of e(p).

The aim now is to derive a decomposition of the expectation E [S(γ, Y )]
of the score achieved by the forecasting scheme γ. Since γ is random, the
expectation affects both γ and Y . In this paper, extensive use will be made
of the conditional expectation. A few words about this concept, along with
the most important properties, can be found in Appendix A. An elementary
property of the mathematical expectation gives

E [S(γ, Y )] = E [E [S(γ, Y )|γ]] . (6)

3Gneiting and Raftery (2007) refer to −e(p) as either the generalised entropy function or
the information measure, but since entropy is commonly interpreted as a lack of information,
the entropy is defined here as e(p).
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Name scoring rule S(p, k) divergence d(q, p) entropy e(p)

Briera |y − p|2 |p − q|2 p(1 − p)

Ignoranceb − log pk

P

l − log
“

pl
ql

”

ql

P

l − log(pl)pl

CRPSc
R

(F (z) − H(k − z))2dz
R

(F (z) − G(z))2dz
R

F (z)(1 − F (z))dz

PSSd −
p

α−1
k

‖p‖α−1
α

‖q‖α − 〈q,pα−1〉

‖p‖α−1
α

−‖p‖α

PLSe
P

l p2

l − 2pk

P

(pl − ql)
2 −

P

p2

l

aFor binary cases (i.e. I = {0, 1}).
bPropriety follows from Jensen’s inequality.
cContinuous Ranked Probability Score – Here F and G are the cumulative distribution

functions corresponding to p and q, respectively.
dPseudo-spherical Scores – Here α > 1, while ‖p‖α =

ˆ
P

l pα
l

˜

1/α
. Propriety follows from

Hölder’s Inequality.
eProper Linear Score, also referred to as the quadratic score. For binary cases (i.e. I =

{0, 1}), this score is equivalent to the Brier score

Table 1: Scoring rule, divergence, and entropy for several common scores. All
sums extend over I. See Epstein (1969); Murphy (1971) for a discussion of the
Ranked Probability Score. Matheson and Winkler (1976); Gneiting and Raftery
(2007) discuss scoring rules for continuous variables.

To calculate the conditional expectation E [S(γ, Y )|γ], the probability of Y given
γ is needed, but this is just π(γ), whence

E [S(γ, Y )|γ] = s(γ, π(γ)). (7)

Substituting with Equation (7) in (6) results in

E [S(γ, Y )] = E s(γ, π(γ)). (8)

From Equations (3) and (4) we get

s(γ, π(γ)) = e(π(γ)) + d(γ, π(γ)). (9)

Taking the expectation on both sides of Equation (9) and substituting for the
right hand side in (8), we obtain

E [S(γ, Y )] = E e(π(γ)) + E d(γ, π(γ)). (10)

The first term in Equation (10), the expectation of the entropy of π(γ), can be
decomposed further. Consider the (nonrandom) forecasting scheme obtained by
taking the expectation of π(γ),

π̄ := E π(γ) (11)

It is easily seen that π̄ is just the unconditional probability of Y , which in
meteorology is often referred to as the climatology of Y . Since s(π̄, π(γ)) is
linear in π(γ) and π̄ is not random, it follows immediately from Equation (11)
that

E s(π̄, π(γ)) = s(π̄, π̄) = e(π̄). (12)
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(In fact, the relation E s(π̄, γ) = e(π̄) is true for any reliable forecasting scheme
γ.) Adding and subtracting E s(π̄, π(γ)) on the right hand side of Equation (10)
and using Equation (12) we arrive at

E [S(γ, Y )] = e(π̄) − E d(π̄, π(γ)) + E d(γ, π(γ)). (13)

Equation (13) constitutes the desired decomposition of the expectation of S(γ, Y ).
This decomposition is completely analogous to and a generalisation of the well
known decomposition of the Brier score. The three terms in Equation (13) will
be (from left to right) referred to as the uncertainty of Y , the resolution term4,
and the reliability term. Note that for the Brier score, Equation (13) indeed
yields the known decomposition.

The remainder of this section will provide an intuitive interpretation of each
term in Equation (13). Firstly, the uncertainty of Y is the entropy of the
climatology, which can be seen as the expectation value of the score of the
climatology as a forecasting scheme. In other words, it quantifies the ability of
the climatology to forecast random draws from itself.

Secondly, note that the resolution term E d(π̄, π(γ)) is always positive defi-
nite, due to the strict propriety of the score. The resolution term contributes
negatively to the score. Since the resolution term describes, roughly speaking,
the deviation of π(γ) from its expectation value π̄ (see Equation 11), it can be
interpreted as a form of “variance” of π(γ). The resolution term is indeed given
by the standard variance of π(γ) in case of the Brier score.

It might seem counterintuitive that the larger this “variance”, the better the
score. Consider an event which happens with 50% chance. Then p = 0.5 is a
reliable forecast which has zero resolution with respect to any score. Consider
another forecast which says either p = 0.1 or p = 0.9, and which is also reliable.
(It follows that the outcomes p = 0.1 and p = 0.9 must occur with frequency
0.5) This forecast is clearly more useful than the former; if it says “0.1”, we
know for sure that the event is unlikely, while “0.9” is a reliable indicator of a
likely event. The fact that the second forecast is more informative is actually
the reason for its larger variability.

Finally, the reliability term (which is again positive definite) describes the
deviation of γ from π(γ). Recalling that γ = π(γ) indicates a reliable forecast,
the interpretation of the reliability term as the average violation of reliability
becomes obvious.

3 A decomposition of the resolution term

The decomposition (13) demonstrates how the score changes if the forecast
scheme γ changes in such a way that π(γ) remains constant. In this case, any
deviation of γ from π(γ) has adverse effects on the score. But in general, chang-
ing γ means that π(γ) changes, too. Thus, changes in γ usually entail changes
in both the reliability and the resolution term of the decomposition (13). The
changes in the resolution term are investigated in this section. It will turn out
that, roughly speaking, the resolution term quantifies the information content
of the forecast scheme.

The concept of forecast sufficiency, introduced by DeGroot and Fienberg
(1982), formalises the notion of being “more or less informed” and allows for

4Also called sharpness term
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the partial ordering of forecasting schemes. As will be seen in this section, γ1

will have at least the same resolution as γ2 if γ1 is sufficient for γ2. Thus, the
expectation value of the score reproduces the same ordering as sufficiency. This
result establishes a connection between a quantitative notion of information
as provided by the score, and a qualitative notion of information content as
provided by sufficiency. This is analogous to the relation between the reliability
term of the decomposition (13) and the qualitative reliability condition (1).

A forecasting scheme γ1 is called sufficient for a forecasting scheme γ2 if

π(2) = E

[

π(1)|γ2

]

, (14)

where the abbreviations π(1) := π(γ1) = P (Y |γ1) and analogously for π(2) were
used.5 In Appendix C, it is shown that the present notion of sufficiency is
equivalent to the corresponding definition of DeGroot and Fienberg (1982).

Before continuing with score decompositions, the rather technical condi-
tion (14) is given a somewhat informal interpretation. Suppose the forecaster
who is running forecasting scheme γ1, albeit having no access to the current
value of γ2, collected a large archive of past values of γ2 and hence is able to fit
a good approximation to P (γ2|γ1). With this information, the forecaster tries to
mimic forecasting scheme γ2 as follows. The forecaster’s mimicry version of γ2

(which is denoted by γ∗
2 ) is just a random draw of P (γ2|γ1) (conditioned on the

forecaster’s own forecast γ1). Since the expectation value of the score depends
only on the joint distribution of the forecast scheme and Y , the mimicry forecast
γ∗
2 will achieve the same score as the real γ2 (in expectation) if the compound

distribution of (γ2, Y ) and (γ∗
2 , Y ) are the same. It is straight forward to work

out that the latter condition is equivalent to (14). In brief, if γ1 is sufficient for
γ2, then by appropriate randomisation of γ1, a forecast γ∗

2 is obtained which has
the same statistical properties as γ2. Note also that in particular γ1 is sufficient
for γ2 if γ2 can be written as a function of γ1.

In Appendix D, it is shown that if γ1 is sufficient for γ2, it holds that

E d(π̄, π(2)) = E d(π̄, π(1)) − E d(π(2), π(1)). (15)

Keeping in mind that E d(π̄, π(1)) and E d(π̄, π(2)) are the resolution terms of
γ1 and γ2, respectively, and that d(. . .) is never negative, Equation (15) demon-
strates that the resolution of γ2 will be at most that of γ1.

To summarise, Equations (13) and (15) together allow for the following con-
clusions as to the approach of scoring forecasting schemes using strictly proper
scores:

• On average (that is, in terms of the expectation value), the forecasting
scheme π(γ) achieves the best possible score among all forecasts for which
γ is sufficient. If the score is strictly proper, π(γ) is uniquely defined
through this optimum property, in the sense that any forecast for which γ
is sufficient is either equal to π(γ) or it will have a worse score. This can
be considered as a proof of the conjectured sharpness principle of Gneiting
et al. (2005a), reinterpreted in our framework.

5If both γ1 and γ2 are reliable, then condition (14) modifies to γ2 = E
ˆ

γ1|γ2
˜

. In this
situation, γ1 is said to be at least as refined as γ2.
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• Per se, it is impossible to say how the score will rank unreliable forecast
schemes, even if one is sufficient for the other. The lack of reliability of
one forecast scheme might be out-balanced by the lack of resolution of the
other.

• It is also not clear how the score will rank forecast schemes (reliable or
unreliable) as long as none of the two forecast schemes is sufficient for the
other. It seems plausible that the actual ranking of such forecasts will
depend on the particular scoring rule employed.

4 An Example

In this section, an example is discussed, in order to illustrate the concepts of
this paper. Assume a weather forecasting centre issues ensemble forecasts on a
daily basis. To be specific, we look at forecasts for the two metre temperature at
Heligoland weather station (WMO 10015), measured at noon. The observations
are distributed among three categories, referred to as “warm”, “moderate”, and
“cold”, defined as follows. From the actual observations, a reference temperature
is computed as a fourth order trigonometric polynomial of time. This reference
temperature is subtracted from both forecasts and observations. An observation
is classified as “warm”, “moderate”, or “cold”, respectively, if the observation
(anomaly) is above 1.21◦, between 1.21◦ and −1.03◦, or below −1.03◦, respec-
tively. These categories were chosen so as to have a climatological probability
of 1/3.

Forecaster Alice devises a forecast scheme γA by assigning to each category
the relative number of ensemble members which fall into that category. Assum-
ing an ensemble of 15 members, there are 136 different possible values of γA

in total, that is, 136 triplets of probabilities (p1, p2, p3) assigned to the three
possible events. In fact, it turns out that 4 of them never get issued.

Forecaster Bob devises a forecast scheme γB which works very much like
Alice’s, only that Bob is given only 5 ensemble members. They are a random
subselection of the ensemble members that Alice is using. Otherwise, Bob fol-
lows Alice’s procedure, and consequently his forecast comprises 21 potential
values.

Forecaster Charleen uses a simplified form γC of Bob’s forecasting scheme.
She assings probability one to the category that is most likely according to
Bob’s forecast and zero to the other two. Hence, Charleen’s forecast scheme
can assume only 3 possible values.

Firstly, let us consider the reliability of these forecasts. In the present con-
text, reliability means the following. Fix a triplet (p1, p2, p3) among the possible
values of, say, Alice’s forecast scheme, and consider only days where her forecast
equals (p1, p2, p3). Then the observed frequencies of “warm”, “moderate”, and
“cold” over this restricted set of days should, in the long run, converge to p1, p2,
and p3, respectively. Note that in reality, a forecasting scheme can only proven
to be reliable in the sense of a statistical test, not in the sense of a mathematical
equality. In any event, the long time observed frequencies, seen as a function
of (p1, p2, p3), yield π(γA), abbreviated as π(A). For Bob (resp. Charleen), π(B)

(resp. π(C)) are defined similarly.
Contrary to popular belief, Alice’s and Bob’s counting approach leads to a
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Name Av. Score Resolution Reliability

Alice: −0.418 ± 0.011 0.1594 ± 0.0032 0.0744 ± 0.0028
Bob: −0.351 ± 0.014 0.0956 ± 0.0024 0.0784 ± 0.0019

Charleen: 0.616 ± 0.019 0.0456 ± 0.0001 0.9949 ± 0.0023

Table 2: The score (i.e. its expectation value), resolution, and reliability, esti-
mated for three forecasting schemes. The proper linear score was used. The
data set comprised 1810 forecast–observation pairs for two–metre temperature
anomalies at WMO 10015.

reliable forecast only in the limit of infinitely many ensemble members, even if
the original ensemble is reliable. Since Charleen’s ensemble is also clearly not
reliable, all three forecast schemes can be expected to have a nonzero reliability
term. To estimate the reliability and resolution terms, a leave–one–out approach
was employed (Bröcker, 2008), in order to avoid overly biased results. The entire
data set comprised 1810 instances.

table 2 on top of this or the next page

Results using the proper linear score are shown in Table 2. By choice of the
categories, the climatology for each category is 1/3, hence the uncertainty has a
value of e(π̄) = −1/3. With this in mind, the results in Table 2 are seen to obey
the decomposition (13), within the confidence limits. From the construction of
the forecasts, it is intuitively clear that Alice posesses the largest amount of in-
formation, and reassuringly, Table 2 demonstrates this. Alice’s forecast features
the largest resolution, followed by Bob and finally Charleen. This is consistent
with the theoretical results in this paper, since Alice’s scheme is sufficient for
Bob’s, while Bob’s scheme is sufficient for Charleen’s. The latter is true because
Charleen’s forecasting scheme is a function of Bob’s, which implies sufficiency
(see the discussion of sufficiency in Section 3 ). To see that Alice’s forecast-
ing scheme is sufficient for Bob’s, note that Bob’s forecast can be written as a
function of Alice’s and a random variable r, which models the random selec-
tion of 5 ensemble members out of 15 without replacement. To mimick Bob’s
forecast, Alice simply draws 5 times without replacement from the categories
“warm”, “moderate”, and “cold”, according to the probabilities assigned by
herself, and subsequently counts the occurences of each event. Thereby, Alice
creates a forecasting scheme which, although not equal to Bob’s, has exactly
the same statistical properties. More formally, we can verify condition (14). By

definition π
(B)
k = E [δY,k|γB ] and similarly for π(A), where δY,k = 1 if Y = k

and 0 otherwise. But

E [δY,k|γB ] = E [E [δY,k|γA, r] |γB]

= E [E [δY,k|γA] |γB]

= E

[

π
(A)
k |γB

]

which is condition (14). Here it was used that γB is a function of γA and r, and
that Y is independent of r.

Using π(A), π(B), and π(C) from the numerical computations, we can verify
Equation (15). For Alice and Bob, E d(π(A), π(B)) = 0.0703±0.0023; for Bob and
Charleen, E d(π(B), π(C)) = 0.05±0.0012. These numbers are, within confidence
limits, equal to the respective difference in resolution in Table 2, consistent with
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Equation (15).

5 Conclusion

The score of a probabilistic forecast was shown to decompose into terms related
to the uncertainty in the observation, the resolution of the forecast, and its reli-
ability, generalising corresponding results for the Brier score. The only property
required of the score is that it be strictly proper. By using a widely accepted
characterisation of reliability, and furthermore by generalising the concepts of
sufficiency and refinement due to DeGroot and Fienberg (1982), it was argued
that both the resolution and the reliability term in the decomposition quantify
forecast attributes for which the case can been made independently (i.e. not
referring to scoring rules). These results provide an epistemological justification
of measuring forecast quality by proper scores. Furthermore, the relation to the
conjectured sharpness principle of Gneiting et al. (2005a) was mentioned.
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Appendix

A Conditional expectation

Some readers might be unfamiliar with the notion of conditional expectations as
used in this paper. This appendix is supposed to provide some clarification. For
a mathematical treatment of the conditional expectation, the reader is referred
to textbooks of stochastics and probability theory, for example Breiman (1973).
Let X and Y be random variables. The conditional probability density p(x|y)
of X given Y = y describes the distribution of values of X which are consistent
with the condition Y = y. The conditional expectation of X given Y is defined
as

E [X |Y ] =

∫

xp(x|Y )dx.

The conditional expectation of X given Y is a function of the value of Y ; one
also defines

E [X |Y = y] =

∫

xp(x|y)dx

which is a function of the nonrandom parameter y. The conditional expectation
is completely determined by the joint distribution of X and Y .

Let f(x, y) be some function. Often, the notation EX [f(X, Y )] is found,
which is supposed to mean the expectation of X with Y being held constant.
This notion becomes problematic if X and Y are dependent, since then keeping
Y constant has side effects on X . Then, EX [f(X, Y )] can either mean to cal-
culate E[f(X, y)] as a function of the nonrandom parameter y and then setting
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y = Y , or it can mean E [f(X, Y )|Y ]. In general, these notions coincide only if
X and Y are independent. The conditional expectation can also be thought of
as calculating E[f(X, y)] as a function of the nonrandom parameter y, but tak-
ing into account the side effects on the distribution of X . The most important
rules for manipulations involving the conditional expectation are the following.
Let X , Y , and Z be random variables. Then

1. E [E [Y |X ]] = E [Y ].

2. E [Y |X ] is linear in Y .

3. If Y is a function of X , then E [Y Z|X ] = Y E [Z|X ].

4. If Y is a function of X , then E [Z|Y ] = E [E [Z|X ] |Y ] (law of iterated
expectations).

5. P(Y = k|X) = E [δY,k|Y ], where δY,k = 1 if Y = k and 0 otherwise.

B An alternative definition of reliability

In this section, it will be shown that any conditional probability is a reliable
forecasting scheme. The reader is assumed to be familiar with the basic notions
of probability theory (see e.g. Breiman, 1973, chapter 4). Let γ be a probabilistic
forecasting scheme which can be written as a conditional probability, that is

P (Y = k|F) = γk (16)

for all k ∈ E and some random variable F , modelling the information that
γ is built upon6. On both sides of Equation (16), we take the mathematical
expectation conditioned on γ. The right hand side gives back γk. To compute
the left hand side, note that because of Equation (16), γ is a function of F .
Hence

E [P (Y = k|F) |γ] = E [E [δY,k|F ] |γ]

= E [δY,k|γ]

= P (Y = k|γ) ,

(17)

where δY,k = 1 if Y = k and 0 otherwise. This demonstrates that P (Y = k|γ) =
γk, which is the condition for reliability.

C Sufficiency and refinement of DeGroot and

Fienberg

Let γ1, γ2 and π(1), π(2) as in Section 3. With these definitions, γ1 is sufficient for
γ2 if π(2) = E

[

π(1)|γ2

]

. In this appendix, it is shown that this is equivalent to the
sufficiency condition given by DeGroot and Fienberg (1982), Equation (4.3). To
state the latter condition, we assume that the conditional probability of γ1 given
Y and the conditional probability of γ2 given Y , respectively, have densities

6Readers familiar with the concept of σ–algebras will have realised that an arbitrary σ–
algebra can be substituted for F

11



g1(p|Y ) and g2(p|Y ), respectively. Furthermore, the conditional probability of
γ2 given γ1 is assumed to have a density h(γ2|γ1). With these conventions, γ1

is sufficient for γ2 in the sense of of DeGroot and Fienberg (1982), if

g2(γ2|Y ) =

∫

PI

h(γ2|γ1) g1(γ1|Y ) dγ1. (18)

Multiplying both sides by π̄ and dividing by the density of γ2 we obtain

π(2)(γ2) =

∫

PI

π(1)(γ1) f(γ1|γ2) dγ1, (19)

with f(γ1|γ2) being the conditional probability of γ1 given γ2. Here we need to
write explicitely that π(1) and π(2) depend on γ1 and γ2, respectively. But the
right hand side of Equation (19) is just E

[

π(1)|γ2

]

.

D Derivation of Equation 15

Still, γ1, γ2 and π(1), π(2) are as in Section 3, with π(1) being sufficient for π(2).
By just applying definitions, we get

d(π̄, π(2)) = s(π̄, π(2)) − s(π(2), π(2))

= s(π̄, π(2)) − s(π(1), π(1))

− (s(π(2), π(2)) − s(π(1), π(1))).

(20)

The mathematical expectation of the first term can be written as

E s(π̄, π(2)) = E [E [S(π̄, Y )|γ2]]

= E [E [S(π̄, Y )|γ1]]

= E s(π̄, π(1)),

(21)

using elementary properties of the conditional expectation and the fact that π̄
is not random. Next, the expectation of the third term is considered:

E s(π(2), π(2)) = E

[

s(π(2), E
[

π(1)|γ2

]

)
]

= E

[

E

[

s(π(2), π(1))|γ2

]]

= E s(π(2), π(1)).

(22)

The first equality is due to sufficiency; the second is valid because π(2) is a
function of γ2, so it can be taken under any expectation conditioned on γ2; and
the third equality uses elementary properties of the conditional expectation.
Taking the expectation over Equation (20) and using Equations (21, 22), we
obtain Equation (15).
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