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Abstract

The continuous ranked probability score (CRPS) is a frequently used
scoring rule. In contrast with many other scoring rules, the CRPS evalu-
ates cumulative distribution functions. An ensemble of forecasts can easily
be converted into a piecewise constant cumulative distribution function
with steps at the ensemble members. This renders the CRPS a conve-
nient scoring rule for the evaluation of “raw” ensembles, obviating the
need for sophisticated EMOS or dressing methods prior to evaluation. In
this paper, a relation between the CRPS score and the quantile score is es-
tablished. The evaluation of “raw” ensembles using the CRPS is discussed
in this light. It is shown that latent in this evaluation is an interpretation
of the ensemble as quantiles but with nonuniform levels. This needs to be
taken into account if the ensemble is evaluated further, for example with
rank histograms.

1 Introduction

Providing forecasts in terms of probabilities has become increasingly popular
in the meteorological community. By now, a wide range of probabilistic fore-
cast products is available commercially for short and medium term weather
forecasts. The pristine output of atmospheric circulation models though are
usually not probabilities, but rather ensembles. An ensemble is a collection
of model trajectories, generated using slightly different initial conditions (and
sometimes also perturbed model equations). The different initial conditions and
perturbed model equations are supposed to represent the uncertainty about the
current state of the atmosphere and the uncertainty about the relevant physics,
respectively. Consequently, the individual ensemble members represent likely
scenarios of the future atmospheric development, consistent with the currently
available (necessarily incomplete) information.

The question arises how an ensemble can be interpreted and evaluated in
probabilistic terms. There is a considerable body of literature concerned with
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the problem of transforming ensembles into probability density functions (or
cumulative distribution functions, or similar objects). These techniques, often
referred to as ensemble interpretation models, usually include means to com-
pensate and correct for statistical errors, or de-biasing. Ensemble interpretation
Models of considerable sophistication exist (see e.g. Jewson, 2003; Raftery et al.,
2005; Bröcker and Smith, 2008, and further references therein). Once the en-
sembles have been converted to probabilities, they are amenable to evaluation
with so-called probabilistic scoring rules; there is a wide range of useful proba-
bilistic scoring rules, see Section 2 for further discussion and references.

It is nonetheless of interest though to evaluate the raw ensemble, with min-
imum interference from ensemble interpretation models. The raw ensemble
might, for example, serve as a benchmark for more sophisticated ensemble in-
terpretation models, or limited computational resources might preclude using
the latter. As a further example, forecasters might want to evaluate raw ensem-
bles in order to compare ensemble generation systems (i.e. their atmospheric
circulation models and data assimilation systems). Again, to get meaningful re-
sults in such a comparison, the influence of the ensemble interpretation models
must be kept to a minimum.

It turns out that a useful scoring rule to evaluate the raw ensemble is the
Continuous Ranked Probability Score (CRPS), to be discussed in Section 2.
Essentially, the CRPS evaluates probability forecasts in the form of cumula-
tive distribution functions; the raw ensemble can be converted to a piecewise
constant cumulative distribution function with jumps at the ensemble mem-
bers, and thus be evaluated with the CRPS. This will be discussed in detail
in Section 3. In that section, we will make an observation which is central to
the discussion in this paper, namely that evaluating the raw ensemble with the
CRPS is equivalent to evaluating the ensemble members as if they were quantiles
with certain levels. In other words, if we optimise the ensemble with respect
to its CRPS–performance, we can regard the ensemble members as quantile
estimators.

This observation has important consequences. Essentially, it imposes a sta-
tistical interpretation upon the ensemble members which needs to be taken into
account in subsequent statistical analyses of the ensemble. By statistical anal-
ysis we mean checking whether the ensemble is consistent with some statistical
hypothesis. This hypothesis might be at variance with the interpretation of
the ensemble members as quantiles. In Section 3, we will see that this can be
the case with rank histograms, a popular test for reliability. This discussion is
part of a wider theme (see the Conclusions) of statistical consistency between
evaluation methods. This includes scoring rules as well as forecast distributions
being picked from a specific model class. Statistical consistency would mean
that the statistical hypotheses implied or assumed by the different evaluation
methods do not mutually exclude each other.
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2 Setup and the Continuous Ranked Probability

Score

We consider a variable Y , referred to as the verification, which is to be forecast.
We treat Y as a random variable with values on the real line or a semi–infinite
or finite interval. The distribution of Y be specified by a cumulative distribution
function F , that is,

F (y) = P(Y < y)

where P denotes the probability. It follows readily from the definitions that F
is a monotonically increasing function. In general, F is left continuous and has
right limits, that is

lim
ǫ→0

F (y + ǫ) exists, (1) {equ:100}

lim
ǫ→0

F (y − ǫ) = F (y) (2) {equ:110}

These two limits are not necessarily equal, whence the function F has an upward
jump. Since

lim
ǫ→0

F (y + ǫ)− F (y) = P(Y = y), (3) {equ:120}

we see that a jump occurs whenever Y assumes a fixed value y with nonzero
probability. A cumulative distribution function can have at most countably
many jumps.

We assume that probability forecasts are issued for Y in the form of a cumu-
lative distribution function G. A scoring rule is a means to evaluate the forecast
G. In the present paper, we shall focus on the continuous ranked probability
score (CRPS), which is defined as

S(G, y) =

∫

(G(x)−H(x− y))
2
dx (4) {equ:125}

with H the Heaviside function, which is one if the argument is positive and zero
otherwise. Note that the CRPS is a function of the real number y as well as a
functional of the cumulative distribution function G. Heuristically speaking, it
measures the difference between the forecast G and a perfect forecast H which
puts all mass on the verification y. Given the forecast G and a verification Y ,
we would assign the score S(G,Y ) to the forecast. Note also that a small score
S indicates a good forecast.

The score is a random number, so we would interprete the average of this
number as a measure of average performance of G. We denote the average score
as

s(G,F ) =

∫

S(G, y)dF. (5) {equ:130}

Here we have taken the average over S(G,Y ), writing F for the distribution of
Y . By straightforward manipulation, we get the following representation:

s(G,F ) =

∫

(F (x)−G(x))
2
+ F (x) (1− F (x)) dx.
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We can define the divergence d(G,F ) = s(G,F ) − s(F, F ); using the previous
expression for s, we get

d(G,F ) =

∫

(F (x)−G(x))
2
dx, (6) {equ:140}

which shows that the divergence d is necessarily positive unless G = F . The in-
terpretation of this mathematical fact is that the cumulative distribution func-
tion F of y achieves, on average, a better score than any forecast G, unless
F = G. Scoring rules with this property are referred to as proper. Proper
scoring rules have been the subject of theoretical studies and are applied widely
for evaluation of probabilistic forecasts. The reader is referred to Savage (1971)
and more recently Gneiting and Raftery (2007) for mathematical discussion of
scoring rules, the latter discussing also the CRPS. Original papers on specific
scoring rules are Brier (1950); Good (1952). The CRPS was apparently intro-
duced in Epstein (1969). The importance of using proper scores to obtain con-
sistent results has been illustrated in Brown (1970); Bröcker and Smith (2007).
The literature abounds in examples of scoring rules being applied to evaluate
probability forecasts; Roulston and Smith (2002, 2003); Roulston et al. (2003);
Gneiting et al. (2005); Raftery et al. (2005); Roulston et al. (2005); Grimit et al.
(2006); Sloughter et al. (2007) is a by no means exhaustive list.

3 Evaluating raw ensembles using the CRPS

Having introduced the CRPS in the last section, we now discuss how to evaluate
raw ensembles using the CRPS. Let (e1, . . . , eK) be an ensemble of forecasts for
Y . For all k = 1 . . . K, the ek are confined to the same range of values as
Y (all real numbers, a semi–infinite interval, or a finite interval). The initial
ordering of the ensemble members is considered insignificant, and we therefore
assume that the ek are in increasing order. Using the ensemble, we can form
the following piecewise constant function

Ge(x) =
K
∑

k=1

wkH(x− ek) (7) {equ:150}

with weights wk so that wk > 0 for all k, and
∑

k wk = 1. Clearly, Ge comprises
a piecewise constant cumulative distribution function satisfying the regularity
properties (1, 2). Furthermore, Ge features exactly K jumps (in the sense of
Equ. 3) at the points x = ek with jump height wk. Therefore, due to relation (3),
P(Y = ek) = wk, while zero probability is assigned to any set that does not
contain an ensemble member. Using the CRPS, we can evaluate Ge by S(Ge, Y ),
which on average is equal to s(Ge, F ).

The question arises as to how such an evaluation method should be inter-
preted. More specifically, we have seen that the minimum of s(G,F ) over all
cumulative distribution functions G obtains if G = F . Clearly though, the cu-
mulative distribution functions Ge are of a very special type, and we cannot, in
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general, expect that for a given F there is an e so that Ge = F . There is no
“correct” ensemble; there might, however, be an ensemble ê which minimises
the score s(Ge, F ) for a given cumulative distribution function F (and given
weights wk). Concerning such an optimal ensemble ê, one might reasonably ask
the following two questions:

1. The ensemble ê minimising the score s(Ge, F ) will be a function of F .
How exactly does that function look like?

2. Suppose that the ensemble êminimises the score s(Ge, F ), where F is some
distribution (e.g. our forecast probability). How can we test the hypothesis
that the verification Y has distribution F , using only the ensemble ê? For
example, will the ensemble ê display a flat rank histogram?

In the sequel, we will discuss these two questions.
To answer the first question, we have to determine the minimum of s(Ge, F )

with respect to e. Clearly, this is equivalent to minimising d(Ge, F ), for which we
have the expression (6). For illustrative purposes though, we will take another
route, thereby revealing an interesting connection to the well known quantile
score. We will first present an illuminating expression for the score S(Ge, y) and
then compute the integral (5).

Substituting with Equation (7) in Equation (4), we obtain, after some alge-
bra which has been relegated to Appendix A, that we may write S(Ge, y) as a
weighted sum

S(Ge, y) = 2
∑

j

wj

(

αj(y − ej)+ + (1− αj)(ej − y)+

)

, (8) {equ:190}

with αj =
∑

k≤j wk −
wj

2 . Under the sum in (8), the function σα(y, x) = α(y −
x)++(1−α)(x−y)+ appears; this function is well known as the quantile score of
level α (Gneiting and Raftery, 2007; Friederichs and Hense, 2008). Thus we see
that applying the CRPS to the function Ge amounts to applying the quantile
score with certain level αj to each individual ensemble member ej . As the name
suggests, the quantile score is often used to score quantile estimates. This is
motivated by the mathematical fact that the expectation value of σα(Y, x) is
minimal if F (x) = α holds, that is, if x is the α–quantile of F . To see this, write

∫ ∞

−∞

σα(y, x) dF (y)

=

∫ ∞

−∞

α(y − x) dF (y) +

∫ ∞

−∞

(x− y)+dF (y)

= α(Ȳ − x) +

∫ x

−∞

(x− y) dF (y)

= α(Ȳ − x) +

∫ x

−∞

F (y) dy (integration by parts).

Here, Ȳ denotes the expectation value of Y . Further, we have assumed (and
will henceforth do so as well) that F has no jumps. Setting the derivative of
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this relation with respect to x to zero, we arrive at the necessary condition

α = F (x), (9) {equ:195}

that is, x has to be a quantile of F with level α. (If F has a jump that leap-frogs
α, then Equation (9) has no solution; in fact, the necessary condition reads a
little bit different in that situation.)

If we integrate Equation (8) over dF (y) and set the derivatives with respect
to the ej equal to zero, the same reasoning applies, and we obtain the following
necessary condition for the optimal ensemble ê:

αj = F (êj) for all j = 1 . . . K, (10) {equ:199}

with αj =
∑

k≤j

wk −
wj

2
. (11) {equ:200}

The result (10, 11) can be described graphically as in Figure 1. On the or-

w1

w2

w3

α1

α2

α3

e1 e2 e3

F

1

Figure 1: Illustration of the results in Equation (11). The quantile levels αk

emerge as the midpoints of the intervals of width wk. The corresponding ensem-
ble members ek are the pre-images of the αk under the cumulative distribution
function F .

dinate, the interval [0, 1] (the “probability axis”) is divided into K subintervals,
with the k’th interval having length wk. Due to Equation (11), αk is the mid-
point of the k’th interval. The ensemble member êk obtains as the pre-image
of αk under F . Raw ensembles are usually evaluated with all weights equal to

1/K, which gives αj =
j− 1

2

K
. Hence, we can conclude that the optimal ensemble

member êj is a quantile of level
j− 1

2

K
. This concludes the discussion of the first

question.
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Turning to the second question, our hypothesis that Y has distribution F
entails that F is reliable, which we assume hereafter. We are interested in how
this bears on the ensemble ê computed from Equations (10, 11). Clearly, the
probability mass between two consecutive ensemble members is

F (êk+1)− F (êk) = αk+1 − αk =
wk+1 + wk

2
, (12) {equ:210}

while the probability mass below ê1 and above êK , respectively, are equal to
w1

2 , and wK

2 , respectively. For the case of equal weights, that is all weights
equal to 1/K, the usual choice for evaluating raw ensembles with the CRPS
score, we get from Equation (12) that the probability mass between any two
consecutive ensemble members is 1

K
, while the mass below ê1 and also above

êK is just 1
2K . This should be compared with the null hypothesis usually im-

posed for reliability tests, which states that the probability masses between two
consecutive ensemble members as well as below ê1 and above êK are all equal
(to 1

K+1 ). This null hypothesis (referred to as HR in the sequel) can be tested
for, using rank histograms. The rank r(Y ) of Y is defined as the smallest j so
that Y < ej , with r(Y ) = K+1 if Y exceeds all ensemble members. Under HR,
the rank r(Y ) assumes the values 1 . . . K + 1 with equal probability. In other
words, a histogram of a sample of r(Y ) should be flat up to statistical errors.
If, however, the ensemble is assumed to be optimal with respect to the CRPS
with equal weights, then the rank r(Y ) should assume a value k ∈ {2 . . . K}
with probability 1/K, while the extreme values k = 1 and k = K +1 have both
probability 1

2K We might thus view Equation (12) as another hypothesis HC

about the distribution of ranks. It is a consequence of the fact that the ensemble
is optimal with respect to the CRPS. Clearly, the hypothesis HC in the case
of equal weights does not yield equal rank probabilities. Numerical examples
in Section 4 will further illustrate this point. Hence, HC and HR are different
hypotheses, or in other words, the ensemble we get by optimising the CRPS
cannot be expected to produce a flat rank histogram.

Finally, we address the question whether the two hypotheses HC and HR

can be made to coincide by choosing the weights appropriately. Interestingly,
this seems not to be the case, as might already be guessed from Figure 1. In
the hypothesis HR, the αj are all integer multiples of α1, that is αj = j · α1,
and in particular, αj − αj−1 = α1. Comparison with Equation (11) gives the
inductive relation

wj = 2α1 − wj−1.

Furthermore, we know from Equation (11) that w1 = 2α1. This yields

wj = 2α1 if j is odd, wj = 0 if j is even.

However, this would mean that in the actual CRPS (Eq. 8), the even ensemble
members are not evaluated at all, as their corresponding weight in the sum (8)
is zero. Note also that if K is even, we would have the contradiction

1 =

K
∑

j=1

wj =
K

2
2α1 =

K

K + 1
6= 1.
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As a conclusion, we see that there is no appropriate choice of weights so that
HC becomes equal to HR.

4 Numerical experiments

100 200 300 400 500 600 700
−1

0

1

2

3

4

5

6

Figure 2: A plot of the artificial data yn over time. 730 data points are shown.
The data is supposed to resemble temperature data, normalised to unit standard
deviation.

The results of this paper are illustrated with a small numerical experiment
using artificial data. The data is generated as follows. Samples yn of the verifi-
cation Y are defined through

yn = un(1 + s1ξn) + s2ζn, (13) {equ:220}

where ξn and ζn, interpreted as multiplicative and additive disturbances, are
independent and standard normal random variables, while un, interpreted as
the “underlying signal”, is given as

un = (A sin(πω1n) +B sin(πω2n))
2
. (14) {equ:230}

The values of the parameters can be found in Table 1. With these parameters,
yn roughly resembles temperature data scaled to unit standard deviation. A plot
of this data (for t spanning two years) is shown in Figure 2. For the subsequent
analysis, 3650 days (i.e. roughly ten years) worth of data were used.
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s1 s2 A B ω1 ω2

0.3 0.3 1.68 0.0336 1/365.25 1/11

Table 1: Parameter values used for generating the data (see Eqs. 13, 14)

Further, we generate an ensemble e(1) using the same model as for yn but

with independent disturbances. More specifically, if we denote by e
(1)
k,n the kth

member of e(1) at time n, we set

e
(1)
k,n = un(1 + s1ξk,n) + s2ζk,n,

where ξk,n, ζk,n are standard normal random variables, independent for different
k, n. All ensemble members are driven by the same underlying signal un, though.
We work with K = 10 ensemble members.

By construction, this ensemble is consistent with the hypothesis HR, that
is, a histogram of the ranks of yn should be flat, up to statistical fluctuations.
Such a histogram is shown in the upper panel (a) of Figure 3. Visual inspection
already indicates that this ensemble is consistent with HR. This is further
confirmed by a χ2–test, which gives a p–value of 0.39. There is thus no indication
for a deviation from HR, as expected.

We will now construct two further ensembles e(2) and e(3) by optimising the
CRPS in a certain sense. It is clear from our definition of yn in Equation (13)
that the distribution of yn for given un has the form

Fn(y) = Φ(
y − un

σn

) with σn =
√

u2
ns

2
1 + s22, (15) {equ:240}

and Φ being the standard normal distribution function. Using Fn, we construct
ensemble e(2) as in Equations (10) and (11); more specifically,

e
(2)
k,n = F−1

n (αk) with

αk =
k

K
−

1

2K
, k = 1 . . . K, K = 10

As discussed in Section 3, the ensemble e(2) does not display a flat rank his-

togram. Rather, since the individual ensemble members e
(2)
k,n represent αk–

quantiles with αk = k
K

− 1
2K , the rank histogram bars should display a height

of roughly 1/K except for the extreme ranks, which should be of height 1/2K;
any deviations should arise merely through sampling fluctuations. (The rank
histogram did not hold any surprises and is not shown.)

The ensemble e(2) describes a situation in which a forecaster has access to the
conditional distribution function F but for some reason wants to cast her fore-
casts in the form of an ensemble that optimises the CRPS. In practice though,
it is rarely the case that the forecaster has access to F explicitely in closed
form. We will therefore mimic a more realistic situation in which the ensemble
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members have to be constructed (or “debiased”) from some information sources
through statistical estimation procedures. To be specific, the ensemble members

e
(3)
k,n are constructed as linear functions of the ensemble mean of e

(1)
n . That is,

with ē
(1)
n = 1

K

∑

k e
(1)
k,n denoting the mean of ensemble e

(1)
n , we will let

e
(3)
k,n = c1,k + c2,k · ē(1)n

with coefficients c1,k, c2,k for k = 1 . . . K to be determined by minimising the
sample mean CRPS

CRPSE =
∑

n

S(G
e
(3)
n
, y′n),

with S(Ge, y) given by Equation (8). The time series y′n (the training obser-
vations) are yet another realisation from the model (13), again with the same
underlying signal un but with independent disturbances. Later, all evaluation
will be done on the “test” verifications yn. As before, we use the standard
weights wk = 1/K.

From the discussion in Section 3, we gather that the ensemble e(3) will at
least approximately satisfy the relation (10) with αk = k

K
− 1

2K . That is, the

individual ensemble members e
(3)
k,n should at least approximately represent αk–

quantiles of Fn (Eq. 15) with αk = k
K

− 1
2K . Thus, the rank histogram bars

should display a height of roughly 1/K except for the extreme ranks, which
should be of height 1/2K. (In particular, the rank histogram is not expected
to be flat). The histogram is shown in the lower panel (b) of Figure 3. The
predicted behaviour is already apparent from visual inspection. This is further
confirmed by a χ2–test, which gives a p–value of 0.29. There is thus no indi-
cation that the observed histogram deviates from our theory. The important
message is that the way in which the ensemble was constructed shows through
in the reliability analysis. The ensemble members are approximations of certain
quantiles with nonuniform levels, and hence the rank histogram is expected to
be nonuniform as well.

As a small digression, since e(3) is only an approximation to e(2), the hy-
pothesis HC is only approximately true for e(3), and the reader might wonder
whether we should come up with an exact hypothesis for e(3). Unfortunately, it
seems that the exact shape of the rank histogram is not universal but depends
on the particular distributions involved. In the present case though, the differ-
ence turns out to be small enough so that the hypothesis HC is appropriate.
What is more important here is the fact that the standard hypothesis HR is not
appropriate; the conclusion that F is unreliable if the rank histogram of e(3) is
not flat is faulty.

Finally, we compare the three ensembles by means of the CRPS. Since e(3)

has been trained using the data y′n, we compute the scores with respect to yn
to allow for a fair comparison. The CRPS’ are shown in Table 2. As expected,
e(2) shows the best performance. Further, we can conclude that even on the
test verifications, the CRPS of e(3) is significantly smaller (i.e. better) than that
of e(1). In fact, the CRPS of e(3) is not significantly different from that of
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e(1) e(2) e(3)

0.173± 0.005 0.157± 0.0044 0.158± 0.0044

Table 2: CRPS scores for ensembles (1–3). We are using ±2σ confidence ranges
here.

e(2). Alternatively, the mathematical expectation of the CRPS of e(2) can be
computed analytically (up to numerical evaluation of integrals) and turns out
to be 0.1582, that is not significantly different from the sample average CRPS
of e(2) and e(3).

The results of this experiment might appear paradoxical at first sight, in
that the ensembles e(2) and e(3) achieve a better CRPS score than e(1), despite
the fact that the latter ensemble contains the same (or even more) information
and, having a flat rank histogram, appears to be more reliable. This would
then contradict the results of Hersbach (2000) which imply that of two forecasts
with the same information content, an unreliable forecast cannot have a better
score than a reliable one. Of course, the solution of this paradox is that, in
some sense, e(2) is reliable (and so is e(3), inasmuch as it is an approximation
to e(2)). In general, if we suppose that F is a reliable forecast distribution,
and we construct an ensemble e from it, then the specific construction entails
a hypothesis H about the rank histogram. We might then call the ensemble
reliable if the actual rank histogram is consistent with H. In the cases studied
here, both e(1) and e(2) are based on a reliable forecast distribution F , but they
are constructed in a slightly different way. For this reason, the corresponding
rank histograms have to be checked against the slightly different hypotheses HR

and HC , respectively.

5 Concluding remarks

The continuous ranked probability score (CRPS) is a frequently used scoring
rule that evaluates probability forecasts based on cumulative distribution func-
tions. This property renders the CRPS a convenient score to evaluate raw
ensemble forecasts (for real valued verifications), since an ensemble can easily
be converted into a piecewise constant cumulative distribution function with
steps at the ensemble members. (The steps commonly have equal height.) This
approach to ensemble evaluation obviates the need for sophisticated EMOS or
dressing methods. Thereby, forecasters can evaluate the raw ensemble without
confounding potential shortcomings of the ensemble with those of the dressing
method.

It has been shown here that, as a function of the raw ensemble members,
the CRPS can be written as a sum of quantile scores applied to individual
ensemble members. Hence, evaluation of the raw ensemble with the CRPS
amounts to interpreting the ensemble members as quantiles. More specifically,

the kth ensemble member is evaluated as a quantile with level αk =
k− 1

2

K
, where
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K is the total number of ensemble members, and equal step heights are used.
This needs to be taken into account if the ensemble is evaluated further, for
example with rank histograms. Common interpretations of ensembles amount
to the null hypothesis of a flat rank histogram (up to statistical fluctuations).
An ensemble optimal with respect to the CRPS though is not expected to show
a flat rank histogram; rather, all ranks are expected to obtain with probability
1/K, apart from the extreme ones, which have probability 1/2K.

For ensembles which approximate quantiles, this should still be approxi-
mately true. An ensemble which gets, for example, re-calibrated or “de-biased”
using the CRPS thus can, in general, not be expected to display a flat rank
histogram; this is obviously of practical relevance. The findings of this paper
have been illustrated by a simple numerical experiments using artificial data.

In some sense, the simple bottom line of this contribution is that ensembles
which are constructed differently might feature different rank histograms, even
if they are based on the same reliable forecast distribution. Referee Christopher
Ferro pointed out that this paper can be considered part of a wider discus-
sion on what has been called consistency of performance measures by Murphy
(1997). The issue, to which Nau (1985) refers as “Considerations in Choosing
an Admissible Set” in an even more general context, can be described as follows.
A rational forecaster will pick her forecast (say F ) independent of the scoring
rule (which determines her reward), as long as the scoring rule is proper, and
as long as no further restrictions limit her choice. In this paper, a situation
was considered in which the forecast is subject to restrictions, namely it had to
be a step function, with the only freedom being the location of the steps (and
possibly the step height). In case of the CRPS score, the forecaster will chose
the step locations to be certain quantiles of F , but this need not be so for other
scores! In other words, the interpretation of the step locations does depend on
the employed scoring rule, unlike F , which is the same for all (proper) scoring
rules. To give another example, suppose the forecaster is forced to use normal
densities, described by mean and variance. Unless F is also normal, the mean
and variance chosen by the forecaster will depend on the employed scoring rule;
in particular, they will in general not be equal to the mean and variance of
F . The bottom line is that since practical issues usually impose restrictions on
possible forecast distributions, the forecast chosen by the forecaster usually does
depend on the scoring rule.
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A Derivation of Equation (8)

Substituting with Equation (7) in Equation (4), we obtain

S(Ge, y)

=

∫

(

∑

k

wkH(x− ek)−H(x− y)

)2

dx

=

∫

(

∑

k

wk

(

H(x− ek)−H(x− y)
)

)2

dx

(16) {equ:160}

since
∑

k wk = 1. We will now analyse I(x; η, y) = H(x − η) − H(x − y) as a
function of x. This function is constant except at x = η and x = y, where it
has jumps of magnitudes 1 and −1, respectively. Therefore,

∫

I(x; η1, y)I(x; η2, y) dx

= (min{η1, η2} − y)+ + (y −max{η1, η2})+, (17) {equ:170}

where (x)+ = x if x > 0 and zero otherwise. In particular,
∫

I(x; η, y)2 dx = |η − y|. (18) {equ:180}

We now expand the squares in Equation (16) and use Equations (17, 18), yield-
ing

S(Ge, y)

=

∫

∑

i

w2
i I(x; ei, y)

2 dx

+ 2

∫

∑

j,i<j

wiwjI(x; ei, y)I(x; ej , y) dx

=
∑

i

w2
i |ei − y|+ 2

∑

j,i<j

wiwj ((ei − y)+ + (y − ej)+)

=
∑

j

w2
j |ej − y|+ 2

∑

j





∑

i>j

wi



wj(ej − y)+

+ 2
∑

j





∑

i<j

wi



wj(y − ej)+

=
∑

j

wj(2W≥j − wj) · (ej − y)+

+
∑

j

wj(2W≤j − wj) · (y − ej)+,

13



with W≤j and W≥j being the cumulative sums
∑

k≤j wk and
∑

k≥j wk, respec-
tively. This expression for S(Ge, y) can be written as the weighted sum in
Equation (8) with αj = W≤j −

wj

2 .
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Jochen Bröcker and Leonard A. Smith. From ensemble forecasts to predictive
distribution functions. Tellus A, 60:663–678, 2008.

Thomas A. Brown. Probabilistic forecasts and reproducing scoring systems.
Technical Report RM–6299–ARPA, RAND Corporation, Santa Monica, CA,
June 1970.

Edward S. Epstein. A scoring system for probability forecasts of ranked cate-
gories. Journal of Applied Meteorology, 8:985–987, 1969.

Petra Friederichs and Andreas Hense. A probabilistic forecast approach for
daily precipitation totals. Weather and Forecasting, 23(4):659–673, 2008. doi:
10.1175/2007WAF2007051.1.

Tilmann Gneiting and Adrian Raftery. Strictly proper scoring rules, prediction,
and estimation. Journal of the American Statistical Association, 102:359–378,
2007.

Tilmann Gneiting, A. Raftery, A. H. Westveld III, and T. Goldmann. Calibrated
probabilistic forecasting using ensemble model output statistics and minimum
CRPS estimation. Monthly Weather Review, 133:1098–1118, 2005.

I. J. Good. Rational decisions. Journal of the Royal Statistical Society, XIV(1):
107–114, 1952.

E. P. Grimit, T. Gneiting, V. J. Berrocal, and N. A. Johnson. The continuous
ranked probability score for circular variables and its application to mesoscale
forecast ensemble verification. Quarterly Journal of the Royal Meteorological
Society, 132:3209, 2006.

Hans Hersbach. Decomposition of the continuous ranked probability score for
ensemble prediction systems. Weather and Forecasting, 15(5):559–570, Octo-
ber 2000.

Stephen Jewson. Moment based methods for ensemble assessment and calibra-
tion. arXiv:physics/0309042v1 [physics.ao-ph], 2003.

14



A. Murphy. Forecast verification. In A. Murphy and R. W. Katz, editors,
Economic value of weather and climate forecasts, pages 19–74. Cambridge
University Press, 1997.

Robert F. Nau. Should scoring rules be ‘effective’? Management Science, 31
(5), May 1985.

Adrian E. Raftery, Tilman Gneiting, Fadoua Balabdaoui, and Michael Po-
lakowski. Using bayesian model averaging to calibrate forecast ensembles.
Monthly Weather Review, 133(5):1155–1174, 2005.

M. S. Roulston and L. A. Smith. Evaluating probabilistic forecasts using infor-
mation theory. Monthly Weather Review, 130(130):1653–1660, 2002.

M. S. Roulston and L. A. Smith. Combining dynamical and statistical ensem-
bles. Tellus, 55A:16–30, 2003.

Mark S. Roulston, Daniel T. Kaplan, Jost von Hardenberg, and Leonard A.
Smith. Using medium range weather forecasts to improve the value of wind
energy producton. Renewable Energy, 28:585–602, 2003.

M.S. Roulston, J. Ellepola, and L.A. Smith. Forecasting wave height probabili-
ties with numerical weather prediction models. Journal of Coastal Engineer-
ing, pages 1–23, 2005.

Leonard J. Savage. Elicitation of personal probabilities and expectation. Journal
of the American Statistical Association, 66(336):783–801, 1971.

J. M. Sloughter, A. E. Raftery, T. Gneiting, and C. Fraley. Probabilistic quan-
titative precipitation forecasting using bayesian model averaging. Monthly
Weather Review, 135:3209, 2007.

15



1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

(a)

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

(b)

Figure 3: Rank histograms for the ensemble e(1) (a, upper panel) and for the
ensemble e(3) (b, lower panel). Under the null hypothesis of equal rank prob-
ability, the χ2–test gives a p–value of 0.39 for histogram (a). There is thus no
indication for a deviation from reliability, as expected. Ensemble e(3) optimises
the CRPS; the rank probabilities should therefore be 1/K for all bins except
for the extreme ones, which should be 1/2K. Under this null hypothesis, the
χ2–test gives a p–value of 0.29 for histogram (b), consistent with our theory.
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