VIEW-BASED MODELLING OF HUMAN VISUAL NAVIGATION ERRORS
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ABSTRACT

View-based and Cartesian representations provide rivaliaits of
visual navigation in humans, and here we explore possibléefso
for the view-based case. A visual “homing” experiment wadain
taken by human participants in immersive virtual realitieTdistri-
butions of end-point errors on the ground plane differedifiicantly
in shape and extent depending on visual landmark configuratid
relative goal location. A model based on simple visual caggres
important characteristics of these distributions. Augtimgnvisual
features to include 3D elements such as stereo and motiafigar
result in a set of models that describe the data accuratefyod-
strating the effectiveness of a view-based approach.

Index Terms— navigation, visual perception, virtual reality

1. INTRODUCTION

When we view a scene with two eyes and move our heads to ar
fro we get a powerful sense of the 3D structure of the scene an
our location within it. Is the brain really constructing a dedb of
the scene in any 3D frame? Rival accounts of how humans rtaviga
support either a view-basedd. no 3D reconstruction) or Cartesian
representation of the environment [1, 2, 3, 4, 5].

To our knowledge, there are not yet any workable computation
models implementing the dominant biological model of vigep-
resentationi(e. involving transformations from retinal to egocentric
and then world-based reference frames). Our aim in this vetl
test the hypothesis that human navigation is instead basettw-
based principles such as snap-shot recognition [6], or -gieyph
navigation [1]. Unlike earlier work on large-scale navigat[7] or
online control of movement [8, 9], here we apply the viewdzhs
framework to peri-personal space.

Specifically, we show that the distribution of errors in ra#
tion is strongly influenced by the scene geometry in ways t¢hat
be modelled using only simple view-based features. Thisigedy
running a homing experiment in immersive virtual realithewe the
participant’s view and position can be recorded accuragelgl then
testing a set of possible view-based models for their ghititde-
scribe the types of navigation errors observed. An exanifpdeme
homing data is shown in Figure 1; the top row shows data gather
from our experiment for two different conditions, and thetbm
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Fig. 1. Two example conditions (left and right), each showing a
plan view of a4dm x 4m room in which participants were asked to
navigate with only three coloured poles visible as landmarkop
row: raw data showing three coloured poles, black goal longhot
visible to participants), and 25 points (magenta plussesyrded
from 4 different subjects when they thought they had rettitoghe
goal location. Bottom row: likelihood map for these poirttased

on a model trained using 2ifferentexperimental conditions.

and the data obtained from human participants. Detailseo¥itw-
based modelling and model fitting are given in Section 4pfedd
by results and discussion in Section 5.

2. BIOLOGICAL BACKGROUND

row shows the same data, this time overlaid on a likelihoog ma There is considerable evidence that insects such as ars,ael

created from our model. In the longer term, our aim is to make
detailed comparison of the predictions of view-based andeidn-
struction models for a range of behaviours.

This paper begins with an overview of the biological backmgb
to our work, then in Section 3 we describe the experimentaipse
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Avasps use view-based strategies in order to navigate [1012]1
They can store a visual “snap-shot” of their goal to guiderties
turn, as is clear from the fact that manipulating the configion of
landmarks around the goal causes the insect to search iricanreg
where the view is similar to the original snap-shot [10, 11].
Navigation in mammals is more flexible and robust than that of
insects. Here, it is commonly suggested that “cognitive sh§p,
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Fig. 2. Left: In interval one, the participant sees a view of theegol
Right: in interval two, the participant starts in a diffet@tace rela-

tive to the poles, and has to walk to a point where the view hegtc
that of interval one.

13, 14] are used and that the hippocampus and entorhinaxcor

may contribute to such a map, representing space in an afloce

tric (world-based) reference frame [15, 16]. There is sooppert
from behavioural experiments in humans for this view [1®h@ugh
counter-arguments have also been made [2, 18, 19].

Superficially, the proposed hippocampal representatiaes a

similar to the 3D, world-based reconstructions of a scea¢ ane
generated in computer vision from multiple views. Photogreetry
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Fig. 3. The overall layout of the experiment, in plan view. The red
and blue poles, along with the goal-point, were arranged drcie

; of radiusr, such that the RB angle &anywhere on the circle. The

four possible goal points (magenta circles) were positicate-20°
and+60°. The spacing of the four possible green pole positions is
determined by the distanekfrom the midpoint of RB to the closest
point on the circle.

Interval 2: The poles re-appear in the VR space at a differ-

(i.e. reconstructing scene geometry from photographs) from two@nt location relative to the participant, and the partinfjsatask is
three or more views has been shown to be accurate and robest whthen to walk in the VR room until his or her relative positianthe

applied to a pre-recorded sequence of images [20, 21, 22¢zem
to simultaneous localisation and mapping (SLAM) using -teak

data from a moving camera [23]. However, the principles dyde
ing photogrammetry are very different from those assumedke

place in biological visual systems. For example, in phaiognetry
there is no attempt to build a retinotopic depth map of thesas
is observed in the primary visual cortex nor an ego-cengfre-

sentation of space as is posited in mammalian parietal>cagen
intermediate stage on the way to generating an allocentaig of

visual space [3, 4, 24].

3. EXPERIMENTAL SETUP

The experiment was designed to show up the different pattefn
errors made by human subjects in a simple visual navigadisia {To
this end, a very sparse visual world was created in a fully érsine
3D virtual reality environment, and participants were aste find
their way back to a location from which they had viewed thensce
previously, based on visual landmarks. Patterns of errgpgmid on
what objects are visible in the VR world, the configuratiorthaise
objects, and where the goal point is in relation to them.

poles matches what it was when they pressed the button ahthe e
of the first interval. When he or she believes the goal poistleen
reached, the participant presses the button to signal tthiekthe
trial.

Interval two is followed by a reset period, where the papacit
is helped back to the “home” location in the physical room by a
plan view displayed in the headset. Note that participabtaio no
feedback on how accurate their performance on the homikgvas.

If the experiment is considered in a frame of reference irctvhi
the poles are static, then the observer first views the pobes the
“goal point”, then is transferred to another location (fsfaoint”),
and moves along some trajectory to a final “last point” at \Wwhlee
button is pressed again. When a given condition is repeatathder
of times, the last-point locations that are associated thighcondi-
tion’s goal point form samples from some underlying disttibn,
and it is this distribution we are interested in modelling.

3.1. Further experimental details

The basic layout of the experiment is shown in Figure 3, watlr f
possible goal point positions, and four possible positafrike green

The landmarks we used were three differently-coloured in{ole. To determine the complete set of pole and goal locsitian

finitely long vertical poles whose angular width was fixed aeo
pixel irrespective of viewing distance. Figure 2 illustatthe two
intervals of the experiment, which proceeded as follows:

Interval 1: Participant sees the set of three poles from a partic-

ular viewing point, but limited to a20cm x 80cm (depthx width)
axis-aligned viewing box centred on viewing point, outsidi@/hich
the stimulus blanks out. In all cases, the midpoint of thearediblue
poles was directly in front of the participant down thexis of the
room. The participant is encouraged to move around withtibx

to gain motion parallax information. When the participanstves
to proceed, he or she presses a button on a hand-held pokter.
0.5s blankinter-stimulus intervafollows interval one, during which
nothing appears in the field of view.

radiusr and viewing anglé must be specified. We used three pairs
for the study: £ = 0.8m,0 = 15°), (r = 1.2m,0 = 15°), and

(r = 1.2m,0 = 20°). This generated a total of 48 layouts.

Each of these 48 layouts was coupled with either a full stereo
view in both intervals, with the ability to move around tharszone

in interval one, or with a synoptic vievi.é. one in which the headset
was configured to show views as if viewed from a common optic
centre by both eyes), and with only a static image availatileg first
interval. This brings the total number of conditions to 9én@itions
were partitioned at random into three 32-trial blocks, Whieere
deemed comfortable for most participants to work throughsimgle
run. Within each block, trials were presented in a differ@mdom
order each time.
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Fig. 4. Data gathered from two of the participants, with goal point Fig. 5. Extra data for illustrative purposes only, gathered urader
in magenta and endpoints in black, and goal-endpoint paarked  variation in experimental protocol which forced goal peifdr each
in blue. These data-points all come from the cases wheréstéuéo  condition to be aligned exactly. The differing shapes ofdistribu-
view with motion parallax was available to the participaniour  tions is clear here, with large spreads for the less cerasaswhere
conditions are shown in each plot (pole locations are cohstihin  the green pole is closer to the circle marked out in Figure 3.

a plot; goal locations change).

The distributions of end-point errors on the ground plarfe di
We used a head mounted display (SX111 from nVis) with a widefered significantly in shape and extent depending on poléigion
field of view (108°), a real time head tracker and a computer gener+ation and goal location. Where the three poles and the gmat p
ating appropriate binocular images according to the olesisrpose  almost lie on a single circle, the errors tend to be distedutround
and head position. The system had a total latency of lesstihan this arc. Where there is a relatively small visual angle leetwtwo
frames. Further details can be found in [25]. of the poles, as in set 1 of Figure 5, the error distributicglamgated
on the ground plane in such a way as to preserve the ratio tésang
o between poles from these viewpoints, even if the overalesga.
3.2. Participant data the red-blue angle) is not always accurately reproduced.

Two naive subjectd.g. with no knowledge of the experiment or its
goals) completed 10 sets each. The components of their ddta w 4. DATA MODELLING
r = 1.2 andf = 15° given full stereo stimuli are shown in compos-
ite plots in Figure 4, where the four conditions in which tiedgs are  The purpose of our modelling of these data was to test whether
in any given configuration are shown collapsed onto the sa@® a  simple view-based navigation model.e. a model which assumed

Notice that there is some spread in the goal points for edeh di no 3D reconstruction of the layout of the poles — could provide a
ferent pole configuration. This arises because participarg free to  accurate account of the errors obtained in the experiment.
move within the start box, and the goal point they are insédito We selected a set of simple visual features to describe #vesvi
return to in interval two is the one which matchestinal view they  available to the participants. Some wemenocularsingle-view fea-
had in interval one, at the moment they pressed the buttoroteepd ~ tures, such as angles between the poles as measured from-the ¢
onto interval two. clopean point (directly between the optic centres for the éwyes),

In order to highlight the different shapes and extents ofdise  or ratios of these angles. Others were inherently two-viesiures
tributionsfor a subset of the data onlwe augmented the experiment (stereo or motion) such as disparity, relative disparityl disparity
to include an intermediate interval. Participants famitiad them-  gradient. The full set of features is defined in detail in &ect.1.
selves with the three poles from within the starting box asmlydut Feature vectors are calculated at the goal and endpoirtidosa
were then given a static stereo view of the poles from thetag@a  for each trial. Errors in endpoint location then transfontoierrors
location to which they had to return, then they pressed thiwibu with respect to goal-point features in this feature spduoaygh the
again to proceed to interval two as normal. Some of the ddta comapping between the two is nonlinear. If suitable featurescho-
lected in this way are shown in Figure 5, which makes thediffees  sen, the error distribution in feature space can be analfmethe
in shape readily apparent (in these cases, 1.2 andf = 15°). full set of trials at once — even though this data includesydifi
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Fig. 6. Three individual datapoints (top row) from different cénd
tions, projected in feature-error space (bottom row). A04lata-
points (48 stereo conditions, 10 complete runs) are plpttét the
three example cases highlighted in red, green and bluectsgig.
Note that errors which seem different in “room space” stifie the
same distribution in feature space.

ferent pole and goal-point configurations. This is illusttafor one
pair of features in Figure 6, where spatial errors in thrdfeint
conditions are mapped into feature-error spaee énd-point error
— goal-point error) along with ever other trial carried out thys
participant.

The distribution in feature space is very stahlke,when a Gaus-
sian is fitted to features from one set of conditions, its pesters are
much the same as those for a disjoint set of conditions. Th&ms
that one single Gaussian in feature space descalbéke different
error shapes in the virtual reality room.

To make a likelihood map of endpoint locations in room space
we simply evaluated the feature-error vectors for a grid aafrm
points, and found those vectors’ likelihoods using the Gaumsmean
and covariance from the fitted model. Figure 7 shows lika@do
maps for the same three example trials as Figure 6, alongthgth
simple 2D Gaussian fitted to the overall set of points in fesaspace.
Notice how well the shapes of the likelihood distributionatai up
with the different endpoint patterns seen in Figures 4 and 5.

4.1. Features in detail

We give specifications here for the 20 different features weased
to describe the views in the view-based model. In Sectionve?2
will explain how we picked a subset of these that best desdribe
experimental data.

The full set of features gives a high-dimensional represant
of the data, though not all dimensions are linearly indepahd

The first nine features used ar®noculay because they are cal-
culated from a single viewing location, taken to be the cyebn

centre,i.e. the point half-way between the optic centres of the two

eyes. The remainder rely on stereo information obtainecdbypar-

Gaussian (feature space) magenta square

=
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Fig. 7. Top left: the 2D Gaussian fitted to the cloud of points in
feature-error-space shown in Figure 6. Other plots: theesdumee
example cases in then x 4m room, showing the different shapes
of endpoint likelihoods given by this single Gaussian modehe
differeces come about because of the variation in pole aadgmnt
locations.

ing left and right views, or alternatively, views taken fralifferent
points within the width of the start box.

The first three features are simply the set of angles between t
three poles as viewed from a poinfo, 8,v}. These are labeled
according to the relative sizes of the three angles as seem dr
given viewing point, as illustrated in Figure 8.

If ag is the alpha angle viewed from the goal location, then
is the same angle viewed from some paXitin the room measured
between the same twaploursof poles asv (even if the ordering
on angle size is not the same). The features (feature-egions)
reported for each trial arpee — ax, Be — Bx,va — vx }- A sec-
ond trio of monocular features was taken to be simply the qrop
tional error in these angles, since a small absolute errarsmall
angle is much more significant than a small absolute errotargar

) ag—a Bg—08 —
angle{ Gac X’ i GBG X7 "/G/YGWX }

The final three monocular features are ratios of the three
simple angles, as participants frequently report usingpsabr
proportions of angles to guide themselves in the task, fer in
stance “the green pole was a third of the way between the red
and blue poles”. As before, the features reported for a &iel

ax ag _ ax Sa _ Bx } Technically, there is no need

TG vX
to include both¢ and2, since¢ =1 - £, so only one or other cue
Y Y . Y Y
were used at once, to avoid linearly dependent sets of fainithe
models.
Another 11 cues were constructed using information onlyl-ava
able when considering binocular stereo or motion parallée ver-
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Fig. 9. The first eight (out of 48) conditions under the best foatdiee models for two different naive participants (top swvd bottom row).
All ten datapoints per participant are plotted, and theriistions shown were calculated for the mean of the ten goialtg.

)

to depth relief on slanted planes [26].

4.2. Learning and evaluating models

We are interested in testing how well a view-based modellis tab
describe the experimental data. To quantify how well a malael
scribes the observations, we turned the the distributiéf$gure 7
into probabilities by finding the normalizing constant facck data-
point. This allows us first of all to compare different viewsed

Fig. 8. Left to Right: (a-b) The labelling of these angles dependygdels to one another, and secondly to quantify how well irega

on their relatives sizesx is always the smallest, andis always
the largest of the three; (c) The vergence angle for a sirgjtaiced
pole, as measured from the cyclopean point;Qibparity gradient

change in vergence angle between two poles, and divided éoy th

angle between them.

gence angle, shown middle-right of Figure 8 gives some atitin
of the distance an observer is from an object. The first thees
cues are therefore the vergence angles from the three edlpotes.
The next three cues are the three pair-wise differencescegithe
vergence angles, termed tredative disparityof the poles, since it
gives information about how much farther (or nearer) onecths
to an observer than another.
Disparity Gradientis the term given to the relative disparity (dif-

ference in vergence angles) divided by the angle betweenbikets,

a view-based model can do, for the purpose of making compegis
to other families of modelse(g.explicit 3D reconstruction models)
in the future.

The step of finding the normalization constant for every data
point is computationally expensive. We calculated the 2tegrel
over the ground plane numerically using MATLAB'slbl quad”
routine. Note, however, that this step is only required farded
comparison rather than for actual modeise e.g.in some visual
navigation strategy.

In order to find good view-based models, all possible models
using 14 linearly independent features were evaluated, and ranked
according to data likelihood. Excluding feature combioasi with
linear dependencies, this gave almost 6000 combinationstine 20
available visual features. For each feature combinatiaoh elata-
point  in turn was excluded from the dataset, and the Gaussian
G was fitted in feature-error space on the remainder of thetoin

measured from the cyclopean point. This can be viewed as a f{i.e. points used in testing were not part of the training set f@hea

nite first-order difference approximation to the slant ofigace on
which the two objects sit. As for the first two types of steree,c
there are three possible ways to compute this pairwise cme tihe
set of three poles.

individual trial). The integral over the ground plane waslaated
out to+5m, and used to normalize the likelihood®funderG. The
total likelihood of the dataset for the chosen feature cormitidn
was then the product of all these normalized likelihoodsyasng

There are two stereo cues computed from all three poles at oncindependence of trials).

First, analogous to the first-order difference cue, we canttd a
second-order difference cue which approximatesthrgatureof an
underlying surface around the green pole. To do this, theadity
gradient was calculated for the red-green pole pair, scigttiafrom
the disparity gradient of the green-blue pole pair, and ffyrdivided
by the overall angle between red and blagy(y from Figure 8).

5. RESULTS

Many of the view-based models we tested were very succeasful
describing the shapes of the end-point distributions alesEin hom-
ing experiment. The results of the comparison between $gtsual

The final cue is calculated using an imagined pole. In 2D, arfeatures varied between participants, as did the maximumlita-
extra pointg/ is defined as the intersection of the red-blue line withlihood obtained. For the single-view data, models basechen t

the viewer-green line. This meapslies in the red-blue plane, pro-
jected so that it lines up exactly with the green pole as seen the
goal point. The cue itself is then the relative disparity ¢the green

angle and the; ratio describe errors successfully. Adding in two-
view features allows for better modelling of the stereoavlealf of
the dataset for most participants, and while the best feasgem to

pole) andg/ (the green pole’s location if it were really in the plane be subject-dependent, vergence angles featured in moisé ddfetst

of the other poles). This cue is inspired by work showing gty

models.



one appeared to make extensive use of these stereo featinitss,
the other’s “best” features came entirely from the monacsgd. The
set of best-performing features for each of these two ppatits (ac-

cording to the procedure described in Section 4.2) was setkt

ate two separate 4D feature-error-space models (one prijpant).
These two distributions were used to draw the corresponding of
plots in Figure 9, representing the first eight of the full@t8idition

set.

The top row shows the results for S1 (who used stereo

tures), while the bottom shows the equivalent likelihoodpmand
end-points for S2. Note that average end-points were usdtidee
plots, so some mis-match of endpoints and distributionresris due

to the fact that the actual goal locations varied.

In this paper, we have explored a number of ways in which a-view[ls]

6. CONCLUSIONS

based model might describe datasets gathered from humgttsub
performing a simple homing task. The results fit the diffesdrapes

of the data distributions, which are due to different configions

of visual landmarks, very convincingly, and appear to supothe
hypothesis that humans employ a view-based strategy wiuen fa

with this simple homing task in virtual reality.
This now puts us into a position to compare view-based mod-
els to equivalent 3D models in a bid to probe possible meshasi

(10]

fedl 1]

(12]

(14]

(15]

described in Section 2. Preliminary modelling using a 3Donec [16]
struction algorithm (not shown here) has shown a quite wiffepat-
tern of predicted behaviour. Future experiments will alga@re the
pattern of navigation errors in a richer or more natural aisnvi-
ronment. [17]
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