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ABSTRACT
We compare linear zonal predictors of atmospheric turbulence for adaptive optics. Zonal prediction has the possible
advantage of being able to interpret and utilize wind−velocity information from the wavefront sensor better than modal
prediction. For simulated open−loop atmospheric data for a 2−meter 16−subaperture AO telescope with 5 millisecond
prediction and a lookback of 4 slope−vectors, we find that Widrow−Hoff Delta−Rule training of linear nets and Back−
Propagation training of non−linear multilayer neural networks is quite slow, getting stuck on plateaus or in local minima.
Recursive Least Squares training of linear predictors is two orders of magnitude faster and it also converges to the solution
with global minimum error. We have successfully implemented Amari’s Adaptive Natural Gradient Learning (ANGL)
technique for a linear zonal predictor, which premultiplies the Delta−Rule gradients with a matrix that orthogonalizes the
parameter space and speeds up the training by two orders of magnitude, like the Recursive Least Squares predictor. This
shows that the simple Widrow−Hoff Delta−Rule’s slow convergence is not a fluke. In the case of bright guidestars, the
ANGL, RLS, and standard matrix−inversion least−squares (MILS) algorithms all converge to the same global minimum
linear total phase error (~0.18 rad2), which is only ~5% higher than the spatial phase error (~0.17 rad2), and is ~33% lower
than the total ’naïve’ phase error without prediction (~0.27 rad2). ANGL can, in principle, also be extended to make non−
linear neural network training feasible for these large networks, with the potential to lower the predictor error below the
linear predictor error. We will soon scale our linear work to the ~108−subaperture MMT AO system, both with simulations
and real wavefront sensor data from prime focus.

Keywords: atmospheric turbulence prediction, linear prediction, neural network prediction, zonal prediction, Widrow−
Hoff neural networks, delta−rule training, natural gradient learning, recursive least squares, servo lag error, least−squares
predictors

1. Introduction
There are several different contributions to residual wavefront error in adaptive optics systems, including

wavefront sensor CCD noise, photon counting noise, wavefront fitting and reconstructor errors, focus and tilt
anisoplanatism, and servo lag error. Herein, we concentrate on reducing the servo lag error by developing spatiotemporal
predictors of atmospheric turbulence. If we have a quality wavefront predictor in hand, then actuator commands can be sent
to the deformable mirror that more accurately represent the conjugate atmospheric wavefront at the ’present’ time, as
opposed to sending actuator commands to the deformable mirror that actually represent the state of the atmosphere a few
milliseconds in the past. 

Several groups have tried different atmospheric turbulence predictive techniques for adaptive optics (Aitken,
Jorgenson & McGaughey1; Wild2; Lloyd−Hart, Rhoadarmer & McGuire3,4; Dessenne, Madec & Rousset5; Rhoadarmer &
Ellerbroek6; etc.), and all have reported significant improvements in residual wavefront phase error when employing their
predictors: for simulations, for post−facto predictive analysis of real wavefront sensor data from a telescope, and/or for in
situ on−the−fly prediction. Desenne et al have concentrated on training modal predictors. Rhoadarmer & Ellerbroek have
had significant success training closed−loop zonal predictors. Lloyd−Hart, Rhoadarmer & McGuire have concentrated on
exploring different advanced open−loop zonal predictive algorithms. Wild concentrated on matrix−algebra based zonal
techniques, both open− and closed−loop.

For adaptive optics where the mirror actuator positions are known (such as the MMT adaptive secondary system),
the open−loop prediction techniques makes some sense, since the input and output atmospheric wavefronts needed for
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training the predictor can be determined by adding the known mirror shape to the measured wavefront. Otherwise, if the
mirror shape is unknown, the only use of training open−loop predictors is to gain experience before proceeding to the more
difficult problem of training closed−loop predictors. The open−loop prediction problem is in principle much easier than the
closed−loop prediction problem because the mirror and measurement dynamics are not as intimately coupled into the
prediction problem. For open−loop prediction, we are in principle only predicting the statistically moderately−well−
understood atmospheric spatiotemporal dynamics.

The concept of Taylor frozen flow is a good approximation on short time−scales (t << τ, where τ is the
atmospheric coherence time) for single layers of atmospheric turbulence. With the assumption of frozen flow, wind from
some preferred direction will blow a static wavefront of aberration across the telescope aperture. In such a case, it makes
much sense to make predictions of the wavefront based on the prior wavefronts over the subaperture of interest and only the
neighboring subapertures, and so, zonal prediction seems the preferred choice over modal prediction. In the case of modal
prediction, the only way to keep track of wind velocity information for prediction purposes is by keeping track of the
dynamics of the relative amplitudes of several different modes simultaneously. Keeping track of the history of a single
mode (e.g. spherical aberration) will contain little information as to the wind direction, and hence, utilizing the Taylor
frozen flow idea to predict future wavefronts becomes much more complex. However, modal prediction does have the
advantage that most of the atmospheric aberration is in the low−order modes. Therefore, if only the time history of a
limited number of modes (e.g. less than 16 for the case studied here, and less than 30 for the case of ~100 subapertures) are
used to predict future modal amplitudes, then a significant reduction in the number of predictive parameters becomes
possible under modal prediction, but high spatial−frequency information is then discarded. If one wants to retain all the
measured wavefront information, and if one wants to retain the local nature of the predictor (as opposed to having the
prediction of Zernike mode #5 depend with significant amplitude on the past history of Zernike mode # 20, for example)
and possibly retain the physics of the Taylor frozen flow concept, then it seems that zonal prediction is preferred over over
modal prediction. For anticipated AO systems with 3000 subapertures, a straightforward global predictive analysis (either
zonal or modal) will suffer a severe dimensionality curse. However, with the pruning of unimportant predictive parameters
afforded by the locality of Taylor flow, it appears to us that zonal prediction will offer significantly better computational
properties than non−local modal prediction. With multiple non−interacting layers of Taylor turbulence with different wind
velocities and correlation lengths, these arguments become less precise. However, in this work we explore zonal predictors,
with the anticipation that one day we can adequately compare the performances of modal predictors with those we obtained
here.

We have made forays into both linear and non−linear predictors during our research, and have had success
employing both techniques. However, in our experience, for zonal predictors, the explored non−linear techniques (e.g.
back−propagation neural networks3,4) take a long time (hundreds of thousands of training frames) to converge to their
minimum predictive phase error, and often do not have as low a phase error in the end as their linear siblings. Therefore,
we decided to explore back−propagation linear networks4 to see if such linear networks had the same convergence
problems as the non−linear networks, and indeed they do, as reported conclusively here for the case of Widrow−Hoff
Delta−Rule networks. In the high signal−to−noise case, the Delta−Rule (or back−propagation for multiple layer networks)
seems to be plagued for these large networks by running into sub−optimal solutions, which in the parlance of machine−
learning are called ‘ local minima’ in the training error surface, as opposed to the true global minimum. Therefore,
development of other predictive technologies is paramount, and in this work, we show that three different zonal linear
predictor algorithms (matrix inversion, recursive least squares, and adaptive natural gradient descent) all converge to the
same minimum error and to the same predictive matrix within 1000−6000 training frames recorded in simulation at 200 Hz.
The adaptive natural gradient descent technique has the possibility of being directly extended to multi−layer non−linear
networks, and hence the possibility of even further improvements in the residual phase error below the phase error for
linear predictors becomes possible, in principle. However, in our initial forays into such a non−linear extension, we have
found the memory requirements to be prohibitive for the large networks in question.

2. Techniques
The architecture of a basic zonal predictor is shown in Figure 1. We use all the slope values in the past 4 frames of

data each with a linear weight to predict each of the slope values in the next frame of data. For the linear case, the
predictive problem can also be represented in matrix notation. The whole problem is to find adequate techniques to
determine accurate values of the linear weights between the inputs and the outputs.



The basic goal of deriving a good predictor is to minimize the error when the predictor is utilized. In the case of
predicting slopes, the prediction error , Eslope, is given by:
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where �s t is the 32 element x & y slope vector at time t; si(t) is the ith element of that slope vector; the Pred and
Meas superscripts refer to the predicted slope vector and the actually measured slope vector, respectively; and the angular
brackets denote a time average, and a similar expression is defined for the phase error:
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where we sample the phase reconstruction 62 times per subaperture, and we use phase−maps reconstructed with a standard
least−squares technique from the simulated slope measurements.

The idea behind matrix−inversion least−squares (MILS) predictors3 is very similar to the idea behind least−squares
reconstructors. The least−squares predictor is determined by first recording the the array of slope values (’slope vector’ =

�s t )  determined from the wavefront sensor, for N = a few thousand frames, and then 

Figure 1: A drawing showing how all the slopes from a 4×4 Shack−Hartmann array for the past four frames are used to predict the
future slopes (adapted from Refs. 1 & 4).  



Figure 2: A sketch showing the phase error of a predictor as a function of of a single connection weight, Wij (between past input j and
future output i), with all the other weights fixed. We show how unaided gradient descent algorithms (denoted by the ball following the
local slope of the short arrow) potentially can get trapped in local minima of the phase error surface, whereas more sophisticated
algorithms can actually find the global minimum.

form two matrices F (for future) and H (for historical) from this data by putting the slope vectors s(t) in the columns of
these matrices:
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Then, with F and H, we obtain the predictor matrix P by the taking the pseudoinverse of H and premultiplying the
pseudoinverse by F:

P=F H +=F H T H H T �1            (3)

such that:
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where �s
H

t is a composite vector of the last four slope vectors.

The recursive least squares (RLS) technique7 determines the predictor matrix iteratively so that P = P(t), as
opposed to doing it in one big swoop as in the MILS technique. The RLS technique relies on the use of the Kalman filter,

and is a rank one update algorithm. The Kalman gain vector �k t is given by �k t =P t�1 �s
H

t . The RLS

predictor is then given by:
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where  f is the forgetting factor (usually chosen to be 0.9), and α t = f+ �s
H

t T �k t .

The gradient descent algorithms update each matrix element or weight in an iterative fashion. If the matrix
element or weight at row i and column j of P is denoted by Pij, then with stochastic gradient descent (also known as
Widrow−Hoff’s Delta Rule7,8), the weight Pij is updated by an amount ∆Pij given by the analytically−determined slope of
(or gradient) of the error surface:
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or in a vectorized matrix notation:

∆�P t =�ε dE t

d �P
(6a)

where we have used equations 1 & 4. The advantage  of the Widrow−Hoff (WH) algorithm is its utter simplicity, correcting
the weight between input j and output i by a scalar product between the predictor error for output node i and the measured
historical slope for input node j.

The adaptive natural gradient descent learning (ANGL) algorithm9 has the advantage over the stochastic Widrow−
Hoff gradient descent in that it can effectively remove the slowing effect that correlations between the different weight
parameters have on training performance. The ANGL algorithm accomplishes this by pre−multiplying the stochastic
gradient by an iteratively−determined decorrelating matrix, G(t):

∆�P t =�εG t
dE t

d �P
,       (7)

where  G(t) is given by:
G t = 1+γ G t�1 �γG t�1 �s
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where  a value of γ of 0.001 is typically chosen.

Another way of looking at the ANGL algorithm is that WH algorithm presumes that the weights live in an
orthogonal Euclidean space, so that the length of the gradient vector used in equation (6) is just the sum of the squares of
its individual components:

 |dP|2 = dP (dP)T. (9)
The ANGL algorithm presumes a Riemannian space, in which there is a metric much like that in general relativity, which
allows non−orthogonality between the different weight coordinate axes, and the length of the gradient vector used in
equation (7) is determined by  first orthogonalizing with the metric tensor g:

 |dP|2 = g dP (dP)T.  (10)
 The metric g can be determined on theoretical grounds from a fundamental concept called Fisher information10. The matrix
G is the inverse of the metric tensor matrix g. The Recursive Least Squares (RLS) algorithm and the ANGL algorithm both
use the Kalman filter, and the mathematics is quite similar in the present case of linear systems. However, the ANGL
algorithm is directly extendable to the case of non−linear predictors, whereas the RLS algorithm is not extendable to non−
linear systems without prior modification.

One potential problem with the ANGL technique is that it increases the memory requirements since we now need
to keep track of G(t), which is a 128×128 matrix for the case of 16 subapertures and a look−back of 4 and no hidden layer.
This is not prohibitive for the present case without a hidden layer (in which by luck, the actual (128×32) ×(128×32)G
matrix is block diagonal with 128×128blocks, so only a 128×128 matrix needs to be tracked. If we want to use the full
power of non−linear networks with a hidden layer the problem becomes daunting because the matrix is then M×Μ, where
M is the total number of connections and M is typically 128×30 + 30×32 =4800(with 128 inputs, 30 hidden nodes and 32



outputs).

3. Results
We trained the networks using the same simulated 3−layer atmosphere over a 2 meter diameter telescope with 16

Shack−Hartmann subapertures, as used by Lloyd−Hart & McGuire3. The resulting training curves (for zero noise, or a M=0
guidestar) for the 4 different algorithms are shown in figure 3, where we have subtracted the spatial fitting and
reconstruction errors (about 0.17 rad2) to determine the temporal error that is due to the lack of perfect prediction. We used
1000 frames for the matrix inversion (MILS) predictor, and the other predictors are updated every frame. We also compare
these sophisticated predictors to the naïve predictor, in which the slopes are presumed to be random walking, so that the
best prediction is that the next slope will be identical to the last. The WH algorithm takes over 105 frames to converge, even
with the highest gain possible (ε~0.01). The other 3 algorithms converge to the same minimum temporal phase error
(E~0.01) in less than 104 frames, and the RLS algorithm gets very close to its minimum temporal phase error in less than
103 frames. 

The slow convergence of the WH algorithm suggests that it is on a plateau on the error surface in weight space, or
that it is stuck in a very broad local minimum. In Figure 4, we check this hypothesis, by directly comparing the weights
determined by the various predictors with that of our baseline, the MILS predictor. For both the RLS and ANGL
algorithms, the weights are quite similar to the weights determined by the MILS algorithm, differing randomly by ~20%.
However, for the WH algorithm, most of the weights are systematically lower in absolute magnitude than the MILS
weights by a factor of ~3, though a few of the largest WH weights seem to be adequately close to the MILS weights. So
definitely, the WH algorithm is converging to a different solution than the other three algorithms.

Figure 3: We plot the temporal phase error as a function of training time for 4 different training algorithms. We also show the ’naïve’
predictor temporal phase error, in which it is assumed that the atmosphere  is random walking, so that the best prediction is that the next
slope will be identical to the last. Clearly, the Widrow−Hoff (WH) gradient descent linear network takes over two orders of magnitude
longer training time than the other three algorithms. The recursive least squares (RLS) algorithm allows continual updating of the
predictor matrix, so it can do better more quickly than the matrix inversion least squares (MILS) solution, and RLS can continue to



update and improve slightly even before enough additional data can be acquired for the next MILS matrix inversion. The adaptive
natural gradient descent method (ANGL) also converges to the global minimum rather quickly (relative to WH gradient descent), which
suggests that the WH gradient descent algorithm is getting stuck  in a local minimum.

In figure 5, we train on dim simulated guidestars, and tabulate performance as a function of guidestar magnitude.
For bright guidestars (MV+R ≤ 10), the error ratio graph in Figure 5b shows that the WH algorithm is considerably worse
than the other three algorithms. The other three algorithms are admirable in the sense that they allow total phase errors for
the brightest guidestars (MV+R ≤ 5) that is only ~5% higher than the spatial phase error. Actually the WH algorithm trains
rather rapidly in the presence of significant noise (MV+R > 12) to solutions which are competitive with the other 3 algorithms
(as one might expect from the good noise performance8 found in training Widrow−Hoff reconstructors). However, for all
guidestar magnitudes, the RLS algorithm is the best, with the most superiority for dim guidestars (MV+R  > 11).

a)                                                                   b)

c)

Figure 4: A comparison of the final connection weights for the 3 different training algorithms relative to the matrix inversion least−
squares weights. Figure (a) compares the weights of the recursive least squares algorithm (RLS) with the matrix inversion weights
(MILS). Figure (b) compares the wights of the Widrow−Hoff gradient descent (WH) algorithm with the MILS weights. Figure (c)
compares the weights learned by the adaptive natural gradient algorithm (ANGL) with the MILS weights. Clearly the weights learned
by the WH algorithm differ from the weights learned by the other algorithms, whereas the other three algorithms learn very similar
weights. This gives further evidence that the WH algorithm is converging to a local minimum rather than the global predictor phase
error  minimum as the other three algorithms seem  to find.



a)

b)

Figure 5: We show how the predictor error for the four different algorithms changes with guidestar magnitude. Figure (a)
shows the total phase error (for only the RLS algorithm), and figure (b) shows the ratio of the total phase error to the spatial
phase error (for all four algorithms). The spatial+noise phase error is a combination of the fitting and reconstructor errors
and the photon noise error. The total phase error encroaches below the spatial phase error for dim guidestars (MV+R>13.5)
due to the allowance the predictor provides for temporal averaging of several frames together. Clearly, the Widrow−Hoff
(WH) algorithm performs worse than the other three algorithms for bright guidestars, though WH perfoms admirably for
the high noise case of dim guidestars (MV+R>11). The other three algorithms converge to the same total phase error (~0.18
rad2) for bright guidestars (MV+R<=5) , which is only ~5% higher than the spatial phase error (~0.17 rad2), and ~33% lower
than the naïve predictor total phase error (~0.27 rad2).



Presumably the MILS predictor is the worst of the 3 ’good’ predictors for all guidestar magnitudes since we have
done nothing to optimize the number of training frames used in the MILS matrix inversion. This lack of optimization
allows the RLS algorithm to continue to improve sligthly over the MILS algorithm after the nominal 1000 MILS frames for
bright guidestars. For dimmer guidestars, the 1000 MILS frames seems to be inadequate, as the improvement over MILS
offered by RLS is enhanced over the case of bright guidestars. The mediocre performance of the ANGL algorithm for dim
guidestars likely also is due to the lack of optimization of the learning rate parameter, ε , and the smoothing parameter, γ,
used in determining G. But it is possible that these three algorithms have inherently different characteristics when training
in the presence of noise. Intuitively, the poorer performance of the MILS algorithm as compared to the RLS algorithm, in
the case of bright guidestars as RLS continues to improve after 1000 training frames, and also in the case of dim guidestars,
is primarily due to the fact that the MILS algorithm is being tested on data that it has not been trained upon adequately,
whereas the RLS algorithm dynamically adjusts the effective amount of training time so as to offer superior performance to
MILS.

One might note that for the dimmest guidestars (MV+R> 14) all the predictors have total phase errors that are less
than the spatial+noise phase error. This is due to the 4−frame temporal averaging of the slope vectors afforded by a
predictor as opposed to the baseline case of a reconstructor that only has 1 frame to base its estimates of the phase upon,
and hence the possibility of a four−fold gain in signal−to−noise of the slope measurements.

As the guidestars become quite dim (MV+R > 14), the spatial+noise phase error increases considerably, to more than
1 rad2, and the naïve predictor error increases considerably as well, tracking the spatial+noise phase error, which suggests
that most of the information that can be used for prediction is getting washed out by the noise.

In our eyes, since we made the ANGL algorithm work as well as MILS and the RLS algorithms in the high
signal−to noise case, and since the ANGL algorithm is a more complex version of the WH algorithm, this means that the
simple WH algorithm for linear networks is not powerful enough for this problem. This also suggests more generally that
the back−propagation training technique for non−linear neural networks is also not an appropriate technique for this
problem. In the low signal−to−noise case, the WH algorithm may offer some marginal advantages in simplicity and speed
for predictive hardware at the telescope, but hopefully most AO systems will not normally need to work with such dim
guidestars, so it behooves us to focus our energies on techniques like the RLS predictor.

Some of the Future of Prediction for Adaptive Optics
We have had success11  in predicting real open−loop atmospheric turbulence data  from the 1.5 meter  telescope at

Starfire Optical Range with the RLS predictor.

In the near  future, our group plans efforts on two fronts:
1) Upgrading the present code for the 3 predictors for small AO systems to larger AO systems with more than 100

subapertures. For the case of RLS, this is feasible even in the full zonal case, as it avoids the large matrix inversions
necessary for MILS.

2) Extending our present predictive analysis efforts to real atmospheric turbulence data, first with the 1.5 meter data we
have from Starfire, and then with dynamical wavefront sensor data that we should acquire soon from the 6.5 meter
MMT, either at Prime Focus, or at Cassegrain focus.

In the more distant future, we hope to:
1) Find out if significant improvement can be afforded by extending our predictive techniques back into the non−linear

’neural network’  arena.
2) Directly compare our open−loop zonal predictive techniques to other predictive techniques, such as modal prediction,

Wild’s matrix−algebra predictors,  closed loop prediction, and phase (instead of slope) prediction.
3) Follow up on Schoeck’s work12, in which he reconstructs the wind velocity and direction for each of the turbulence

layers with a single Shack−Hartmann wavefront sensor, and also estimates the Taylor and non−Taylor component of the
flows in each of the turbulent layers. Such information should prove invaluable when training better predictors.
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