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Abstract

Proper scoring rules provide a useful means to evaluate probabilistic
forecasts. Independent from scoring rules, it has been argued that relia-
bility and resolution are desirable forecast attributes. The mathematical
expectation value of the score allows for a decomposition into reliabil-
ity and resolution related terms, demonstrating a relationship between
scoring rules and reliability/resolution. A similar decomposition holds
for the empirical (i.e. sample average) score over an archive of forecast–
observation pairs. This empirical decomposition though provides a too
optimistic estimate of the potential score (i.e. the optimum score which
could be obtained through recalibration), showing that a forecast assess-
ment based solely on the empirical resolution and reliability terms will be
misleading. The differences between the theoretical and empirical decom-
position are investigated, and specific recommendations are given how to
obtain better estimators of reliability and resolution in the case of the
Brier and Ignorance scoring rule.

1 Probability forecasts, reliability, and resolu-
tion

It has long been noted that probabilities, if used and interpreted correctly, pro-
vide a consistent means to convey forecast information. Probability forecasts
are now used operationally in a large number of different context, ranging from
weather predictions to financial and economical forecasts. An ongoing discus-
sion concerns the question of how to define and quantify value of probability
forecasts. On the one hand, several virtuous forecast attributes have been iden-
tified, most importantly reliability and resolution (Murphy and Winkler, 1987;
Murphy, 1993, 1996). On the other hand, quantitative measures of forecast
performance have been proposed, most importantly proper scoring rules (Brier,
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1950; Brown, 1970; Savage, 1971; Matheson and Winkler, 1976; Gneiting and
Raftery, 2007). The connection between scoring rules and the attributes relia-
bility and resolution has been clarified in a series of papers (Murphy, 1973, 1996;
Hersbach, 2000; Bröcker, 2009). The main conclusion of that research is that the
average score of a forecast can be decomposed into terms which independently
quantify the reliability and the resolution of the forecast; both attributes have a
positive effect on the average score. These results will be revisited in Section 2.

For the purpose of forecast assessment, it would be of interest to estimate
the reliability and resolution terms. The decomposition does not only hold for
the true (ensemble) average of the score, but also for the empirical average
(over a large sample of forecast–observation pairs; see Sec. 2.3). This suggests
to use the reliability and resolution terms from the empirical decomposition as
estimators for the corresponding terms in the true decomposition, which has
become common practice at least in the meteorological community. The main
purpose of this paper is to show that this is not a good idea. There are important
differences between the true terms and their empirical counterparts. Roughly
speaking, in truth the forecast tends to be more reliable than what the empirical
reliability term suggests. At the same time, the true resolution tends to be less
than the empirical resolution term. Clearly, any forecast assessment should
take this into account. A simplified analysis of this phenomenon is presented
in Section 3. Specific recommendations concerning better estimators of the
terms are provided for the Brier score and the Ignorance score, two popular
scoring rules. A more mathematical treatment will be provided in a forthcoming
paper Bröcker (2011).

The remainder of the present section provides a short introduction to prob-
abilistic forecasts, along with a discussion of the two forecast attributes of re-
liability and resolution. Let Y denote the quantity to be forecast, commonly
referred to as the observation, predictant, verification or target. The observation
Y is modelled here as a random variable taking values in a set K, the state space.
The state space is assumed to be a finite set of mutually exclusive alternatives
(e.g. “rain, hail, snow, sunshine”), labelled 1 . . . K. Values of Y (i.e. elements
of K) will be denoted by small lowercase letters like k or l. Any probability
distribution over K is uniquely specified by a probability vector, by which we
mean a K–dimensional vector p with nonnegative entries so that

∑K
k=1 pk = 1.

Generic probability vectors will be denoted by p and q. (Standard non–bold
type will be used for vectors, and I promise that no symbol will be employed
for both a vector and a scalar at the same time.) A probabilistic forecasting

scheme is a scheme whereby information is compiled into probability vectors.
More precisely, a probabilistic forecasting scheme is a random variable Γ, the
values of which are probability vectors over K. We can also think of Γ as a
vector of K random variables (Γ1 . . .ΓK) with the property that

Γk ≥ 0 for all k,
∑

k

Γk = 1.

Since the probability vectors over K form a continuum, Γ is, in general, a random
variable with continuous range. In order to simplify the presentation though,
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we assume that the forecasting scheme Γ assumes only a finite number of values
γ(1), . . . , γ(D). In situations where this assumption is not fulfilled, the forecasts
first have to be mapped onto a new finite set of forecasts {γ(1) . . . γ(D)}, for
example by binning (see e.g. Bröcker, 2008a, as well as Section 4.2). We proceed
here assuming this step has been applied.

Taking both the observation as well as the forecast as random variables is
often referred to as the distributions–oriented approach, see for example Murphy
and Winkler (1987); Murphy (1993, 1996). The reason for assuming Γ to be
random is that forecasting schemes usually process information available before
and at forecast time. For example, if Γ is a weather forecasting scheme with
lead time 48h, it will depend on random weather information down to 48h prior
to when the observation Y is obtained. The probabilistic association between
Γ and the observation Y then determines the predictive power of Γ.

We will now briefly revisit the concepts of reliability and resolution, which
are widely agreed upon as being desirable properties of probability forecasts.
On the condition that the forecasting scheme Γ is equal to, say, the probability
vector p, the observation Y should be distributed according to p. Reliability
means that this holds for all p. We can express reliability as the condition that

P

[

Y = k
∣

∣

∣
Γ = γ(d)

]

= γ
(d)
k for all d and k ∈ K. (1)

In view of Equation (1), we define π
(d)
k = P

[

Y = k
∣

∣Γ = γ(d)
]

for the conditional

probability of the observation being k, given that the forecast is equal to γ(d).
The reliability condition (1) can then be written simply as π(d) = γ(d) for all d.

In the literature, other concepts of reliability can be found which are related
to but different from the reliability concept presented here. In general, those
definitions of reliability are weaker than (i.e. implied by) reliability as defined
here. An example is to merely require that on average, the forecast Γ agrees with
the climatology of Y (see Sec. 2.2 for a definition). Several concepts of reliability
are compared and contrasted in Hamill (2001). Gneiting et al (2007) give a
more mathematical treatment; although their formalism is slightly different,
the present definition of reliability is equivalent in spirit to what Gneiting et al
refer to as calibration.

Reliability alone does not make for a useful forecast; for example, even the
unconditional probability distribution of Y constitutes a reliable forecast. This
forecast though is constant and therefore unable to delineate different values of
the observation Y . Therefore, as another desirable forecast attribute, resolution
has been advocated. Definitions of resolution are often found to be somewhat
vague in the literature, although it is generally agreed upon that resolution
should depend on π rather than on Γ itself, and that it should be related to the
information content of the former, relative to some standard forecast such as
the unconditional probability. A more precise definition was given in Bröcker
(2009), to be revisited in Subsection 2.2.
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2 Probabilistic scoring rules, and their decom-
position

In this section, the concept of scoring rules for probability forecasts will be revis-
ited. Scoring rules can be thought of as a way to assign “points” or “rewards” to
probability forecasts, providing quantitative indication of success in predicting
the observation, in contrast to the more qualitative notions of forecast value
discussed in the previous section. Scoring rules measure the success of a single
forecast; the overall score of a forecasting scheme is then taken as the average
score over individual cases. There are performance measures which cannot be
written as an average score over individual instances, one popular example being
the Receiver Operating Characteristic (see for example Egan, 1975).

2.1 Definition and properties of scoring rules

A scoring rule (see for example Matheson and Winkler, 1976; Gneiting and
Raftery, 2007) is a function S(p, k) which takes a probability vector p as its first
argument and an element k of K as its second argument. We will take a small
score as indicating a good forecast. One of the most commonly used scoring
rules is the Brier score (Brier, 1950), which applies to the case where k = 0 or 1
and reads as

S(p, k) = (p1 − k)2.

The Brier score generalises to situations in which K = {1 . . . K} as follows:

S(p, k) =
K
∑

l=1

(pl − δk,l)
2,

where δk,l = 1 if k = l and 0 otherwise. The Ignorance (or logarithmic scoring
rule) is also popular and reads as

S(p, k) = − log(pk).

Many authors have argued that in order to avoid inconsistencies, scoring
rules should be strictly proper (see also Brown, 1970; Bröcker and Smith, 2007).
To define this concept, consider the scoring function, which for any two proba-
bility vectors p and q is defined as

s(p, q) =
∑

k∈K

S(p, k)qk. (2)

The scoring function is to be interpreted as the mathematical expectation value
(ensemble average) of the score of a forecasting scheme which issues constant
forecasts equal to p for a random variable Y which has in fact distribution q.
But if the actual distribution of Y is q, then any probability vector different
from q should have a worse average score than q itself. This is the essence of
the following definition. A score is called proper if the divergence

d(p, q) = s(p, q)− s(q, q) (3)
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is nonnegative, and it is called strictly proper if it is proper and d(p, q) = 0
implies p = q. For strictly proper scoring rules, d(p, q) can be interpreted as a
measure of dissimilarity between p and q. From now on, the term “scoring rule”
is supposed to mean “strictly proper scoring rule”, unless otherwise stated. The
fact that d(., ..) is positive definite will be exploited extensively in this paper.

For later reference, we define

e(p) = s(p, p) (4)

as the entropy associated with the scoring rule S. This nomenclature is moti-
vated by the fact that for the Ignorance, one has e(p) = −

∑

log(pk)pk. This
quantity is known as the entropy in both statistical physics as well as informa-
tion theory. For later reference, we note that for the Brier score,

e(p) = 1−
∑

k

p2k. (5)

2.2 Decomposition of the score’s expectation value

A scoring rule provides a means to evaluate a probabilistic forecasting scheme
individually for each forecast instant. Therefore, the mathematical expectation
value E(S(Γ, Y )), henceforth referred to as the true score, can be interpreted as
an average measure of forecast quality. (Since Γ is random, taking the expec-
tation affects both Γ and Y .) The true score allows for a decomposition into
several terms which can be interpreted in terms of resolution and reliability.
This result provides a link between resolution and reliability, which are qualita-
tive notions of forecast value, with the true score, which is a quantitative notion
of forecast value, thereby justifying the scoring rule methodology. (To get a de-
composition of a forecast with a continuum of possible values, the relation (13)
below needs to be modified, see Stephenson et al (2008).)

Throughout the paper, we will use the following shorthand

ρd = P(Γ = γ(d))

for the probability that Γ assumes the value γ(d). Further, we let

π̄k = P(Y = k)

be the unconditional distribution of Y , often referred to as the climatology.

Note that π̄k is the average of π
(d)
k , in the sense that

π̄k =
∑

d

P(Y = k|Γ = γ(d))P(Γ = γ(d)) =
∑

d

π
(d)
k ρd.

The decomposition of the true score will be presented here as two statements
in Equations (6) and (8). For mathematical proofs, the interested reader is
deferred to the classical paper by Murphy (1973) for the Brier score (and for
binary forecasting problems), to Hersbach (2000) for the Continuous Ranked
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Probability Score (not discussed here), and to Bröcker (2009) for the general
case.

The first decomposition reads as

E(S(Γ, Y )) =
∑

d

e(π(d))ρd +
∑

d

d(γ(d), π(d))ρd. (6)

The second term on the right hand side in Equation (6) is positive definite,
and referred to as the reliability term. Recalling that γ(d) = π(d) indicates a
reliable forecast, we see that the reliability term quantifies the average violation
of reliability. The first term in Equation (6) is referred to as the potential score

by Hersbach (2000). This is for the following reason. Consider a forecasting
scheme Π defined to be

Π = π(d) whenever Γ = γ(d). (7)

Then the potential score can be shown to be the true score of the forecasting
scheme Π, namely

∑

d

e(π(d))ρd = E(S(Π, Y )).

Now Π is, by construction, a reliable forecasting scheme, and Equation (6) says
that Π achieves a better true score than Γ, confirming our intuitive understand-
ing that reliability is a virtuous forecast property. The potential score will be
subject to the next decomposition, which is

∑

d

e(π(d))ρd = e(π̄)−
∑

d

d(π̄, π(d))ρd. (8)

This relation gives a concise description of the potential score in terms of the
fundamental uncertainty e(π̄) of Y , less a positive definite term called the res-

olution term.
To interprete the resolution term, we first recall that the expectation value

of Π is π̄. Hence the resolution term describes, roughly speaking, the average
deviation of Π from its expectation value π̄; it can therefore be interpreted as
a form of “variance” of Π. The resolution term is indeed given by the usual
variance of Π in case of the Brier score. The uncertainty e(π̄) can be seen as
the true score of the climatology as a forecasting scheme. Hence, the entropy
quantifies the ability of the climatology to forecast random samples from itself.
As an aside, we note that the decomposition is also valid for improper scores, but
then the divergence d is no longer positive definite, and improving the forecast
in terms of reliability or resolution does not necessarily yield a better score.

2.3 Decomposition of the empirical score

We will now discuss a decomposition similar to the previous one, albeit not for
the true score, but rather for the empirical (sample) average of the score over an
archive T of forecast–observation pairs. More specifically, T = {(Γ(n), Y (n)), n =
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1 . . . N}, where (Γ(n), Y (n)) are independent and identically distributed reali-
sations of the forecast–observation pair (Γ, Y ). The vector components of Γ(n)
are still written as subscripts, that is Γ(n) = (Γ1(n) . . .ΓK(n)), and we have

Γk(n) ≥ 0 for all k, n,
∑

k

Γk(n) = 1 for all n.

Given an archive T , the true score can be estimated by the empirical score

Ŝ =
1

N

N
∑

n=1

S (Γ(n), Y (n)) .

A decomposition similar to the one we have seen in Section 2.2 holds for the
empirical score, to be discussed now. Let Nkd be the number of instances in
the data set where Γ(n) = γ(d) and at the same time Y (n) = k. Further, let
N•d =

∑

k Nkd be the number of instances in the data set where Γ(n) = γ(d),
that is, we sum over the rows of the contingency table Nkd and replace k with a
bullet •. Obviously,

∑

d N•d = N , the total number of instances in the data set.
Now, define for d = 1 . . . D and k = 1 . . . K the relative observed frequencies

o
(d)
k =

Nkd

N•d
. (9)

For every d, the vector o(d) = (o
(d)
1 , . . . , o

(d)
K ) is a probability vector. Moreover,

if we let the number of instances go to infinity, then due to the law of large
numbers,

o
(d)
k → π

(d)
k , (10)

so that o
(d)
k can be interpreted as an estimate of π

(d)
k . Furthermore, we set

ōk =
Nk•

N

with Nk• =
∑

d Nkd. Note that ōk is the empirical average of o
(d)
k over d.

On the other hand, ō = (ō1, . . . , ōK) is an approximation of the climatological
probability distribution of Y , namely

ōk → π̄k for N → ∞. (11)

Finally, we set

rd =
N•d

N
.

If we let the number of instances go to infinity, then

rd → ρd. (12)

In terms of these objects, the decompositions

1

N

∑

n

S(Γ(n), Y (n)) =
∑

d

e(o(d)) rd +
∑

d

d(γ(d), o(d)) rd (13)
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and
∑

d

e(o(d)) rd = e(ō)−
∑

d

d(ō, o(d)) rd (14)

hold. The decompositions (13) and (14) might be considered as empirical ver-
sions (i.e. summation over samples) of the decompositions (6) and (8). The
first and second terms in the decomposition (13) are referred to as the empirical

potential score and the empirical reliability, respectively, while the terms in the
decomposition (14) are called empirical uncertainty and empirical resolution,
respectively.

Empirical (i.e. sample) averages are commonly used to estimate ensemble
averages. In particular, the empirical score can be employed as an estimator
of the true score. Indeed, due to the law of large numbers, the fluctuations in
the empirical score are expected to become small, and furthermore we have the
identity

E

(

1

N

∑

n

S(Γ(n), Y (n))

)

= E (S(Γ, Y )) , (15)

At first glance, it might appear reasonable to use the terms in the empirical
decomposition to estimate the corresponding terms in the true decomposition.
Even more so, because we can formally arrive at Equations (6) and (8) if we
replace the quantities r, o and ō with their respective limit values ρ, π, π̄ in the
relations (13) and (14). We will see though that this is not a good idea, as there
are systematic deviations between the empirical and their corresponding true
terms in the decomposition. These deviations will be calculated explicitely in
Sections 3.1 and 3.2 for the Ignorance score and the Brier score, respectively;
in the remainder of the present section, we will discuss heuristic arguments as
to why the empirical decomposition terms give a misleading picture of the true
forecast value.

In view of the decomposition (13, 14), we might think about defining a new,
“calibrated” probabilistic forecasting scheme Φ as follows: whenever Γ(n) = γ(d)

for some d, we set Φ(n) = o(d). Note that Φ is an approximation of the reliable
forecast Π discussed above by Equation (7). The empirical score of this forecast
is given by the empirical potential score

1

N

∑

n

S(Φ(n), Y (n)) =
∑

d

e(o(d)) rd. (16)

The decomposition (13) shows that the empirical score of Φ is always better
than that of Γ (the empirical reliability term of Φ would be zero). This seems
to suggest a foolproof way of improving forecast skill. We should be suspicious
though about the fact that this strategy would always improve the score, even if
the original forecast were in fact reliable! How can this be? Roughly speaking,
this comes about because we “recalibrate” not only the real deviations from re-
liability, but also those arising merely through sampling variations. This has a
systematic and detrimental effect. Although Φ approximates Π, the two are not
identical and therefore Φ is in fact not fully reliable. Hence, the true reliability
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term of Φ is larger than zero, and therefore the true score of Φ is worse than
its empirical score. Another way to see this is that we are evaluating the recali-
brated forecast Φ “in sample”, meaning that the same data is used to both build
and then evaluate Φ. The forecast Φ “knows” the data already and appears to
be better than it actually would be it were evaluated on instances of the data
set that were not used to generate Φ.

Clearly, these conclusions should bear on the interpretation of the empirical
decomposition as well as on any possible application. For example, we might
contemplate to use the resolution term to determine an appropriate binning
for a forecasting scheme with a continuous range. The resolution term though
becomes the better the more bins we use, since the information in the forecast
becomes ever more detailed. Indeed, if we went to the extreme and set the bins
so that each bin contains exactly one forecast (Γ(n), say), then the corresponding
observed frequency would be built upon a single observation Y (n). Thus, the
recalibrated forecast Φ would seem to be perfect. In truth, Φ is only good
in forecasting observations which have been used already to construct Φ, but
utterly useless in forecasting new observations.

3 Comparison between empirical and true terms
in the decomposition

In view of the practical significance of the score decompositions, it would be of
value to have at least some approximation of the difference between the true and
the empirical decomposition terms. Such approximation will now be provided;
we focus on the two most common scoring rules, namely the Ignorance and the
Brier score.

3.1 The Ignorance score

The central result of this section are the following relations between the empir-
ical uncertainty, resolution, and reliability with their respective true counter-
parts:

E (e(ō)) = e(π̄)−
K − 1

2N
(17)

E

(

D
∑

d=1

d(ō, o(d))rd

)

=
D
∑

d=1

d(π̄, π(d))ρd +
(K − 1)(D − 1)

2N
(18)

E

(

D
∑

d=1

d(γ(d), o(d))rd

)

=
D
∑

d=1

d(γ(d), π(d))ρd +
(K − 1)D

2N
(19)

The proof has been deferred to Appendix A. These relations allow for interest-
ing conclusions. The empirical resolution term overestimates the true resolution
of the forecast, that is, it suggests more resolution than can in fact be obtained
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(Eq. 18). Further, the empirical reliability term overestimates the true relia-
bility term, so that in truth, the original forecast Γ is more reliable than the
empirical reliability term suggests (Eq. 19). These effects diminish with increas-
ing number of samples N , but grow with the number of categories K and also
with the number of different forecast values D. This means that binning a con-
tinuous forecast Γ among too many bins will increase the empirical reliability
and resolution terms, therefore spuriously inflating the potential score. The Ig-
norance is special in that the correction terms depend only on the dimensions
of the forecasting problem.

Practical recommendations for the Ignorance

The relations (17–19) should be interpreted as

e(π̄) ∼= e(ō) +
K − 1

2N
, (20)

D
∑

d=1

d(π̄, π(d))ρd ∼=

D
∑

d=1

d(ō, o(d))rd −
(K − 1)(D − 1)

2N
, (21)

D
∑

d=1

d(γ(d), π(d))ρd ∼=

D
∑

d=1

d(γ(d), o(d))rd −
(K − 1)D

2N
. (22)

That is, the right hand sides provide estimates of the left hand sides. These
estimates are easily computed in practice. They consist of the empirical uncer-
tainty, resolution, and reliability terms, augmented by certain corrections which
do not even depend on the actual forecast and observation data but just on the
dimensions of the problem. It needs to be kept in mind though that these are
still only estimators. Further, in their derivation, we have assumed that ρ, π,
and π̄ are not too different from their estimates r, o, and ō. A more in–depth
analysis shows that if this is true, then the correction terms have χ2 distribu-
tions, and then the relations (17–19) are exact. It is often recommended that
for the χ2 distribution to apply, no entry in the contingency table Nkd should
be less than five.

3.2 The Brier score

We will now derive similar results for the Brier score. Again, the proof can be
found in the Appendix. We claim that

E e(ō) = e(π̄)−
1

N
e(π̄), (23)

E(
∑

d

d(ō, o(d))rd) =
∑

d

d(π̄, π(d))ρd +
1

N

(

∑

d

νde(π
(d))− e(π̄)

)

, (24)

E(
∑

d

d(γ(d), o(d))rd) =
∑

d

d(γ(d), π(d))ρd +
1

N

∑

d

νde(π
(d)), (25)
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with νd = 1 − (1 − ρd)
N , a quantity which is effectively unity unless both N

and ρd are very small. In the original version of this paper, it was claimed
that that the term in brackets on the right hand side of Equation (24) is never
negative, which would imply that the empirical resolution overestimates the
true resolution. For the Brier score though, this statement is wrong in general.
The proof assumed that the entropy e is convex, while in fact it is concave.
However, it is worth noting that the term in question is positive for many
choices of π(d), ρd, d = 1 . . . D. To make this more precise, note that for the
Brier score, e(p) = 1−

∑

k p
2
k. Therefore, the relation
∑

d

e(π(d))νd ≥ e(π̄) (26)

evidently holds under the condition that the π(d) live in a sphere of radius
√

1− e(π̄)∑
d
νd

, centered at the origin. A simple calculation shows that e(π̄) ≤
K−1
K , while the νd are very nearly equal to one, unless N is very small, as

discussed. We can conclude that the empirical resolution overestimates the true

resolution if the π(d) are restricted to a sphere of radius no less than
√

1− K−1
KD .

The correction terms in Equations (23) and (25) are indeed non–negative
because the entropy of the Brier score is never negative. We can conclude that
for the Brier score, the empirical resolution and reliability terms typically over-
estimate the true resolution and reliability terms. Again, in truth the forecast
is more reliable and less resolved than the empirical decomposition suggests.

Practical recommendations for the Brier score

Due to the dependence of the correction terms in Equations (23–25) on the un-
known quantities π(d), π̄, and νd, they seem to be of less practical value than the
corresponding equations for the Ignorance, which only depend on K,N,and D.
As a possible remedy, we can replace these unknown quantities by their sample
estimators, thereby obtaining at least rough guidance as to the magnitude of
the deviations.

e(π̄) ∼= e(ō) +
1

N
e(ō), (27)

∑

d

d(π̄, π(d))ρd ∼=
∑

d

d(ō, o(d))rd −
1

N

(

∑

d

e(o(d))− e(ō)

)

, (28)

∑

d

d(γ(d), π(d))ρd ∼=
∑

d

d(γ(d), o(d))rd −
1

N

∑

d

e(o(d)), (29)

The right hand sides provide estimates of the left hand sides, and again are
easily computed in practice. A few words of caution might seem in order when
using Equations (27–29), as these are again only estimators. In their derivation,
we have assumed that ρ, π, and π̄ are not too different from their estimates r, o,
and ō. Taking the discussion for the Ignorance as a guidance, no entry in the
contingency table Nkd should be less than five.
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4 Example

4.1 Artificial data

First, an example using artificial data will be discussed. More specifically, we

will simply set the probabilities π
(d)
k and ρd for all k = 1 . . . K and d = 1 . . . D.

This will be done so that we can varyD in order to generate various experiments.
Next, we set γ(d) = Q(π(d)), where for Q we choose some function mapping
probability vectors on probability vectors, in order to introduce slight deviations
from reliability. We then generate data {(Γ(n), Y (n)), n = 1 . . . N} by applying
for every n independently the following protocol:

1. Draw a number δ from 1 . . . D so that the probability of δ = d is equal to
ρd. Set Γ(n) = γ(δ)

2. Draw Y (n) from 1 . . . K so that the probability of Y (n) = k is equal to

π
(d)
k .

We still have to define π
(d)
k and ρd. To keep matters simple, we will fixK = 3.

The set of all three dimensional probability vectors is called the standard 2–
simplex. The standard 2–simplex can be subdivided into M2 smaller simplices
of equal size, with vertices given by

(
k

M
,
l

M
,
m

M
), k, l,m = 0 . . .M, k + l +m = M.

We denote these simplices by ∆d, with d running from 1 to M2 = D. We then
choose π(d) as the centre point of the simplex ∆d, for each d. These points have
coordinates

(
k + 1/3

M
,
l + 1/3

M
,
m+ 1/3

M
), k, l,m = 0 . . .M − 1, k + l +m = M − 1

and

(
k + 2/3

M
,
l + 2/3

M
,
m+ 2/3

M
), k, l,m = 0 . . .M − 2, k + l +m = M − 2

Finally, we set ρd = 1/D for all d. We can think of π(d) as a coarse grained
version of some random probability vector with uniform distribution over the
standard 2–simplex. Our eventual forecasts are given by distorting π as follows:

γ
(d)
k = cd · (π

(d)
k )1+k/2

where cd is a normalisation constant. Thereby, we introduce some mild deviation
from reliability.

We generated data sets T comprising N = 365 forecast–observation pairs,
imitating a year’s worth of data. We are now in a position to compute all
terms in both the empirical and the true decomposition. In order to validate
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Equations (17–19) though, we need the expectation value of the empirical uncer-
tainty, resolution, and reliability. In order to approximate these, we generated
100 statistically identical copies of the data set T . For each copy, the empirical
uncertainty, resolution, and reliability terms where computed; the results were
averaged, and also the standard deviations were recorded.

Figure 1 shows the results for the Ignorance score. The entire analysis was
carried out for several values of D, shown on the x–axes. (In fact, M runs from
1 to 6 in these plots, and D = M2.) All plots show the empirical term minus
the true term, divided by the true score; here “term” is to be read as “score” in
plot (a), “uncertainty” in plot (b), “reliability” in plot (c), and “resolution” in
plot (d). The average of these values is indicated by circles, with 2σ confidence
bars attached. The dashed lines show what our theory predicts for these values.
Overall, it appears that theory and experiments are in fairly good agreement.

More specifically, plot (a) demonstrates that, up to statistical fluctuations,
the expectation value of the empirical score is given by the true score, thereby
verifying Equation (15). Plot (b) shows the difference between the empirical
and true uncertainty term, relative to the true score, marked with balls. Firstly,
the empirical uncertainty underestimates the true uncertainty, consistent with
our predictions. Equation (17) asserts that the difference should be equal to
−(K − 1)/N ; this is indicated with the dashed line. The empirical and true
uncertainty term do not depend on D, but the true score does, whence the
dashed line is not constant. Evidently, the experiments show that Equation (17)
is valid. Plot (c) shows the difference between the empirical and true reliability
term, relative to the true score, marked with balls. Again, consistent with our
qualitative statements, the empirical reliability overestimates the true reliability
(by up to 10% of the true score in this case). Equation (18) asserts that the
difference should be equal to (K−1)(D−1)/N ; this is indicated with the dashed
line. Theory and experiment turn out to be in qualitative agreement, with
small but apparently systematic deviations, discussed below. Plot (d) finally
shows the difference between the empirical and true resolution term, relative
to the true score, marked with balls. As predicted by theory, the empirical
resolution term overestimates the true resolution term (again by up to 10%
of the true score). Equation (19) asserts that the difference should be equal
to (K − 1)D/N ; this is indicated with the dashed line. Again, theory and
experiment agree qualitatively. It seems though that the empirical resolution as
well as the reliability are larger than what would be consistent with our theory,
especially for large values of D. It is to be noted that this does not disprove
our qualitative statement that the empirical resolution overestimates the true
resolution; it is only that our quantitative theory still underestimates this effect.
The likely reason for this difference is the discussed approximation on which this
estimate is based. It stops to be valid if Nk,d is very small for some k, d. The
expectation value of Nk,d can be as small as 1/D2, which is on the order of
1/N for D ∼= 20. Thus, for D larger than this value, it is almost certain that
Nk,d = 0 for some k, d, violating the condition that Nk,d be at least five.

Results for the Brier score are shown in Figure 2. The main findings are
very similar to the case of the Ignorance score. We will therefore discuss a
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few important points, only. The agreement between theory and experiment
is even better than in the case of the Ignorance, which is to be expected, as
no approximations are involved. As mentioned in the recommendations for

the Brier score, in order to apply the corrections, the true values for π̄k, π
(d)
k ,

and ρd have to be replaced with their respective approximations ō, o(d) and
rd. The dotted lines have been obtained in this way. It appears to be a good
approximation in the present situation, but further investigation is needed to
confirm the general suitability of this approach.

4.2 Weather data

We now present an example using actual weather forecasting data. In terms
of measurements, we use two metre temperature data from the weather sta-
tion at Heligoland in the German Bight, taken daily at 12:00 UTC. In terms of
forecasts, dynamical weather forecasts from the European Centre for Medium
Range Weather Forecasts (ECMWF) for two metre temperature are used. The
ECMWF maintains an ensemble prediction system with 50 members. The en-
semble members comprise runs of a global weather model, each generated with
slightly perturbed initial conditions (there is also an unperturbed run, the con-
trol, which is not used here). Forecasts were available from 1 January, 2001,
until 31 December, 2005, from the then operational ECMWF prediction sys-
tem, featuring lead times from one to ten days and a spatial resolution (for
the ensembles) of about 80 kilometres. (For more information, the reader is
referred to Persson and Grazzini, 2005). Only the forecast information relevant
for Heligoland is used. We will focus on lead times of 7 days, only, for which we
have 1812 forecast–observation pairs. Next, the data is modified in the following
way:

1. A climate normal is computed by fitting a fourth order trigonometric
polynomial to the temperature data.

2. We define Y (n) to be one if the temperature on day n falls below the
climate normal, while Y (n) = 2 if the temperature exceeds the normal.
Thereby, we have a binary forecasting problem, that is, K = {1, 2};

3. We set Γ1(n) =
m+ 1

2

M+1 , where m is the number of ensemble members below
the climate normal, andM = 50 is the total number of ensemble members.

Clearly Γ2(n) = 1− Γ1(n) =
M−m+ 1

2

M+1 .

Using this archive of forecast–observation pairs, we are going to investigate the
Brier score for the forecasting scheme Γ. More specifically, we will calculate the
empirical score as well as the empirical uncertainty, resolution, and reliability
term on the left hand side of Equations (23–25). Further, we will compute
the correction terms on the right hand side of these Equations (i.e. the terms
carrying the prefactor 1/N), using the approximation discussed before, namely
we replace the true probabilities π̄ and π(d) with their respective approximations
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ō and o(d). The experiments using artificial data provided tentative confirmation
that this approximation is justified.

We are now in a position to address the following two questions. Firstly, does
our theory yield appreciable corrections to the empirical uncertainty, resolution,
and reliability term in this example? Our second question is related to the
estimators provided for the true uncertainty, resolution, and reliability terms
through Equations (27–29). In particular, the right hand sides should (at least
roughly) be independent of N . This is the second issue we are going to check.
Note that by construction, Γ can assume at most 51 values. Hence there is,
in this example, some sort of “natural” value for D. As in the example using
artificial data though, we would like to carry out the analysis for several values of
D, as we expect a strong dependence of the corrections onD. For this reason, we
will distribute the forecasts {Γn, n = 1 . . . N} among D different bins of roughly
equal population and use the in–bin average of Γn as the new set of coarse–
grained forecasts. The investigated values for D were 3, 5, 8, 12, 17, and 23. It
is not suggested here that these would be appropriate values of D for a serious
performance assessment of the discussed forecasts. Although the results of this
paper are, in principle, valid for any D (apart from the reservations mentioned
at the end of Secs. 3.1, 3.2), too large values of D will clearly have detrimental
effect on the results. For example, the relative observed frequencies r, o, ō will
feature a large variance if D is too large, and so will the empirical uncertainty,
resolution, and reliability terms, diminishing their information content. The
question of how to choose D (more generally, the bins) appropriately probably
merits further investigation, although some suggestions have been made, see for
example Bröcker (2008b).

Figure 3 demonstrates that our theory suggests considerable corrections to
the empirical uncertainty, resolution, and reliability term, and hence the first
question can be answered in the affirmative. Plot (a) shows the correction to
the reliability term, relative to the empirical reliability term itself, as a function
of D. Plot (b) shows the correction to the resolution, relative to the empirical
resolution term itself, again as a function of D. We see that the corrections
to the empirical reliability term can amount to up to 35%. All quantities were
computed using N = 1095 instances which were drawn randomly and with re-
placement from the entire data set of 1812 samples. This resampling experiment
was repeated 100 times, allowing to estimate mean and standard deviations for
all quantities. The width of the error bars in Figure 3 represents two standard
deviations. Although we have five years worth of data available in total, the
resampled data sets comprised only three years as this was deemed to be more
realistic for many applications in weather and climate.

Figure 4 shows the empirical score (plot a) as well as the estimates (as
suggested by Eqs. 27–29), of the true uncertainty, resolution, and reliability
terms (plot b–d, respectively). All quantities are plot as a function of D. In
order to check the dependence of these estimates on the sample size N , we
computed the estimates for different values of N , namely N = a · 365 with
a = 2 . . . 5 years. Results for two years are presented with error bars (two
standard deviations obtained through resampling the entire data set). The
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other lines correspond to a = 3 years (solid), a = 4 years (dashed), and a = 5
years (dotted). Clearly, the results are not independent of N , but the differences
are on the same order of magnitude as the sampling variations represented by
the error bars.

5 Concluding remarks

Scoring rules provide a useful means to evaluate probabilistic forecasts (as long
as only strictly proper scoring rules are employed). The mathematical expec-
tation value of the score allows for a decomposition into terms which quantify
the reliability and the resolution of the forecast. (Reliability and resolution are
desirable forecast attributes for which the case can be made independently of
scoring rules.) A similar result holds for the empirical (or sample average) score
over an archive of forecast–observation pairs, decomposing the empirical score
into empirical resolution and reliability terms. It has been demonstrated in
this paper that the empirical reliability and resolution terms do not agree well
with the true reliability and resolution. The empirical reliability is too large,
suggesting a too large departure from reliability. As a consequence, the empiri-
cal decomposition provides a too optimistic estimate of the potential score (i.e.
of the optimum score which could be obtained through recalibration). Hence,
a forecast assessment based solely on the empirical resolution and reliability
terms will be misleading. Specific recommendations have been given as to how
better estimators of reliability and resolution can be obtained in the case of
the Brier and Ignorance Score. Our theoretical investigations have been tested
and confirmed in a numerical experiment using artificial data. Furthermore,
the practical feasibility of the given recommendations was demonstrated in a
numerical example using actual weather data.

There are several points which call for further investigation. In the statistical
analysis of forecast verification methods, it is mostly assumed that the individual
samples, or forecast–observation pairs, are serially independent, or at least very
nearly so. It is clear however that weather data, both observations as well as
forecasts, display strong temporal correlations in general. Even though we are
not using the observations directly but rather the anomalies, assuming them to
be serially independent is clearly an idealistic assumption. The question how
serial dependencies enter in the statistical analysis of reliability and resolution
of probabilistic forecast remains a subject of future investigation. The obvious
difficulty here is that data can be serially independent in only one way but
serially dependent in many different ways. A very preliminary guess is that in
the presence of temporal correlations, the difference between empirical and true
decomposition terms (provided that the empirical score still makes sense at all)
does not scale with 1

N , as it is now, but rather inversely proportional to the
effective number of independent instances, which is less than N .

As a second point, the presented results call for extension to situations in
which the observation Y occupies a continuous range (such as the real numbers).
There is a fairly advanced theory for evaluating such forecasts, including scoring
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rules, and even a decomposition of the true score into uncertainty, reliability,
and resolution terms (Matheson and Winkler, 1976; Hersbach, 2000; Gneiting
and Raftery, 2007; Gneiting et al, 2007). The problem is that there is as yet
no equivalence to the empirical decomposition, or in other words, estimators
for the empirical decomposition terms have yet to be proposed. The only op-
tion available so far is to project the observations onto a finite set of exclusive
alternatives and apply the methodology discussed in this paper.
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A Proof of Equations (17–19)

To demonstrate the relations (17–19), we use that

E e(ō) = E e(π̄)− E d(π̄, ō) (30)

E(e(o(d))|rd) = e(π(d))− E(d(π(d), o(d))|rd). (31)

For a proof of these facts, the reader is referred to Bröcker (2011). Now using
the expression for d in case of the Ignorance score, we obtain

d(π̄, ō) =

K
∑

k=1

− log

(

π̄k

ōk

)

ōk. (32)

Writing π̄
ō = 1 + x and assuming that x is small compared to 1, the expres-

sion (32) can be expanded to second order in x. With this approximation, we
obtain by taking the expectation

E d(π̄, ō) =
K − 1

2N
,

which, with the help of Equation (30), gives Equation (17).
To prove Equation (18), we use again the expression for d to get

∑

d

d(π(d), o(d))rd =
D
∑

d=1

K
∑

k=1

− log

(

π
(d)
k

o
(d)
k

)

o
(d)
k rd

We now use the same trick and write
π
(d)
k

o
(d)
k

= 1 + x. Assuming that x is small

compared to 1, expanded to second order in x, and taking the expectation, we
obtain

E(
∑

d

e(o(d))rd) = E(e(π))−
D(K − 1)

2N
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with the help of Equation (31). We now subtract this equation from Equa-
tion (17) and use Equations (8) and (14) to establish Equation (18). Finally,
Equation (19) follows because (17)−(18)+(19) must give Equation (15).

B Proof of Equations (23–25)

To prove these relations, we use properties of the multinomial distribution to
conclude that

E(ō2k) = E

(

Nk

N

)2

=
π̄k(1− π̄k)

N
+ π̄2

k.

With the expression for the entropy of the Brier score, this gives Equation (23)
Along very similar lines, we obtain

E(e(o(d))|rd) =
N•d − 1

N•d
e(π(d));

Strictly speaking, both sides are undefined whenever N•d = 0 or equivalently
rd = 0, which happens with non–vanishing probability (1− ρd)

N . This problem
disappears now, as we multiply with rd and agree that both sides are zero
whenever rd = 0. We obtain

E(e(o(d))|rd)rd = e(π(d))rd +
Id
N

e(π(d)),

where Id = 1 if rd > 0 and 0 otherwise. We now take the expectation on both
sides and obtain

E(
∑

d

e(o(d))rd) = E e(π)−
1

N

∑

d

νde(π
(d)), (33)

where νd = P(rd > 0) = 1 − (1 − ρd)
N ∼= 1 − e−Nρd . As with the Ignorance

score, we now subtract Equation (33) from Equation (23) and use Equations (8)
and (14) to get Equation (24) for the resolution term. To finish the proof,
Equation (25) follows because (23)−(24)+(25) must give Equation (15).
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Bröcker J (2011) Estimating reliability and resolution of probability forecasts
using proper scoring rules (in preparation)
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Figure 1: Results of both theory (dashed lines) as well as experiment (balls)
are shown for the Ignorance score. The different plots refer to the average score
(a), the uncertainty term (b), the reliability term (c), and the resolution term
(d). For all quantities, the difference between the empirical and the true terms
are shown, divided by the true score. All quantities are plot as a function of D,
the number of bins. Bars indicate ±2σ confidence intervals. Our theoretical
investigations are confirmed. The empirical and true score agree on average;
Empirical uncertainty underestimates true uncertainty; Empirical reliability and
resolution terms overestimate true reliability and resolution terms.
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Figure 2: Results of both theory (dashed lines) as well as experiment (balls) are
shown for the Brier score. The different plots refer to the average score (a), the
uncertainty term (b), the reliability term (c), and the resolution term (d). For
all quantities, the difference between the empirical and the true terms are shown,
divided by the true score. All quantities are plot as a function of D, the number
of bins. Bars indicate ±2σ confidence intervals. Our theoretical investigations
are again confirmed, as in the Ignorance case. In addition, estimates of the
theoretical differences are shown with dotted lines. These estimates roughly
agree with the exact values.
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Figure 3: Plot (a): correction to the reliability term, relative to the empirical
reliability term itself, as a function of D. Plot (b): correction to the resolution,
relative to the empirical resolution itself, as a function of D, the number of
bins. All quantities were computed using N = 1095 instances which were drawn
randomly and without replacement from the entire data set of 1812 samples.
This resampling experiment was repeated 100 times, with error bars representing
two standard deviations. The resampled data sets comprised only three years.
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Figure 4: Plot (a) shows the empirical score; the estimates of the true uncer-
tainty, resolution, and reliability terms (as suggested by Eqs. 27–29) are shown
in plot (b–d), respectively. All quantities are plot as a function of D, the num-
ber of bins. Estimates for N = a · 365 with a = 2 . . . 5 years were computed.
Results for two years are presented with error bars (two standard deviations
obtained through resampling the entire data set). The other lines correspond
to a = 3 years (solid), a = 4 years (dashed), and a = 5 years (dotted). Clearly,
the results are not independent of N , but the differences are on the same order
of magnitude as the sampling variations represented by the error bars.
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