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Jochen Bröcker and Ulrich Parlitz

Drittes Physikalisches Institut, Universität Göttingen
Bürgerstr. 42-44, 37073 Göttingen, Germany

Parlitz@physik3.gwdg.de
Broecker@physik3.gwdg.de

Abstract— We present a general method for state
and parameter estimation for discrete time dynamical
systems perturbed by noise. A rigorous approach to
these problems would be to consider the correspond-
ing probabilities. It turns out that for chaotic systems
these probabilities become the more complicated func-
tions the longer the system evolves and the smaller the
uncertainty becomes. In fact, in general they follow
an infinite dimensional dynamics. The algorithm pro-
posed uses parametrized families of probabilities, the
well known exponential families, to approximate the
true probabilities. The dynamics of the probabilities
then is carried over to the finite dimensional param-
eter space of the exponential family. This approach
was suggested in [3] for continuous time filtering. It
turns out that finding the parameters of the exponen-
tial family is a convex optimisation problem. We con-
sider a simple example and compare an implementa-
tion of our filter to the extended Kalman filter.

I. Introduction

The dynamical systems we deal with in this paper are
randomly perturbed iterated maps. They are special
cases of markov processes, and in fact most of what
will be said in this paper is valid for general Markov
processes. We, however, consider only dynamical sys-
tems of the following form:

Xn+1 = f(Xn, α) +A(Xn) · rn, (1)

where f(·, α) is a diffeomorphism of Rd, α is a pa-
rameter, A : R → GL(d) a matrix valued function
and rn is a series of independent gaussian random
vectors with mean zero and covariance I. Addition-
ally rn is independent of {Xk}k≤n. Now to put this
equation into a stochastic framework, we define the
measures Pn(M) := Prop(Xn ∈ M), where M is a
subset of Rd. It is easy to see that these probabilities
are determined by the initial distribution P0(M) :=
Prop(X0 ∈ M) of X0 and the transition probability
Φ(M, ξ) := Prop(Xn+1 ∈M |Xn = ξ).

Very often in applications one deals in fact with
probability density functions (pdf’s) with respect to

a certain carrier measure λ. We fix λ from now on
throughout the rest of this paper. Then pX(x) always
denotes the pdf of X w.r.t. λ. It turns out [2] that the
pdfs pXn(x) satisfiy the following dynamical equation:

pXn+1(x)

=
∫
Rd

ϕ(x, ξ, α)pXn(ξ)dλ(ξ)

=: L∗pXn(ξ), (2)

with L∗ denoting the integral operator on the r.h.s.
The transition probability ϕ(x, ξ, α) can be calculated
from the equation (1). It turns out that

ϕ(x, ξ, α) = N (x, f(ξ, α), R(ξ))
R(ξ) = A(ξ) ·A(ξ)tr,

where N (·, µ,Γ) is a gaussian pdf with mean µ and
covariance Γ.

In applications the underlying dynamics of a mea-
sured time series is often are modeled by a process
like (1). The problem is then to estimate the state
Xn and the unknown parameter α from the measure-
ments. Suppose for example we collect measurements
of the form

Yn = G(Xn) +B(Xn) · sn, (3)

where sn is a random variable independent of the
whole process {X}∞0 . Let Yn := {Y1, . . . , Yn}. Then
a rigorous approach to estimate Xn or α is to consider
the conditional probability Prop(Xn, α|Yn) or the cor-
responding pdf denoted by pn(x, a). It turns out [2]
that this pdf satisfies the following iterative equation:

pn+1(x, a) = c · q(Yn+1, x) · L∗pn(x, a) (4)

where q(Yn+1, x) can be calculated from equation (3).
In fact

q(y, x) = pYn+1|Xn+1=x(y)
= N (y,G(x), S(x))

S(x) = B(x) ·B(x)tr,



where N is again a gaussian probability density.
Closed form solutions to the problem stated above are
rarely found. A well known example is the Kalman

Filter for linear systems. In this case one is concerned
with normal pdfs only. The filter is described by dy-
namical equations for the mean and covariance.

In the nonlinear case the difficulty is the quadra-
ture in equation (4). Yet the equation is linear but
in general infinite dimensional. Especially for chaotic
systems the pdf is subject to the stretch and fold
mechanism and becomes a quite complicated function.
Therefore grid methods to solve the equation (4) may
suffer from the insufficient storing of the complicated
pdf on a grid of finite points.

II. Exponential Families

The main goal of this paper is to give an approximative
solution of the filter problem by approximating the
pdfs. This means: Specify a set E of pdfs on Rd and
choose a kind of metric. Then search the element p ∈ E
closest to the true density with respect to the metric.
Although other choices seem to have good properties
for special purposes, throughout this paper we work
only with the well known exponential families, defined
as follows (for a global overview see [1]): Suppose E
is a set of pdfs with respect to a reference measure λ,
Θ ⊂ Rk is an open set and ci : Rd → R, i = 1 . . . k is
a set of random variables so that

p : Θ→ S, θ → exp(
∑
i

θici − ψ(θ))

is a bijective map, where

ψ(θ) := log
∫

exp(
∑
i

θici(x))λ(dx).

Then E is an exponential family. We write p(x, θ) :=
p(θ)(x) in the following. By the definition of ψ the
distribution p is normalized:

∫
p(x, θ) dx = 1. Taking

the derivative with respect to θi on both sides one
obtains

ηi :=
∫
ci(x) p(x, θ)λ(dx) =

∂ψ

∂θi
(θ).

The ηi are called the ci–moments or expectation pa-
rameters. One easily obtains the following identity:

gij :=
∂ηi
∂θj

=
∫
∂ log p
∂θi

∂ log p
∂θj

p λ(dx) =
∂2ψ

∂θi∂θj
.

If we additionally require the random variables
∂ log p/∂θi to be linear independent then gij turns out
to be a nonsingular positiv definite matrix, called the
Fisher metric. Furthermore the expectation param-
eters ηi are globally diffeomorphic functions of the θi.

Therefore the expectation parameters form another co-
ordinate system for E , which is of great use in the fol-
lowing.

As a metric d(P1, P2) between two mutually abso-
lutely continuous probability measures P1, P2 we in-
troduce the Kullback–Leibler distance

d(P1, P2) :=
∫

log
dP1

dP2
P1(dx).

The Kullback–Leibler distance is neither symmet-
ric nor fulfills the triangle inequality. Nevertheless,
d(P1, P2) is always positive (Kullback–Leibler inequal-
ity) and vanishes if and only if P1 = P2 a.s. Further-
more, let P1 be an arbitrary measure and dP2

dP1
= p(x, θ)

belong to an exponential family E . Suppose P2 is a
critical point of d(P1, P2), i.e. ∂d(P1, P2)(x, θ)/∂θi =
0. Necessary conditions are

ηi(θ) =
∫
ci(x) p(x, θ)λ(dx) =

∫
ci(x)P1(dx). (5)

Then taking the second derivative we obtain

∂2

∂θi∂θj
d(P1, P2)(x, θ) =

∂2ψ

∂θi∂θj
,

which is the Fisher metric. Since this is a positiv def-
inite matrix, the critical point turns out to be a min-
imum. It is in fact easy to see that minimizing the
Kullback–Leibler distance w.r.t. θ is a convex optimi-
sation problem and related to a Legendre transform
of ψ. For such problems, there exist always a unique
solution as well as numerical algorithms to find it.

III. Approximative Filters

In this section we approximate the true pdfs by pdfs
of an exponential family by minimising the Kullback–
Leibler distance between them. Consider the equation
(2) first. The parameter α doesn’t play any exeptional
role and is ommitted. Suppose an exponential family
E is chosen and pn(x) = p(x, θn) ∈ E (θn is not the
n–th power but the parameters of pn). Then we have

pn+1(x) =
∫
ϕ(x, y) p(y, θn) dy.

In general pn+1(x) /∈ E . We approximate pn+1(x) by
p(x, θn+1). According to eq. (5) this yields

ηi(θn+1) =
∫
ci(x) pn+1(x) dx

=
∫

(
∫
ci(x)ϕ(x, y) dx) p(y, θn) dy

=
∫
Lci(y) p(y, θn) dy

The r.h.s. is a function of θn and the l.h.s. are the ci–
moments of the new pdf. According to the previous



section the parameters θn are invertible functions of
ηi(θn). The same holds for θn+1 and ηi(θn+1). So in
principle the above equation gives the equation (2) ap-
proximately as an iterative map Π : Θ → Θ; θn+1 =
Π(θn). Since the product of two exponential pdfs is
again an exponential pdf the equation (4) is simplified
considerably if q(y, x) viewed as a function of x is in E
for every y. Then according to equation (4) the mul-
tiplication with q can be performed without leaving
E .

IV. Numerical Examples

We studied as a numerical example the Henon map

xn+1 = 1− α · x2
n + 0.3 · yn

yn+1 = xn

with oservable

vn = G · (xn, yn) = xn + yn

G = (1 1) .

The parameter α is assumed to be unknown. Practi-
cally this problem can equivalently be treated by in-
troducing a further dynamical equation

αn+1 = αn

for α. Furthermore, we assume a Gaussian observation
noise (of 18.5 dB) as well as a small dynamic noise
(∼= 30 dB) to be present. As an exponential family we
use 3–dimensional Gaussian distributions

p((xn, yn, αn),Γn, µn) = N ((xn, yn, αn),Γn, µn),

where Γn, µn play the roles of the canonical parameters
θ. It turns out that all moments can be calculated
analytically and therefore an expression for the map Π
can be obtained explicitely giving iterative equations
for µn and Γn. Since the observation is linear, the
function q is gaussian and the multiplication with q in
equation 4 yields again a gaussian.

Figure 1 shows the performance. The upper panel
shows the remainig error in the noise–cleaned out-
put. The quadratic deviation is plotted on a loga-
rithmic scale and normalized with the variance of the
observation noise. The lower panel shows the per-
formance for the parameter estimation. We plotted
log(fracαn − 1.41.4)2. The value 1.4 was the true
value.

The results where compared to the performance of
an extended Kalman filter (EKF). The EKF is ob-
tained by linearisation of the nonlinear system equa-
tions and then applying a usual Kalman filter. The
detailed procedure of this very common technique is
described in [4].
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Figure 1: Performance for the new filter

Figure 2 shows the performance for the Kalman fil-
ter. The plots and scales are exactly the same. It
is easy to see that the EKF works a few magnitudes
worse than our algorithm. In the parameter estimate,
even a systematic error remains, while the parameter
estimate of the new algorithm seems to be more or less
convergent.

Finally we remark that the computing time of the
new filter was only 25 percent larger than for the EKF.
The memory consumption was more or less the same.

V. Conclusion

We presented a new method to approximate nonlin-
ear filters that may be used, for example, as observers
in noisy environments and for system identification.
They seem to work quite well for the systems investi-
gated, in fact better than the usual technique of ex-
tended Kalman filtering. Open questions are for exam-
ple the choice of a proper exponential family to sim-
plify the required calculations and to achieve better
performance. This will be subject to further studies.
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Figure 2: Performance for the EKF

Acknowledgements

We acknowledge support by the Deutsche Forschungs-
gemeinschaft (Graduiertenkolleg “Strömungsinstabili-
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