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ASSET MARKETS AND RISK SHARING:
ANALYTICAL INTRODUCTION OF UNCERTAINTY

ALEXANDER MIHAILOV

Abstract. This lecture continues to develop the analytical basics of microfounded open-
economy models. Having incorporated trade across time into a standard simplified framework
of international economic interdependence, we now turn to trade across states of nature. The
two problems seem at first different, yet they have a common underlying structure. This
similarity is employed further in the lecture, where we focus on some parallels (i.e., analogy, if
not equivalence) between results derived in dynamic models with no uncertainty and stochastic
models with no dynamics. Section 1 begins by a small open-economy real model with two
states of nature in the second period and introduces a number of key concepts. Section
2 extends the setting to a two-country multiple-state global economy. Both these sections
abstract from capital market imperfections, and section 3 then sketches what are the main
problems with risk sharing under imperfections related to sovereign risk, hidden information
and moral hazard.
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as essential and supplementary reading for my graduate course in international finance at Essex as well as on the
related literature (see the course outline and reading list at http://courses/essex.ac.uk/ec/ec933/). The notes are
intended to be of some help to the students attending the course and, in this sense, many aspects of them will
be clarified during lectures. The present second draft may be developed and completed in future revisions. The
responsibility for any errors and misinterpretations is, of course, only mine. Comments are welcome, preferably
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1. A Stochastic Two-Period Real Model of a Small Open Economy

The models considered in our previous lectures abstracted from issues related to uncertainty
or risk. It is now time to see how the realistic possibility ofmultiple ”states of nature” (also called
”states of the world”) at each date could tractably be handled in the microfounded framework
we started building in lecture 4. As in the preceding lecture, the notes that follow draw heavily
on Obstfeld and Rogoff’s (1996) excellent graduate textbook.

1.1. Assumptions. Our starting point is the same set of assumptions as those in section 1.1.1
of lecture 4. To them, we add the following additional assumptions, which make the similar
2-period SOE model with no uncertainty of the previous lecture different from the stochastic
(that is, with uncertainty) 2-period SOE model here in lecture 5.

(1) A first difference is that now we allow for a richer set-up in which not just one, certain,
but two states of nature are possible at date 2, and the actual realisation of any of them
is uncertain (from the perspective of date 1); these two states
(a) occur randomly, according to a specified (i.e., known to agents) probability distri-

bution;1 we assume that state s occurs with probability π (s), for s = 1, 2;
(b) and differ only in their associated endowment (or, more generally, output or income)

levels in the terminal period 2, y2 (1) and y2 (2).
(2) A second key simplification in the present section is that economic agents have sufficient

foresight to prearrange, by explicit or implicit contracts, for trades in assets that protect
them at least partially against future contingencies affecting their well-being.

As we have done previously,
• let us again assume a constant population size, convenient to be normalised at 1, so that
the endowment (output or income) and consumption of the representative individual
can be identified with (i.e., are the same as) national aggregate endowment (output or
income) and consumption;

• it will be furthermore assumed that the representative individual:
— has known (thus, certain) income y1 in the first period;
— and starts out with zero net foreign assets.

1.2. State-Contingent Consumption Plans. It is important to understand and model in an
appropriate way one key difference between lifetime consumption under certainty (as in lecture
4) and under uncertainty (as in this lecture). It is that an individual with uncertain future
endowment (output, income) cannot predict his optimal consumption level exactly. He could
instead only plan (ex ante) a range of consumption levels, each contingent on the state of nature
that can actually materialise. Such desired contingency plans for consumption are at the centre
of decision making under uncertainty.
In general, which of the many planned consumption levels will be actually chosen (ex post)

in a given period of time, t, will depend on the observed state of nature in that period of time,
often denoted st, and on the history of relevant (economic) outcomes up to, and including, the
last period, often denoted st ≡ (..., s0, s1, s2, ..., st−1,st). To this entirely backward-looking deter-
mination of consumption economists usually add also a forward-looking component of perhaps
equal importance, namely the (rational) expectations of agents about their future income, hence
consumption.
In terms of the simple 2-period stochastic model we build up here, c2 (s), for s = 1, 2, shall

denote the two state-contingent consumption plans for date 2 (made ex ante, i.e., from the
perspective of date 1).

1Note that the literature sometimes distinguishes ”risk” from ”uncertainty” or rather Knightean — due to
Knight (1921) — uncertainty. The latter has been more recently also termed ambiguity and has been distinguished
from ”uncertainty” or, equivalently, ”risk”. Knightean uncertainty or ambiguity relaxes the assumption of known
(knowable) probability distribution for the stochastic process(es) inherent in economic decision making. In this
lecture we would not consider such more realistic but more complicated cases, the focus remaining on modelling
fixed probabilities.
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1.3. The Consumer’s Problem under Uncertainty.

1.3.1. Lifetime Expected Utility. The usual assumption in models with uncertainty is that the
consumer’s satisfaction is measured on the initial date by lifetime expected utility, i.e., by average
lifetime utility given the chosen contingency plans for future consumption. Let c1 denote con-
sumption on date 1. c1 must be chosen before uncertainly is resolved, and thus cannot depend
on the state of nature that occurs. The latter is observed by agents on date 2.
The representative individual lifetime expected utility on date 1 is

Ul ≡ π (1) {u (c1) + βu [c2 (1)]}| {z }
if s=1

+ π (2) {u (c1) + βu [c2 (2)]}| {z }
if s=2

.

By the definition of probability, π (1) + π (2) = 1, so — replacing π (2) above by 1− π (1) and
expanding the expression — one could see that it can also be written as

(1.1) Ul ≡ u (c1) +

would be simply u(c2) under certainty (cf. lecture 4)

β
z }| {
{π (1)u [c2 (1)] + π (2)u [c2 (2)]}| {z }

≡βE1[u(c2)], i.e., expected (ex ante) utility of consumption on date 2

.

An implicit assumption in (1.1) is that the utility function u (c) does not depend on the
realised state of nature, i.e., utility is not state-dependent. By analogy with the invariance
of period utility across time we assumed in lecture 4, we may now say that (period) utility
is here also invariant (or stable) across states of nature. This assumption allows us to leave
u (c) unindexed (either by date t or by state s), which in general need not be the case. An
obvious example is that when a person unexpectedly falls ill, his relative preference for various
commodities may well change.

1.3.2. Arrow-Debreu Securities and Complete Asset Markets. It is the type of asset market struc-
ture, namely complete asset markets, posited by the Arrow (1953, 1964) — Debreu (1959) para-
digm, that makes the choice of consumption in different states exactly analogous to the choice
of consumption on different dates (or periods) or, still, to the choice of different consumption
goods on a single date (or period). The main assumptions of the Arrow-Debreu paradigm (of
complete markets), as they apply to the simple two-period analytical framework considered here,
are as follows.

(1) There is a worldwide market in which people can buy contingent claims.
(2) These contingent claims have period 2 payoffs that vary according to the exogenous

shocks which materialise in period 2, i.e., their payoffs depend on the state of nature
that has actually occurred, s (itself defined in terms of a particular combination of shock
realisations in period 2).

(3) More specifically, let us define the Arrow-Debreu (A-D) security for state of
nature s to have the following payoff structure: the owner (who has bought) the A-D
security receives — and, symmetrically, the issuer (who has sold) the A-D security pays
— 1 unit of output on date 2 if state s (prespecified in the explicit or implicit contract
implied by the purchase/sale of the A-D security) occurs on date 2 but nothing in all
other states. We next assume, as in the Arrow-Debreu paradigm, that there exists a
competitive market in A-D securities for every possible state.

(4) We may also allow for borrowing and lending, i.e., people to sell and buy noncontingent
(also called riskless or risk-free) assets, such as bonds that pay for sure 1 + r per unit
on date 2 regardless of the state of nature. As in lecture 4, r denotes the (net) real
rate of interest when the payoff is certain, that is, the riskless (or safe) RIR. Yet if A-D
securities for every possible state are available for purchase/sale, the bond market turns
out to be redundant, in the sense that its elimination would not affect the economy’s
equilibrium. To take an evident example, consider our two-date two-state model: in it,
the simultaneous purchase of 1 + r units (that is, number or quantity, implying perfect
divisibility) of state 1 A-D securities and 1 + r units of state 2 A-D securities on date
1 assures a payoff of 1 + r output units on date 2 no matter which of the two potential
states has actually materialised, just as buying on date 1 a one-period (risk-free) bond
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would have done. Bonds therefore add nothing to the trading opportunities people have
once a full set of Arrow-Debreu contingent claims can be traded. The example provides a
simple but clear illustration of how prices of more complicated assets (e.g., multi-period
bonds or options) could be constructed once one knows the primal Arrow-Debreu prices.
What is meant by complete asset markets is exactly that people can trade an A-D
security corresponding to every future state of nature.

It may appear unrealistic to assume that markets for Arrow-Debreu securities exist: after all,
no one has seen such asset prices quoted in standard sources, say, Financial Times orWall Street
Journal !... However, virtually all real-world assets have state-contingent payoffs: some of these
assets, e.g., stocks and stock options, are traded in organised markets (stock exchanges) whereas
others, e.g., insurance contracts of various types, are traded on a case-by-case basis. And in
most circumstances it can be shown that repeated trading in familiar, real-life securities such
as stocks is capable of replicating the allocations that arise if a complete set of A-D contingent
claims were traded instead. That is why, despite the fact that Arrow-Debreu securities are
stylised theoretical constructs, inexistent in the real world outside, thinking in terms of as if
trading them helps clarify the economic roles of the more complex securities tracked daily in the
financial press (as we show below).

1.3.3. Budget Constraints with Arrow-Debreu Securities. We are now prepared to turn back to
our objective of analysing a SOE under uncertainty. Assuming complete asset markets, as we
do throughout sections 1 and 2, is equivalent to allowing the representative individual to hedge
risks by trading in a full set of Arrow-Debreu contingent claims.
Let b2 (s) denote the representative individual’s net purchase of — units (number, quantity)

of — state s A-D securities on date 1. We keep on to the convention from our previous lecture,
following Obstfeld and Rogoff’s (1996) book, that stocks of assets (as well as the rate of interest)
are (time-)indexed according to the start of the period they are carried over to (or announced to
be valid for, in the case of interest rates): thus, b2 (s) is the stock of A-D claims the representative
individual in the small open economy holds (immediately) at the beginning of period 2, which
should be the same as that held (immediately) at the end of period 1.
Let also p(s)

1+r denote the world (real) price, quoted in terms of date 1 consumption, of a claim
to one output unit to be delivered on date 2 if, and only if, state s occurs. Thus p (s) is the price
of date 2 consumption, conditional on state s in terms of certain date 2 consumption.2 Since
this price is determined in the world market, it is exogenously given to the SOE.
As usual in an exchange economy, the value (price multiplied by quantity) of a country’s net

accumulation of assets on (or, rather, at the end of) date 1 must equal the difference between
its income and consumption on (at the end of) that same date 1:

(1.2)

would be simply b2 (with b1≡0) under certainty (cf. lecture 4)z }| {
p (1)

1 + r
b2 (1)| {z }

PV of insurance if state 1 on date 2

+
p (2)

1 + r
b2 (2)| {z }

PV of insurance if state 2 on date 2| {z }
PV of total insurance for the uncertainty of date 2

≡ y1 − c1| {z }
date 1 net saving

.

Note that the (real) prices p (1) and p (2) are ”deflated” by the risk-free (real) interest rate
by which the market (objectively) discounts the future one period ahead. Recall also, in view
of what was already said, that we need not explicitly consider a bond market, in addition to
the Arrow-Debreu setting implied by (1.2); the reason is that bonds are redundant given the
two A-D securities available for the only two possible states on date 2 in our simple stochastic
model.
How does, next, the future unfold, resolving (revealing) uncertainty, in the context of the

analytical framework we are building here? Well, when date 2 arrives, the (actual or realised

2Obstfeld and Rogoff (1996), p. 273, footnote 6, stress that this notation is adopted for two reasons: (i) to
remind that transactions in A-D securities transfer purchasing power across time as well as across states and
(ii) to render the resulting budget constraints and Euler equations (see further down) in a form that is easily
compared with their certainty analogues (see the respective expressions in lecture 4).
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or materialised) state of nature is observed, and the country will be able to consume its endow-
ment (or output or income) net of any payments on its state s- (i.e., the unique realised state)
contingent assets:3

(1.3) c2 (s) = y2 (s) + b2 (s) , s = 1, 2.

Using equations (1.3) — for s = 1 and s = 2 — to eliminate b2 (1) and b2 (2) in the asset
accumulation identity (1.2), one can derive the intertemporal budget constraint for this Arrow-
Debreu economy (i.e., economy enjoying complete asset markets):

(1.4) c1 +

would be c2 under certainty (cf. lecture 4)z }| {
p (1) c2 (1) + p (2) c2 (2)

1 + r| {z }
PV of lifetime (state-)contingent consumption

= y1 +

would be y2 under certainty (cf. lecture 4)z }| {
p (1) y2 (1) + p (2) y2 (2)

1 + r| {z }
PV of lifetime (state-)contingent income

.

Equation (1.4) is the present value intertemporal budget constraint under uncertainty. It
states that the date 1 present value of the SOE’s uncertain consumption stream must equal the
date 1 present value of its uncertain income, where (state-)contingent quantities are evaluated
at world Arrow-Debreu prices. In the present model context, international asset markets allow
the country to smooth consumption not only across time (as in lecture 4) but also across states
of nature.
As indicated by the brackets over the numerators in the above expression — and by the similar

remarks inviting comparisons with the analogous formulas in lecture 4 in most of the other
numbered equations thus far — the expressions in the same model but under uncertainty in
the present lecture are (slight) variations of the respective expressions under certainty in the
preceding one. Such comparisons are insightful, and reveal a common logical structure which
underlies the two problems, dynamic optimisation under certainty and stochastic optimisation
under complete asset markets (both static or dynamic). That is why we shall purposefully,
partly also for didactic reasons, insist on observing further down in these notes the similarities
and differences in the dynamic vs stochastic versions of the baseline model considered in lectures
4 and 5.

1.3.4. Full Insurance: Optimal or Not? Let us, for a moment, return to equation (1.4) and
define, in its context, what is complete (or full) insurance. Suppose that the SOE’s output is
extremely low in state 1 and extremely high in state 2. Then, by going ”short”, i.e., becoming a
net seller, in state 2 securities (b2 (2) < 0) and going ”long”, i.e., becoming a net buyer, in state
1 securities (b2 (1) > 0), the country can smooth consumption across states. In such a way, a
consumer could assure himself of a completely nonrandom period 2 consumption level by, for
example, selling his future state 1 output at its world market price, i.e., for p(1)y2(1)

1+r , in bonds

and his future state 2 output at its world market price too, i.e., for p(2)y2(2)
1+r , in bonds: that

strategy guarantees the safe date 2 consumption level:

(1.5) c2 = p (1) y2 (1) + p (2) y2 (2) .

This is, in essence, the economic role of financial hedging. But, as we shall see below, a
strategy of full insurance is not necessarily optimal !

1.3.5. Optimal Behaviour and Model Equilibrium. In lecture 4, we showed how one can use the
Lagrangian function method (of undetermined coefficients, or multipliers) to solve for optimal
behaviour and the subsequent equilibrium allocations whenever the constraints of the optimisa-
tion problem are linear. The similar model under uncertainty here can be handled by forming
the Lagrangian too. But instead of repeating the method, we shall now take an alternative route

3Obstfeld and Rogoff (1996), p. 275, footnote 7, duly remark that in the present setting a person’s period
2 income can fall short of required payments on the state-contingent securities issued in period 1 only if this
shortfall is planned. Such a plan would be fraudulent, but — to restrict our analysis to consistent behaviour — we
assume that people do not plan to violate their intertemporl budget constraints.
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that leads to the same results (this alternative route could have also been applied to solve the
optimisation problem under certainty in lecture 4). It consists in transforming the constrained
optimisation, as initially set up in the preceding pages of this lecture, into an unconstrained op-
timisation. To accomplish this, we usually express one or more variables from the constraint(s)
and substitute them back in the objective function. Having thus transformed the optimisation
problem into an unconstrained one, what remains is to equate the FONCs w.r.t. the choice
(or decision or, still, control) variables to zero and find an appropriate way of expressing (an-
alytically) and interpreting (intuitively) the efficiency conditions coming out of the described
algebraic manipulation. This is what we do next.
The small country’s optimal saving and portfolio allocations maximise lifetime expected utility

(1.1) subject to constraint (1.4). As we said, one approach to the solution of this constrained
optimisation problem will be to transform it into an unconstrained one. To do so, we use
equations (1.2) and (1.3) to express the consumption levels in equation (1.1) as function of asset
choices:

Ul = u

∙
y1 − p (1)

1 + r
b2 (1) +

p (2)

1 + r
b2 (2)

¸
| {z }

=c1, from (1.2)

+

+π (1)βu [y2 (1) + b2 (1)]| {z }
=c2(1), from (1.3) with s=1

+ π (2)βu [y2 (2) + b2 (2)]| {z }
=c2(2), from (1.3) with s=2

.

Written in a more compact way, the maximisation problem is:

(1.6) max
b2(s)

Ul = u

"
y1 −

2X
s=1

p (s)

1 + r
b2 (s)

#
+

2X
s=1

π (s)βu [y2 (s) + b2 (s)] .

The first-order conditions are:

∂Ul
∂b2 (s)

= 0, s = 1, 2⇔

(1.7) ⇔ p (s)

1 + r
u0 (c1) = π (s)βu0 [c2 (s)] , s = 1, 2.

As you could verify by comparison, (1.7) is closely related to the intertemporal Euler equation
in lecture 4, although it now pertains to an A-D security rather than a risk-free bond. The LHS
of (1.7) is the cost, in terms of date 1 marginal utility of consumption, u0 (c1), of acquiring the
Arrow-Debreu security for state s; the RHS of (1.7) is the expected discounted benefit from having
an additional unit of consumption, u0 [c2 (s)], in state s on date 2. Similarly to what we did with
the intertemporal Euler equation in lecture 4, we can also rearrange (1.7) so as to express the
marginal rate of substitution between c1 and c2 (s) as being equal to the relative price between
the two goods:

(1.8)
π (s)βu0 [c2 (s)]

u0 (c1)
=

p (s)

1 + r
, s = 1, 2.

1.3.6. Creating Synthetic Assets from Primal Arrow-Debreu Securities. We can use equations
(1.8) to derive the intertemporal Euler conditions for more complex securities that pay off in
more than one state of the world. A usual example of such an asset is a riskless bond, which pays
1 + r output units on date 2 always (i.e., no matter the particular state that has materialised)
for every one output unit worth of bonds purchased on date 1. As noted earlier, we can create
a ”synthetic” safe bond out of ”primal” A-D securities by buying 1 + r units of the state 1 A-D
security on date 1 at the (complete asset markets) price of p(1)1+r per unit and, at the same time,
buying 1 + r units of the state 2 A-D security on date 1 at the (complete asset markets) price
of p(2)

1+r per unit. Such a ”portfolio” yields sure delivery of 1 + r output units on date 2, no
matter which of the possible states eventually occurs. For this reason, the ”portfolio” or, rather,
the synthetic sure bond replicated (or constructed) by a combination of (here, two) primal A-D
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securities must have the same price as a straight (i.e., not synthetic or replicated) bond paying
1 + r output units next period (that is, the ”portfolio” of A-D securities which is termed a
synthetic bond must cost 1 output unit on date 1). Therefore,

(1 + r)| {z }
units of state 1 A-D

p (1)

1 + r| {z }
unit price of state 1 A-D

+ (1 + r)| {z }
units of state 2 A-D

p (2)

1 + r| {z }
unit price of state 2 A-D

=

= 1|{z}
cost in terms of date 1 output units to buy 1 bond

,

or, equivalently,

(1.9) p (1) + p (2) = 1.

Let us note here, in passing (and for future reference), that in the general case when the states
of nature s are more than two and belong to some set S the analogous formula is:

(1.10)
SX
s=1

p (s) = 1.

We next derive the stochastic Euler equation for a riskless bond, (1.11) below, by adding
equations (1.7),

[p (1) + p (2)]| {z }
=1, from (1.9)

u0 (c1) = (1 + r)β{π (1)u0 [c2 (1)] + π (2)u0 [c2 (2)]}| {z }
≡E1[u0(c2)], by definition

,

Using the definition of mathematical expectation in the RHS and equation (1.9) in the LHS,
we can write the expression above as

(1.11) u0 (c1) = (1 + r)βE1 [u
0 (c2)] ,

where E1 [·] is the expectation operator conditional on information known at date 1.
Like we are by now already accustomed to do, let us also present the stochastic Euler equation

for the risk-free bond, (1.11), in another way:

(1.12)
βE1 [u

0 (c2)]
u0 (c1)

=
1

1 + r
.

The interpretation of (1.12) is that the (discounted) expected marginal rate of substitution of
present for future consumption, LHS, equals the (relative) price of certain future consumption,
RHS.

1.3.7. Actuarially Fair Arrow-Debreu Security Prices: More on Optimal Insurance. A still fur-
ther implication of the first-order conditions (1.7) is easily seen when one writes them in a
manner explicitly accounting for the two possible states of nature in the second period of the
baseline stochastic model we are analysing here. Dividing through the two FONCs, we obtain
what was termed a ”compact” first-order condition in lecture 4 (check the analogous equation
there):

(1.13)
π (1)u0 [c2 (1)]
π (2)u0 [c2 (2)]

=
p (1)

p (2)
.

(1.13) states that theMRS of state 2 consumption (in the denominator of the LHS) for state 1
consumption (in the numerator of the LHS) must equal the relative price of state 2 consumption
(in the denominator of the RHS) for state 1 consumption (in the numerator of the RHS). Recall
the static optimality condition familiar from consumer theory in microeconomics, to see that
(1.13) is also a variation of it. Moreover, observe that only when
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(1.14)
π (1)

π (2)
=

p (1)

p (2)

does condition (1.13) imply that

(1.15) u0 [c2 (1)] = u0 [c2 (2)] , hence c2 (1) = c2 (2) = c2 = const,

so that it is optimal to smooth consumption across states of nature. When (1.15) holds, it
defines what is said to be actuarially fair Arrow-Debreu security prices. Only at actuarially fair
prices a country trading in complete asset markets will fully insure against all future consumption
fluctuations. If prices are not actuarially fair, the country will optimally choose to tilt its
consumption across states. Given two equiprobable states, π (1) = π (2) = 1

2 , for example, the
country will plan for relatively lower consumption in the state for which consumption insurance
is relatively expensive, i.e., p (s) for s = 1, 2 is relatively higher. In a more practical context,
similarly — if other things are equal — individuals confronted with a higher relative price of,
say, auto insurance will buy less of it (lower coverage limits, higher deductible, etc.). It is,
again, interesting to compare these results on consumption tilting across states (of nature) with
the analogous ones on consumption tilting across dates (or periods), i.e., across time, and to
understand the parallels as well as the differences.

1.3.8. The Role of the Coefficient of Relative Risk Aversion (CRRA). A further analogy — with
some variation, of course — concerns the definitions and roles of the elasticity of intertempo-
ral substitution (EIS) in consumption in lecture 4 and the coefficient of relative risk aversion
(CRRA) in the present context with uncertainty.
Recall from microeconomic theory that an expected-utility maximiser will be, formally, risk-

averse, which will make him willing to buy consumption insurance, only if the period utility
function is strictly concave.4 Under risk aversion, i.e., concavity of utility, such individuals
strictly prefer the expected value of a finite gamble than the gamble itself. The key point this
subsection will stress is that the curvature, that is, the degree of concavity of the period utility
function, which measures the extent of risk aversion (e.g., not whether you are risk averse but
how much risk averse you are, relative to another individual), is at the same time an inverse
measure of the individual’s portfolio response to changes in Arrow-Debreu prices. The role risk
aversion plays is thus, essentially, in determining the demands for state-contingent consumptions.
For more clarity, we largely repeat below the derivation and definitions we did with respect

to the EIS but now in the set-up of the baseline stochastic model we deal with in this lecture
the purpose is to derive the CRRA. Going back to the across-state compact FONC (1.13), we
first take natural logarithms from both sides of it:

ln

∙
π (1)u0 [c2 (1)]
π (2)u0 [c2 (2)]

¸
= ln

∙
p (1)

p (2)

¸
,

lnπ (1)| {z }
=const

+ lnu0 [c2 (1)]− lnπ (2)| {z }
=const

− lnu0 [c2 (2)] = ln p (1)− ln p (2) ,

ln p (1)− ln p (2) = lnu0 [c2 (1)]− lnu0 [c2 (2)] + lnπ (1)| {z }
=const

− lnπ (2)| {z }
=const

.

We next totally differentiate the above equation (treating probabilities as constant, since they
are fixed, i.e., known to agents by assumption):

d ln p (1)

dp (1)
dp (1)− d ln p (2)

dp (2)
dp (2) =

d lnu0 [c2 (1)]
dc2 (1)

dc2 (1)− d lnu0 [c2 (2)]
dc2 (2)

dc2 (2) ,

1

p (1)
dp (1)− 1

p (2)
dp (2) =

1

u0 [c2 (1)]
u00 [c2 (1)] dc2 (1)− 1

u0 [c2 (2)]
u00 [c2 (2)] dc2 (2) ,

4Recall as well that, alternatively, a strictly convex period utility characterises the less realistic (or less typical)
economic agents who are risk-lovers ; and that a linear period utility function implies risk-neutral behaviour.
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dp (1)

p (1)
− dp (2)

p (2)
=

1

u0 [c2 (1)]
u00 [c2 (1)]

c2 (1)

c2 (1)| {z }
=1

dc2 (1)− 1

u0 [c2 (2)]
u00 [c2 (2)]

c2 (2)

c2 (2)| {z }
=1

dc2 (2) ,

dp (1)

p (1)| {z }
≡d ln p(1)

− dp (2)

p (2)| {z }
≡d ln p(2)

= c2 (1)
u00 [c2 (1)]
u0 [c2 (1)]

dc2 (1)

c2 (1)| {z }
≡d ln c2(1)

− c2 (2)
u00 [c2 (2)]
u0 [c2 (2)]

dc2 (2)

c2 (2)| {z }
≡d ln c2(2)

,

d ln p (1)− d ln p (2)| {z }
≡d ln[ p(1)p(2) ]

=
c2 (1)u

00 [c2 (1)]
u0 [c2 (1)]

d ln c2 (1)− c2 (2)u
00 [c2 (2)]

u0 [c2 (2)]
d ln c2 (2) ,

(1.16) d ln

∙
p (1)

p (2)

¸
=

c2 (1)u
00 [c2 (1)]

u0 [c2 (1)]
d ln c2 (1)− c2 (2)u

00 [c2 (2)]
u0 [c2 (2)]

d ln c2 (2) .

The ratios in the RHS above define what is known as the Arrow (1953, 1964) — Pratt (1964)
coefficient of relative risk aversion:5

(1.17) ρ (c) ≡ −cu
00 (c)

u0 (c)
.

If we next assume that this coefficient is constant, ρ (c) = ρ = const, equation (1.16) simplifies
to:

d ln

∙
p (1)

p (2)

¸
=

c2 (1)u
00 [c2 (1)]

u0 [c2 (1)]| {z }
=−ρ

d ln c2 (1)−c2 (2)u
00 [c2 (2)]

u0 [c2 (2)]| {z }
≡ρ

d ln c2 (2) ,

d ln

∙
p (1)

p (2)

¸
= −ρd ln c2 (1) + ρd ln c2 (2) ,

d ln

∙
p (1)

p (2)

¸
= ρ [d ln c2 (2)− d ln c2 (1)] ,

d ln

∙
p (1)

p (2)

¸
= ρd ln

∙
c2 (2)

c2 (1)

¸
,

d ln

∙
c2 (2)

c2 (1)

¸
=
1

ρ
d ln

∙
p (1)

p (2)

¸
.

The above equation shows that the inverse of the constant coefficient of relative risk aversion,
1
ρ , is also, by definition, the elasticity of substitution between state-contingent consumption levels
with respect to relative Arrow-Debreu prices (to be distinguished from the EIS in consumption
we derived under certainty in lecture 4!). Intuitively, a high risk aversion — embodied in a high
value of ρ (ρ > 0 is a usual parameter in period utility functions, as we shall see below) — implies
an inelastic (i.e., 0 < 1

ρ < 1) response of relative demand for consumption insurance to a change
in the relative price of insurance.
The class of period utility functions characterised by constant relative risk aversion (CRRA)

is given by:

(1.18) u (c) =

(
u (c) = c1−ρ

1−ρ , ρ > 0, ρ 6= 1
ln c, ρ = 1,

an analytical description that also fits the isoelastic utility class if σ, the elasticity of intertem-
poral substitution (EIS) in consumption, equals 1

ρ . That is,

5Observe that the RHS of formula (1.17) would coincide with the definition of the elasticity of intertemporal
substitution (EIS) in consumption of lecture 4 if we had a model with certain consumption streams over time.
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(1.19) σ =
1

ρ
⇔ ρ =

1

σ
.

The above isoelastic class example illustrates a shortcoming of the expected utility framework,
in the sense that it does not permit to vary the consumer’s aversion to risk and elasticity
of intertemporal substitution, two different concepts, independently of each other. However,
economic analysis usually accepts this drawback because of the need for tractability : the latter
is provided by both retaining the expected utility framework and often specialising preferences
to the CRRA (or isoelastic) class. Moreover, as Obstfeld and Rogoff (1996) point out in their
textbook, p. 279, footnote 8, it is precisely this class of preferences that has the advantage to
be consistent with steady long-run rate of consumption growth. Obstfeld and Rogoff also stress
it clearly that the reason risk aversion and intertemporal substitutability are indistinguishable
with CRRA expected-utility preferences is that lifetime utility is assumed additive across states
(state separable) as well as across dates/periods (time separable), with probabilities weighting
the period utility function as applied to different states in the same multiplicative fashion that
the temporal discount factor weighs the value of period utility on different dates.
A consumer is said to be risk neutral when u00 (c) = 0, implying ρ = 0. As ρ → 0, 1ρ → ∞,

so individuals would concentrate all their consumption in states s with π (s) > p (s). But this
result in the partial equilibrium, SOE model described up to here does not carry over to general
equilibrium, because world equilibrium requires date 2 output market to clear state by state:
we shall see in section 2 that the only price vector consistent with general equilibrium as ρ→ 0
is π (s) = p (s), in which case risk-neutral agents are indifferent as to how they allocate their
wealth across states of nature.
But before moving to the two-country version of the baseline model we are analysing, let us

look at a log-utility example that will clarify the links between our stochastic set-up here and
the current account, providing some coherence with earlier lectures as well.

1.3.9. Consumption Demands and the Current Account in the Log-Utility Special Case. The
special case of logarithmic utility has been much exploited in theoretical frameworks. The main
purpose when recurring to this otherwise quite restrictive case is to derive explicitly closed-form
solutions. With log-utility, this turns out straightforward in many economic models. The benefit
of analytical clarity is thus often perceived to offset the drawback of reducing the generality of
results to this particular class of preferences.
In the context of the present model with uncertainty, specialising utility to the logarithmic

class is useful as well in providing interesting insights on the current account. We illustrate them
below.
With u (c) = ln c, the lifetime expected utility function (1.1) that the representative individual

maximises subject to the lifetime expected budget constraint (1.4) becomes:

(1.20) Ul ≡ ln c1 + π (1)β ln c2 (1) + π (2)β ln c2 (2) .

For a simpler notation, we can also define Wl to be the present value of lifetime expected
resources on date 1, in fact, the RHS of (1.4):

(1.21) Wl ≡ y1 +
p (1) y2 (1) + p (2) y2 (2)

1 + r
.

Now, with logarithmic utility, the Euler equations (1.7) become:

(1.22)
p (1)

1 + r

1

c1|{z}
u0(c1)

= π (1)β
1

c2 (1)| {z }
u0[c2(1)]

,

(1.23)
p (2)

1 + r

1

c1|{z}
u0(c1)

= π (2)β
1

c2 (2)| {z }
u0[c2(2)]

.
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Expressing from them the (optimal) date 2 (contingent) consumption demands, we get:

(1.24) c2 (1) =
π (1)

p (1)
β (1 + r) c1,

(1.25) c2 (2) =
π (2)

p (2)
β (1 + r) c1.

Dividing through the above equations provides the (optimal) relation between the contingent
consumptions on date 2:

c2 (1)

c2 (2)
=

π(1)
p(1)

π(2)
p(2)

=
π (1)

p (1)

p (2)

π (2)
=

π (1)

π (2)

p (2)

p (1)
,

hence

(1.26) c2 (1) =
π (1)

π (2)

p (2)

p (1)
c2 (2) ,

and

(1.27) c2 (2) =
π (2)

π (1)

p (1)

p (2)
c2 (1) .

Expressing, in turn, from (1.22) and (1.23) the (optimal) date 1 consumption demand results
in:

(1.28) c1 =
p (1)

π (1)

c2 (1)

β (1 + r)
,

(1.29) c1 =
p (2)

π (2)

c2 (2)

β (1 + r)
.

We can now substitute back for c2 (1) and c2 (1) into the lifetime expected budget constraint
(1.4) and — using also the definition of present value lifetime expected wealth (1.21) — solve for
c1:

c1 +

p (1)

=c2(1) from (1.24)z }| {
π (1)

p (1)
β (1 + r) c1 + p (2)

=c2(2) from (1.25)z }| {
π (2)

p (2)
β (1 + r) c1

1 + r
=Wl,

c1 +
β (1 + r)

≡1z }| {
[π (1) + π (2)]

1 + r
c1 =Wl,

c1 + βc1 =Wl,

(1.30) c1 =
1

1 + β
Wl =

1

1 + β

∙
y1 +

p (1) y2 (1) + p (2) y2 (2)

1 + r

¸
.

We can substitute back for c1 in (1.22) and (1.23) and solve them for the contingent con-
sumption demands p(1)

1+r c2 (1) and
p(2)
1+r c2 (2), respectively:

c2 (1) =
π (1)

p (1)
β (1 + r)

1

1 + β
Wl| {z }

=c1

,
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(1.31)
p (1)

1 + r
c2 (1) =

π (1)β

1 + β
Wl =

π (1)β

1 + β

∙
y1 +

p (1) y2 (1) + p (2) y2 (2)

1 + r

¸
,

c2 (2) =
π (2)

p (2)
β (1 + r)

1

1 + β
Wl| {z }

=c1

,

(1.32)
p (2)

1 + r
c2 (2) =

π (2)β

1 + β
Wl =

π (2)β

1 + β

∙
y1 +

p (1) y2 (1) + p (2) y2 (2)

1 + r

¸
.

The date 1 consumption demand (1.30) is therefore completely parallel to that for the non-
stochastic case under logarithmic preferences, with the only difference being that in place of the
known (i.e., certain) date 2 output, y2, we now have the date 1 value of random date 2 output
at world market prices, p (1) y2 (1) + p (2) y2 (2). Be careful to also distinguish the latter value,
i.e., the value of random date 2 output at world market prices, from the date 2 expected output,
E1 [y2] = π (1) y2 (1) + π (2) y2 (2)! These values will coincide only in the case of actuarially fair
prices, that is, with π (1) = p (1) and π (2) = p (2), as evident from comparing the respective
expressions.
Finally, using the solution for c1, (1.30) above, we can express the date 1 current account

balance under log utility (and with zero initial net foreign assets, as we assumed in the beginning):

CA1 ≡ y1 − c1 = y1 − 1

1 + β

∙
y1 +

p (1) y2 (1) + p (2) y2 (2)

1 + r

¸
=

= y1 − 1

1 + β
y1 − 1

1 + β

∙
p (1) y2 (1)

1 + r
+

p (2) y2 (2)

1 + r

¸
=

(1.33) =
β

1 + β
y1 − 1

1 + β

∙
p (1) y2 (1)

1 + r
+

p (2) y2 (2)

1 + r

¸
.

Again, the expression above is parallel to the nonstochastic log-utility case.
In the two-country model of lecture 4 the current account was essentially interpreted as

depending on comparative advantage in intERtemporal trade, i.e., in trade across time. This
was done as an analogy with comparative advantage in usual intRAtemporal trade, i.e., in
trade across different goods at the same point in time in classic international trade theory. Our
conclusion was that the sign of the current account, CA1, depended on the difference between
the world and autarky real interest rates, r and rA and r∗A.

6 But the simple form of comparative
advantage in intERtemporal trade does not carry over to trade across states of nature. The
difficulty comes from the three ”goods” involved in the two-period stochastic set up we developed,
namely (sure) consumption on date 1 and (contingent) consumption in each state of date 2. In
standard trade theory comparative advantage generally holds only in a weaker form when there
are more than two goods.7

2. A Stochastic Two-Period Real Model of a Two-Country Global Economy:
the CRRA Case

Several important implications of complete asset markets can only be understood if one passes
from the partial equilibrium of a SOE to the setting of world general equilibrium with two large
open economies. The present section sketches this extension, interpreting the essential results.
In particular, the focus will be on the difference between global (or aggregate) and country-
specific (or idiosyncratic) risk as well as on the conditions ensuring Arrow-Debreu prices to be
actuarially fair.

6Recall our discussion in class of Figure 1.5, p. 24, in Obstfeld and Rogoff (1996).
7The interested student is referred to Obstfeld and Rogoff ’s textbook, sections 5.1.7 and and 5.1.8 as well as

appendix 5B, if (s)he wishes to learn more on these more complicated aspects of our topic.
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2.1. Assumptions.
(1) CRRA utility, for simplicity and to gain some initial intuition.
(2) S > 2 states of nature.

2.2. Model Solution Algorithm. Global general equilibrium requires that supply and demand
balance in the S + 1 markets: for date 1 output,
(2.1) c1 + c∗1 = y1 + y∗1 ,

and for date 2 output delivered in each of the S possible states of nature,

(2.2) c2 (s) + c∗2 (s) = y2 (s) + y∗2 (s) , s = 1, 2, ...,S.
2.2.1. Equilibrium Prices. Equilibrium prices are found by combining the above market-clearing
conditions with the Euler equations for the national representative individuals.
We first define total world output :

yW ≡ y + y∗.

With CRRA (period) utility now, u (c) = c1−ρ
1−ρ , — intended to provide the insights of an explicit

analytical solution, like in the case of log utility earlier — the Euler equations for state s securities
in H(ome) and F (oreign) are:

(2.3)
p (s)

1 + r
[c1]
−ρ| {z }

u0(c1)

= π (s)β[c2 (s)]
−ρ| {z }

u0[c2(1)]

, s = 1, 2, ...,S,

(2.4)
p (s)

1 + r
[c∗1]
−ρ| {z }

u0(c1)

= π (s)β[c∗2 (s)]
−ρ| {z }

u0[c2(1)]

s = 1, 2, ...,S,

so that the date 2 (contingent) consumptions in H and F can be expressed, respectively, as:

p (s)

1 + r

1

[c1]
ρ = π (s)β

1

[c2 (s)]
ρ , s = 1, 2, ...,S,

[c2 (s)]
ρ
=

π (s)β (1 + r)

p (s)
[c1]

ρ
, s = 1, 2, ...,S,

(2.5) c2 (s) =

∙
π (s)β (1 + r)

p (s)

¸ 1
ρ

c1, s = 1, 2, ...,S,

and

(2.6) c∗2 (s) =
∙
π (s)β (1 + r)

p (s)

¸ 1
ρ

c∗1, s = 1, 2, ...,S.

Date 1 Prices of Contingent Securities. Adding (2.5) and (2.6) and applying world equilibrium
conditions (2.1) and (2.2) yields

c2 (s) + c∗2 (s)| {z }
≡yW2 (s)

=

∙
π (s)β (1 + r)

p (s)

¸ 1
ρ

(c1 + c∗1)| {z }
≡yW1

, s = 1, 2, ...,S,

which implies that the (general) equilibrium date 1 price of the state s contingent security is

(2.7)
p (s)

1 + r
= π (s)β

∙
yW2 (s)

yW1

¸−ρ
, s = 1, 2, ...,S.

The assumption that H and F representative individuals share a common CRRA, ρ, which
was used in the above derivations, simplifies them a lot. Without such a simplification (i.e., if
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ρ 6= ρ∗), the model would not necessarily result in a closed-form solution in terms of aggregate
output alone.
The preceding analytical expressions are insightful in understanding the conditions under

which securities prices will be actuarially fair. This is easily seen when we write down equation
(2.7) for any two different states belonging to the set S, denoted s and s0, and then divide the
two respective equations:

(2.8)
p (s)

p (s0)
=

∙
yW2 (s)

yW2 (s0)

¸−ρ
π (s)

π (s0)

For ρ > 0, all prices of contingent claims will be actuarially fair if and only if total world

output is the same in all states of nature, i.e., yW2 (s)

yW2 (s0) = 1. The requirement for actuarial fairness

is therefore the absence of output uncertainty at the aggregate (that is, world, in the model
context) level. If there is no aggregate uncertainty (i.e., if there are no world-wide shocks), it is
feasible for both countries to have state-independent date 2 consumption levels. Consequently,
there is no need that equilibrium prices provide incentives for consumption tilting in favour of
states with relatively abundant world output. If, however, world output in state s0 exceeds that
in state s, prices must be such as to induce countries to consume relatively more in state s0. As
it becomes clear from looking back to equation (2.8), consumption in the state with relatively
scarce world output, s, will command a premium over its actuarially fair price while consumption
in the state with relatively abundant world output, s0, will sell at a discount.
Date 2 Prices of Contingent Securities. Having solved for the equilibrium date 1 Arrow-Debreu
prices, we can now go on to find the equilibrium real interest rate (RIR), r, in the context of this
global two-period stochastic model. Before doing that, an intermediate step in the algorithm we
are following here is to solve for the equilibrium date 2 securities prices, p (s), as well.
For any state s0, the arbitrage condition

SX
s=1

p (s) = 1

and expression (2.8) imply

p (s0) = 1−
X
s6=s0

p (s) = 1− p (s0)
X
s6=s0

∙
yW2 (s)

yW2 (s0)

¸−ρ
π (s)

π (s0)
,

an equation, which can be solved for p (s0):

(2.9) p (s0) =
π (s0)

£
yW2 (s0)

¤−ρ
SP
s=1

π (s)
£
yW2 (s)

¤−ρ .
Equilibrium Real Interest Rate. The above equation combined with (2.7) yields the model solu-
tion for the world (gross) RIR:

(2.10) 1 + r =

£
yW1
¤−ρ

β
SP
s=1

π (s)
£
yW2 (s)

¤−ρ .
The intuition behind (2.10) is the following: higher world output on date 1 (i.e., higher current-

period world output) implies a lower RIR, as it raises the price of date 2 consumption relative to
date 1 consumption; by analogy, higher world output on date 2 in any state (i.e., higher expected
future world output) implies a higher RIR.
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2.2.2. Equilibrium Consumption Levels. The model we analyse under complete asset markets has
strong implications concerning international risk sharing, and in particular the correlations in
consumption levels across countries, time and states of nature. The reason for these strong model
predictions is that complete asset markets allow all individuals in Home and Foreign to equate
their marginal rates of substitution between certain current consumption and state-contingent
future consumption to the same state-contingent security prices.
The multistate analogues of equations (1.7) and (1.13) imply

(2.11)
π (s)βu0 [c2 (s)]

u0 [c1]
=

p (s)

1 + r
=

π (s)βu0 [c∗2 (s)]
u0 [c∗1]

and

(2.12)
π (s)u0 [c2 (s)]
π (s0)u0 [c2 (s0)]

=
p (s)

p (s0)
=

π (s)u0 [c∗2 (s)]
π (s0)u0 [c∗2 (s0)]

for all states s and s0. These two equations are usually interpreted as fundamental necessary
conditions for efficient resource allocation: all individuals’ marginal rates of substitution in
consumption — over time and across states — are equal, so no potential gains from trade remain
to be exploited.8 The fundamental optimality FONCs (2.11) and (2.12) are general, in the sense
that they are not limited to specific utility functions: the marginal utilities involved in them
are written generally. But at the cost of restricting attention to special-case utilities, such as
the CRRA utility here, we could gain additional clarity in uncovering some interesting economic
mechanisms at work.
The last two equations, (2.11) and (2.12), combined with (2.7) and the assumption of CRRA

preferences over consumption imply

(2.13)
c2 (s)

c2 (s0)
=

c∗2 (s)
c∗2 (s0)

=
yW2 (s)

yW2 (s0)

and

(2.14)
c2 (s)

c1
=

c∗2 (s)
c∗1

=
yW2 (s)

yW1

for all states. (2.13) then implies the equalities

c2 (s)

yW2 (s)
=

c2 (s
0)

yW2 (s0)
,

c∗2 (s)
yW2 (s)

=
c∗2 (s

0)
yW2 (s0)

,

which mean that H consumption is a constant fraction, φ, of world date 2 output regardless
of the realised state. Symmetrically, F state-invariant consumption share of world output is
1 − φ. Equation (2.14) states that consumption growth rates are the same across countries in
every state of nature and equal to the growth rate of world output.
(2.14) implies, in turn, the equalities (for all s ∈ S)

c2 (s)

yW2 (s)
= φ =

c1
yW1

,
c∗2 (s)
yW2 (s)

= 1− φ =
c∗1
yW1

,

meaning that the countries’ date 1 consumption shares in world output are the same as
their date 2 shares. Obstfeld and Rogoff show in their textbook, p. 289, footnote 16, that
a country’s share in world consumption is, in fact, the country’s share of the world present
discounted output on date 1, evaluated at equilibrium Arrow-Debreu prices. They also stress
that when date 2 consumption is uncertain, at equilibrium prices neither H nor F arranges for
constant consumption across states. Each country’s consumption is internationally diversified,

8Obstfeld and Rogoff ’s book also duly points out to the equivalence between efficiency and Pareto optimality
in the present context as well as to the key assumptions under which the claimed results hold intact — see footnote
15 on p. 288.
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however, in the sense that any consumption risk it does absorb is entirely due to systematic
output uncertainty, that is, uncertainty in global output.9

2.3. Model Interpretation: Efficient Risk Pooling. Date 2 equilibrium is illustrated graph-
ically in Figure 5.1 on p. 290 in Obstfeld and Rogoff (1996). We shall discuss this Edgeworth
box diagram in class in the context of the global stochastic model section 2 considered here.

3. Models with Capital Market Imperfections

We would not have time to highlight the complications in the idealised complete asset markets
world summarised thus far which are introduced by relaxing some of its assumptions. The curious
student is left to explore these aspects alone in case they are of interest to him/her. We only
provide below initial (that is, graduate textbook) reference, namely, chapter 6 in Obstfeld and
Rogoff (1996). It is an excellent starting point on the imperfections of international financial
markets in general, as well as by key subtopics.

3.1. Sovereign Risk. Section 6.1 in Obstfeld and Rogoff (1996) deals with sovereign risk as a
problem arising from the difficulties in enforcing financial contracts outside the jurisdiction of
the nation states.

3.2. Risk Sharing with Hidden Information. Asymmetric information is another crucial
type of imperfection in real-world financial markets. It is usually considered as arising either
from hidden information often resulting in adverse selection problems or from hidden actions
termed in the literature moral hazard. Section 6.3 in Obstfeld and Rogoff (1996) summarises
the open-economy theory on risk sharing under hidden information.

3.3. Moral Hazard in International Lending. Section 6.4 in Obstfeld and Rogoff (1996)
presents, in turn, the literature on moral hazard in international lending.

9Obstfeld and Rogoff (1996), p. 289, footnote 17, point out as well that the equilibrium resource allocation
under complete asset markets we studied corresponds to that to be chosen by a benevolent social planner.
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