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SUMMARY 

We have developed linear zonal predictors of turbulence for adaptive optics. 
Prediction of turbulence has relevance to improving servo lag error in real time 
adaptive optics correction of the blurring of images due to: 

q Atmospheric turbulence and 
q Dynamic processes in the eye. 

Zonal prediction has the possible advantage of being able to interpret and 
utilize wind-velocity information from the wavefront sensor better than modal 
prediction. For simulated open-loop atmospheric data for a 2-meter 16-
subaperture AO telescope with 5 millisecond prediction and a lookback of 4 
slope-vectors, we find that Widrow-Hoff (WH) Delta-Rule training of linear nets 
and Back-Propagation training of non-linear multilayer neural networks is quite 
slow, getting stuck on plateaus or in local minima. Recursive Least Squares 
(RLS) training of linear predictors is two orders of magnitude faster and it 
also converges to the solution with global minimum error, as also found with the 
Adaptive Natural Gradient Learning (ANGL) and Matrix Inversion Least Squares 
(MILS) zonal predictors.  

In the case of bright guidestars, the ANGL, RLS, and MILS algorithms all 
converge to the same global minimum linear total phase error (~0.18 rad2), which 
is only ~5% higher than the spatial phase error (~0.17 rad2), and is ~33% lower 
than the total 'naïve' phase error without prediction (~0.27 rad2). The noise 
performance in the case of dim guidestars is equally impressive. Nonetheless, if 
each of the dominant turbulence layers in the atmosphere can be independently 
sensed, then prediction of turbulence for adaptive optics becomes trivial. We 
have: 

q Scaled our linear work to the ~108-subaperture 6.5 meter MMT AO system 
(with simulations), in which we discovered that prediction is much easier 
for the high order 6.5 meter AO system than with the low order 2.0 meter 
AO system. This improvement is caused by the lesser effect of unmeasured 
turbulence beyond the edge of the pupil since fewer of the subapertures 
border the edge of the pupil in the case of a high order system. 

q Successfully applied our linear work to data from the high order 1.5 meter 
Starfire Optical Range AO system, 

Soon we will: 
q Apply these linear predictors to real wavefront sensor data from MMT F/9 

Cassegrain focus, 
q Extend this work to the non-linear regime by employing Support Vector 

Machines for Regression. 



 
Figure 1: A drawing showing how all the slopes from a 4´4 Shack-Hartmann array 
for the past four frames are used to predict the future slopes (adapted from 
Refs. 1 & 4).   
 

 
 
Figure 2: A sketch showing the phase error of a predictor as a function of of 
a single connection weight, Wij (between past input j and future output i), with 
all the other weights fixed.  We show how unaided gradient descent algorithms 
(denoted by the ball following the local slope of the short arrow) potentially 
can get trapped in local minima of the phase error surface, whereas more 
sophisticated algorithms can actually find the global minimum. 
 
 



 
 
Figure 3: We plot the temporal phase error as a function of training time for 
4 different training algorithms. We also show the 'naïve' predictor temporal 
phase error, in which it is assumed that the atmosphere is random walking, so 
that the best prediction is that the next slope will be identical to the last. 
Clearly, the Widrow-Hoff (WH) gradient descent linear network takes over two 
orders of magnitude longer training time than the other three algorithms. The 
recursive least squares (RLS) algorithm allows continual updating of the 
predictor matrix, so it can do better more quickly than the matrix inversion 
least squares (MILS) solution, and RLS can continue to update and improve 
slightly even before enough additional data can be acquired for the next MILS 
matrix inversion. The adaptive natural gradient descent method (ANGL) also 
converges to the global minimum rather quickly (relative to WH gradient 
descent), which suggests that the WH gradient descent algorithm is getting stuck 
in a local minimum. 
 



 

 
Figure 5: We show how the predictor error for the four different algorithms 
changes with guidestar magnitude. Figure (a) shows the total phase error (for 
only the RLS algorithm), and figure (b) shows the ratio of the total phase error 
to the spatial phase error (for all four algorithms). The spatial+noise phase 
error is a combination of the fitting and reconstructor errors and the photon 
noise error. The total phase error encroaches below the spatial phase error for 
dim guidestars (M(V+R)>13.5) due to the allowance the predictor provides for 
temporal averaging of several frames together. Clearly, the Widrow-Hoff (WH) 
algorithm performs worse than the other three algorithms for bright guidestars, 
though WH perfoms admirably for the high noise case of dim guidestars 
(M(V+R)>11). The other three algorithms converge to the same total phase error  
(~0.18 rad2) for bright guidestars (M(V+R)<=5) , which is only ~5% higher than 
the spatial phase  error (~0.17 rad2), and ~33% lower than the naïve predictor 
total phase error (~0.27 rad2). 
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