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SUMMVARY

W& have devel oped |inear zonal predictors of turbul ence for adaptive optics.
Prediction of turbulence has relevance to inproving servo lag error in real tine
adaptive optics correction of the blurring of inmages due to:

o Atnospheric turbul ence and

O Dynamic processes in the eye.

Zonal prediction has the possible advantage of being able to interpret and
utilize wind-velocity information fromthe wavefront sensor better than nodal
predi ction. For simulated open-loop atnospheric data for a 2-meter 16-
subaperture AO tel escope with 5 mllisecond prediction and a | ookback of 4

sl ope-vectors, we find that Wdrow Hoff (WH) Delta-Rule training of |linear nets
and Back- Propagation training of non-linear nultilayer neural networks is quite
sl ow, getting stuck on plateaus or in |local mninma. Recursive Least Squares
(RLS) training of linear predictors is two orders of magnitude faster and it

al so converges to the solution with global mninumerror, as also found with the
Adaptive Natural G adient Learning (ANG) and Matrix Inversion Least Squares
(MLS) zonal predictors.

In the case of bright guidestars, the ANGL, RLS, and MLS algorithns all
converge to the sane global ninimumlinear total phase error (~0.18 rad?, which
is only ~5% hi gher than the spatial phase error (~0.17 rad®, and is ~33% | ower
than the total 'naive' phase error wthout prediction (~0.27 rad®. The noise
performance in the case of dimaguidestars is equally inpressive. Nonetheless, if
each of the dom nant turbul ence layers in the atnosphere can be independently
sensed, then prediction of turbulence for adaptive optics becomes trivial. W
have:

O Scaled our linear work to the ~108-subaperture 6.5 nmeter MMI AO system
(with sinmulations), in which we discovered that prediction is nuch easier
for the high order 6.5 neter AO systemthan with the | ow order 2.0 neter
AO system This inprovenent is caused by the | esser effect of unmeasured
turbul ence beyond the edge of the pupil since fewer of the subapertures
border the edge of the pupil in the case of a high order system

O Successfully applied our linear work to data fromthe high order 1.5 neter
Starfire Optical Range AO system

Soon we will:

O Apply these linear predictors to real wavefront sensor data from MMI F/ 9
Cassegrain focus,

O Extend this work to the non-linear reginme by enpl oyi ng Support Vector
Machi nes for Regression.
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Figure 1: A drawi ng showing how all the slopes froma 4 4 Shack-Hartmann array
for the past four frames are used to predict the future slopes (adapted from
Refs. 1 & 4).

PhaseError

Fi gure 2: A sketch showing the phase error of a predictor as a function of of
a single connection weight, W; (between past input j and future output i), with
all the other weights fixed. W show how unai ded gradi ent descent al gorithns
(denoted by the ball following the |ocal slope of the short arrow) potentially
can get trapped in local mnim of the phase error surface, whereas nore

sophi sticated algorithnms can actually find the gl obal mninum
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Figure 3: W plot the tenporal phase error as a function of training time for
4 different training algorithns. W also show the 'naive' predictor tenporal
phase error, in which it is assumed that the atnosphere is random wal ki ng, so
that the best prediction is that the next slope will be identical to the Iast.
Cearly, the Wdrow Hoff (WH) gradient descent |inear network takes over two
orders of magnitude |longer training tinme than the other three algorithms. The
recursive |l east squares (RLS) algorithmallows continual updating of the
predictor matrix, so it can do better nore quickly than the matrix inversion

| east squares (MLS) solution, and RLS can continue to update and i nprove
slightly even before enough additional data can be acquired for the next MLS
matri x inversion. The adaptive natural gradient descent nmethod (ANG) al so
converges to the global mnimumrather quickly (relative to WH gradi ent
descent), which suggests that the WH gradi ent descent algorithmis getting stuck
in a local mnimm
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Figure 5: W show how the predictor error for the four different algorithns
changes with gui destar nmagnitude. Figure (a) shows the total phase error (for
only the RLS algorithm, and figure (b) shows the ratio of the total phase error
to the spatial phase error (for all four algorithms). The spati al +noi se phase
error is a conbination of the fitting and reconstructor errors and the photon
noi se error. The total phase error encroaches bel ow the spatial phase error for
di m gui destars (M V+R)>13.5) due to the allowance the predictor provides for
tenmporal averaging of several frames together. Cearly, the Wdrow Hoff (WH)

al gorithm perforns worse than the other three algorithnms for bright guidestars,
t hough WH perfons admirably for the high noise case of di mguidestars

(M V+R) >112. The other three algorithns converge to the sanme total phase error
(~0.18 rad”) for bright guidestars (ZI\/(V+R) <=5) , which is only ~5% hi gher than
the spatial phase error (~0.17 rad?), and ~33% | ower than the naive predictor
total phase error (~0.27 rad?).
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