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ABSTRACT

View-based and Cartesian representations provide rival accounts of
visual navigation in humans, and here we explore possible models
for the view-based case. A visual “homing” experiment was under-
taken by human participants in immersive virtual reality. The distri-
butions of end-point errors on the ground plane differed significantly
in shape and extent depending on visual landmark configuration and
relative goal location. A model based on simple visual cues captures
important characteristics of these distributions. Augmenting visual
features to include 3D elements such as stereo and motion parallax
result in a set of models that describe the data accurately, demon-
strating the effectiveness of a view-based approach.

Index Terms— navigation, visual perception, virtual reality

1. INTRODUCTION

When we view a scene with two eyes and move our heads to and
fro we get a powerful sense of the 3D structure of the scene and
our location within it. Is the brain really constructing a model of
the scene in any 3D frame? Rival accounts of how humans navigate
support either a view-based (i.e. no 3D reconstruction) or Cartesian
representation of the environment [1, 2, 3, 4, 5].

To our knowledge, there are not yet any workable computational
models implementing the dominant biological model of visual rep-
resentation (i.e. involving transformations from retinal to egocentric
and then world-based reference frames). Our aim in this workis to
test the hypothesis that human navigation is instead based on view-
based principles such as snap-shot recognition [6], or view-graph
navigation [1]. Unlike earlier work on large-scale navigation [7] or
online control of movement [8, 9], here we apply the view-based
framework to peri-personal space.

Specifically, we show that the distribution of errors in naviga-
tion is strongly influenced by the scene geometry in ways thatcan
be modelled using only simple view-based features. This is done by
running a homing experiment in immersive virtual reality, where the
participant’s view and position can be recorded accurately, and then
testing a set of possible view-based models for their ability to de-
scribe the types of navigation errors observed. An example of some
homing data is shown in Figure 1; the top row shows data gathered
from our experiment for two different conditions, and the bottom
row shows the same data, this time overlaid on a likelihood map
created from our model. In the longer term, our aim is to make a
detailed comparison of the predictions of view-based and 3Drecon-
struction models for a range of behaviours.

This paper begins with an overview of the biological background
to our work, then in Section 3 we describe the experimental setup
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Fig. 1. Two example conditions (left and right), each showing a
plan view of a4m × 4m room in which participants were asked to
navigate with only three coloured poles visible as landmarks. Top
row: raw data showing three coloured poles, black goal location (not
visible to participants), and 25 points (magenta plusses) recorded
from 4 different subjects when they thought they had returned to the
goal location. Bottom row: likelihood map for these points,based
on a model trained using 22differentexperimental conditions.

and the data obtained from human participants. Details of the view-
based modelling and model fitting are given in Section 4, followed
by results and discussion in Section 5.

2. BIOLOGICAL BACKGROUND

There is considerable evidence that insects such as ants, bees and
wasps use view-based strategies in order to navigate [10, 11, 12].
They can store a visual “snap-shot” of their goal to guide their re-
turn, as is clear from the fact that manipulating the configuration of
landmarks around the goal causes the insect to search in a region
where the view is similar to the original snap-shot [10, 11].

Navigation in mammals is more flexible and robust than that of
insects. Here, it is commonly suggested that “cognitive maps” [5,



Fig. 2. Left: In interval one, the participant sees a view of the poles.
Right: in interval two, the participant starts in a different place rela-
tive to the poles, and has to walk to a point where the view matches
that of interval one.

13, 14] are used and that the hippocampus and entorhinal cortex
may contribute to such a map, representing space in an allocen-
tric (world-based) reference frame [15, 16]. There is some support
from behavioural experiments in humans for this view [17], although
counter-arguments have also been made [2, 18, 19].

Superficially, the proposed hippocampal representations are
similar to the 3D, world-based reconstructions of a scene that are
generated in computer vision from multiple views. Photogrammetry
(i.e. reconstructing scene geometry from photographs) from two,
three or more views has been shown to be accurate and robust when
applied to a pre-recorded sequence of images [20, 21, 22] andeven
to simultaneous localisation and mapping (SLAM) using real-time
data from a moving camera [23]. However, the principles underly-
ing photogrammetry are very different from those assumed totake
place in biological visual systems. For example, in photogrammetry
there is no attempt to build a retinotopic depth map of the scene as
is observed in the primary visual cortex nor an ego-centric repre-
sentation of space as is posited in mammalian parietal cortex as an
intermediate stage on the way to generating an allocentric map of
visual space [3, 4, 24].

3. EXPERIMENTAL SETUP

The experiment was designed to show up the different patterns of
errors made by human subjects in a simple visual navigation task. To
this end, a very sparse visual world was created in a fully immersive
3D virtual reality environment, and participants were asked to find
their way back to a location from which they had viewed the scene
previously, based on visual landmarks. Patterns of errors depend on
what objects are visible in the VR world, the configuration ofthose
objects, and where the goal point is in relation to them.

The landmarks we used were three differently-coloured in-
finitely long vertical poles whose angular width was fixed at one
pixel irrespective of viewing distance. Figure 2 illustrates the two
intervals of the experiment, which proceeded as follows:

Interval 1: Participant sees the set of three poles from a partic-
ular viewing point, but limited to an20cm× 80cm (depth× width)
axis-aligned viewing box centred on viewing point, outsideof which
the stimulus blanks out. In all cases, the midpoint of the redand blue
poles was directly in front of the participant down thez-axis of the
room. The participant is encouraged to move around within this box
to gain motion parallax information. When the participant wishes
to proceed, he or she presses a button on a hand-held pointer.A
0.5s blankinter-stimulus intervalfollows interval one, during which
nothing appears in the field of view.
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Fig. 3. The overall layout of the experiment, in plan view. The red
and blue poles, along with the goal-point, were arranged on acircle
of radiusr, such that the RB angle isθ anywhere on the circle. The
four possible goal points (magenta circles) were positioned at±20

◦

and±60
◦. The spacing of the four possible green pole positions is

determined by the distanced from the midpoint of RB to the closest
point on the circle.

Interval 2: The poles re-appear in the VR space at a differ-
ent location relative to the participant, and the participant’s task is
then to walk in the VR room until his or her relative position to the
poles matches what it was when they pressed the button at the end
of the first interval. When he or she believes the goal point has been
reached, the participant presses the button to signal the end of the
trial.

Interval two is followed by a reset period, where the participant
is helped back to the “home” location in the physical room by a
plan view displayed in the headset. Note that participants obtain no
feedback on how accurate their performance on the homing task was.

If the experiment is considered in a frame of reference in which
the poles are static, then the observer first views the poles from the
“goal point”, then is transferred to another location (“start point”),
and moves along some trajectory to a final “last point” at which the
button is pressed again. When a given condition is repeated anumber
of times, the last-point locations that are associated withthe condi-
tion’s goal point form samples from some underlying distribution,
and it is this distribution we are interested in modelling.

3.1. Further experimental details

The basic layout of the experiment is shown in Figure 3, with four
possible goal point positions, and four possible positionsof the green
pole. To determine the complete set of pole and goal locations, a
radiusr and viewing angleθ must be specified. We used three pairs
for the study: (r = 0.8m,θ = 15

◦), (r = 1.2m,θ = 15
◦), and

(r = 1.2m,θ = 20
◦). This generated a total of 48 layouts.

Each of these 48 layouts was coupled with either a full stereo
view in both intervals, with the ability to move around the start zone
in interval one, or with a synoptic view (i.e. one in which the headset
was configured to show views as if viewed from a common optic
centre by both eyes), and with only a static image available in the first
interval. This brings the total number of conditions to 96. Conditions
were partitioned at random into three 32-trial blocks, which were
deemed comfortable for most participants to work through ina single
run. Within each block, trials were presented in a differentrandom
order each time.
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Fig. 4. Data gathered from two of the participants, with goal points
in magenta and endpoints in black, and goal-endpoint pairs marked
in blue. These data-points all come from the cases where a full stereo
view with motion parallax was available to the participants. Four
conditions are shown in each plot (pole locations are constant within
a plot; goal locations change).

We used a head mounted display (SX111 from nVis) with a wide
field of view (108◦), a real time head tracker and a computer gener-
ating appropriate binocular images according to the observer’s pose
and head position. The system had a total latency of less thantwo
frames. Further details can be found in [25].

3.2. Participant data

Two naı̈ve subjects (i.e. with no knowledge of the experiment or its
goals) completed 10 sets each. The components of their data with
r = 1.2 andθ = 15

◦ given full stereo stimuli are shown in compos-
ite plots in Figure 4, where the four conditions in which the poles are
in any given configuration are shown collapsed onto the same axes.

Notice that there is some spread in the goal points for each dif-
ferent pole configuration. This arises because participants are free to
move within the start box, and the goal point they are instructed to
return to in interval two is the one which matches thefinal view they
had in interval one, at the moment they pressed the button to proceed
onto interval two.

In order to highlight the different shapes and extents of thedis-
tributionsfor a subset of the data only, we augmented the experiment
to include an intermediate interval. Participants familiarised them-
selves with the three poles from within the starting box as usual, but
were then given a static stereo view of the poles from the exact goal
location to which they had to return, then they pressed the button
again to proceed to interval two as normal. Some of the data col-
lected in this way are shown in Figure 5, which makes the differences
in shape readily apparent (in these cases,r = 1.2 andθ = 15

◦).

set 4set 3
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Fig. 5. Extra data for illustrative purposes only, gathered undera
variation in experimental protocol which forced goal points for each
condition to be aligned exactly. The differing shapes of thedistribu-
tions is clear here, with large spreads for the less certain cases where
the green pole is closer to the circle marked out in Figure 3.

The distributions of end-point errors on the ground plane dif-
fered significantly in shape and extent depending on pole configu-
ration and goal location. Where the three poles and the goal point
almost lie on a single circle, the errors tend to be distributed around
this arc. Where there is a relatively small visual angle between two
of the poles, as in set 1 of Figure 5, the error distribution iselongated
on the ground plane in such a way as to preserve the ratio of angles
between poles from these viewpoints, even if the overall scale (i.e.
the red-blue angle) is not always accurately reproduced.

4. DATA MODELLING

The purpose of our modelling of these data was to test whethera
simple view-based navigation model –i.e. a model which assumed
no 3D reconstruction of the layout of the poles – could provide an
accurate account of the errors obtained in the experiment.

We selected a set of simple visual features to describe the views
available to the participants. Some weremonocularsingle-view fea-
tures, such as angles between the poles as measured from the cy-
clopean point (directly between the optic centres for the two eyes),
or ratios of these angles. Others were inherently two-view features
(stereo or motion) such as disparity, relative disparity, and disparity
gradient. The full set of features is defined in detail in Section 4.1.

Feature vectors are calculated at the goal and endpoint locations
for each trial. Errors in endpoint location then transform into errors
with respect to goal-point features in this feature space, though the
mapping between the two is nonlinear. If suitable features are cho-
sen, the error distribution in feature space can be analysedfor the
full set of trials at once – even though this data includes many dif-
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Fig. 6. Three individual datapoints (top row) from different condi-
tions, projected in feature-error space (bottom row). All 480 data-
points (48 stereo conditions, 10 complete runs) are plotted, with the
three example cases highlighted in red, green and blue respectively.
Note that errors which seem different in “room space” still share the
same distribution in feature space.

ferent pole and goal-point configurations. This is illustrated for one
pair of features in Figure 6, where spatial errors in three different
conditions are mapped into feature-error space (i.e. end-point error
− goal-point error) along with ever other trial carried out bythis
participant.

The distribution in feature space is very stable,i.e.when a Gaus-
sian is fitted to features from one set of conditions, its parameters are
much the same as those for a disjoint set of conditions. This means
that one single Gaussian in feature space describesall the different
error shapes in the virtual reality room.

To make a likelihood map of endpoint locations in room space,
we simply evaluated the feature-error vectors for a grid of room
points, and found those vectors’ likelihoods using the Gaussian mean
and covariance from the fitted model. Figure 7 shows likelihood
maps for the same three example trials as Figure 6, along withthe
simple 2D Gaussian fitted to the overall set of points in feature space.
Notice how well the shapes of the likelihood distributions match up
with the different endpoint patterns seen in Figures 4 and 5.

4.1. Features in detail

We give specifications here for the 20 different features we proposed
to describe the views in the view-based model. In Section 4.2we
will explain how we picked a subset of these that best described the
experimental data.

The full set of features gives a high-dimensional representation
of the data, though not all dimensions are linearly independent.

The first nine features used aremonocular, because they are cal-
culated from a single viewing location, taken to be the cyclopean
centre,i.e. the point half-way between the optic centres of the two
eyes. The remainder rely on stereo information obtained by compar-
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Fig. 7. Top left: the 2D Gaussian fitted to the cloud of points in
feature-error-space shown in Figure 6. Other plots: the same three
example cases in the4m × 4m room, showing the different shapes
of endpoint likelihoods given by this single Gaussian model. The
differeces come about because of the variation in pole and goal-point
locations.

ing left and right views, or alternatively, views taken fromdifferent
points within the width of the start box.

The first three features are simply the set of angles between the
three poles as viewed from a point:{α, β, γ}. These are labeled
according to the relative sizes of the three angles as seen from a
given viewing point, as illustrated in Figure 8.

If αG is the alpha angle viewed from the goal location, thenαX

is the same angle viewed from some pointX in the room measured
between the same twocoloursof poles asαG (even if the ordering
on angle size is not the same). The features (feature-error vectors)
reported for each trial are{αG − αX , βG − βX , γG − γX}. A sec-
ond trio of monocular features was taken to be simply the propor-
tional error in these angles, since a small absolute error ina small
angle is much more significant than a small absolute error in alarger

angle:
n

αG−αX

αG
,

βG−βX

βG
,

γG−γX

γG

o

.

The final three monocular features are ratios of the three
simple angles, as participants frequently report using ratios or
proportions of angles to guide themselves in the task, for in-
stance “the green pole was a third of the way between the red
and blue poles”. As before, the features reported for a trialare
n

αG

γG
− αX

γX
, αG

βG
− αX

βX
, βG

γG
− βX

γX

o

. Technically, there is no need

to include bothα
γ

and β

γ
, sinceα

γ
= 1− β

γ
, so only one or other cue

were used at once, to avoid linearly dependent sets of features in the
models.

Another 11 cues were constructed using information only avail-
able when considering binocular stereo or motion parallax.The ver-



S1, condition 1/48

S2, condition 1/48

S1, condition 2/48

S2, condition 2/48

S1, condition 3/48

S2, condition 3/48

S1, condition 4/48

S2, condition 4/48

S1, condition 5/48

S2, condition 5/48

S1, condition 6/48

S2, condition 6/48

S1, condition 7/48

S2, condition 7/48

S1, condition 8/48

S2, condition 8/48

Fig. 9. The first eight (out of 48) conditions under the best four-feature models for two different naı̈ve participants (top rowand bottom row).
All ten datapoints per participant are plotted, and the distributions shown were calculated for the mean of the ten goal points.

Fig. 8. Left to Right: (a-b) The labelling of these angles depend
on their relatives sizes:α is always the smallest, andγ is always
the largest of the three; (c) The vergence angle for a single coloured
pole, as measured from the cyclopean point; (d)Disparity gradient:
change in vergence angle between two poles, and divided by the
angle between them.

gence angle, shown middle-right of Figure 8 gives some indication
of the distance an observer is from an object. The first three stereo
cues are therefore the vergence angles from the three coloured poles.
The next three cues are the three pair-wise differences between the
vergence angles, termed therelative disparityof the poles, since it
gives information about how much farther (or nearer) one object is
to an observer than another.

Disparity Gradientis the term given to the relative disparity (dif-
ference in vergence angles) divided by the angle between theobjects,
measured from the cyclopean point. This can be viewed as a fi-
nite first-order difference approximation to the slant of a surface on
which the two objects sit. As for the first two types of stereo cue,
there are three possible ways to compute this pairwise cue from the
set of three poles.

There are two stereo cues computed from all three poles at once.
First, analogous to the first-order difference cue, we constructed a
second-order difference cue which approximates thecurvatureof an
underlying surface around the green pole. To do this, the disparity
gradient was calculated for the red-green pole pair, subtracted from
the disparity gradient of the green-blue pole pair, and finally divided
by the overall angle between red and blue (e.g.γ from Figure 8).

The final cue is calculated using an imagined pole. In 2D, an
extra pointg′ is defined as the intersection of the red-blue line with
the viewer-green line. This meansg′ lies in the red-blue plane, pro-
jected so that it lines up exactly with the green pole as seen from the
goal point. The cue itself is then the relative disparity ofg (the green
pole) andg′ (the green pole’s location if it were really in the plane
of the other poles). This cue is inspired by work showing sensitivity

to depth relief on slanted planes [26].

4.2. Learning and evaluating models

We are interested in testing how well a view-based model is able to
describe the experimental data. To quantify how well a modelde-
scribes the observations, we turned the the distributions of Figure 7
into probabilities by finding the normalizing constant for each data-
point. This allows us first of all to compare different view-based
models to one another, and secondly to quantify how well in general
a view-based model can do, for the purpose of making comparisons
to other families of models (e.g.explicit 3D reconstruction models)
in the future.

The step of finding the normalization constant for every data-
point is computationally expensive. We calculated the 2D integral
over the ground plane numerically using MATLAB’s “dblquad”
routine. Note, however, that this step is only required for model
comparison, rather than for actual modeluse, e.g. in some visual
navigation strategy.

In order to find good view-based models, all possible models
using1–4 linearly independent features were evaluated, and ranked
according to data likelihood. Excluding feature combinations with
linear dependencies, this gave almost 6000 combinations from the 20
available visual features. For each feature combination, each data-
point x in turn was excluded from the dataset, and the Gaussian
G was fitted in feature-error space on the remainder of the points
(i.e. points used in testing were not part of the training set for each
individual trial). The integral over the ground plane was evaluated
out to±5m, and used to normalize the likelihood ofx underG. The
total likelihood of the dataset for the chosen feature combination
was then the product of all these normalized likelihoods (assuming
independence of trials).

5. RESULTS

Many of the view-based models we tested were very successfulat
describing the shapes of the end-point distributions observed in hom-
ing experiment. The results of the comparison between sets of visual
features varied between participants, as did the maximum data like-
lihood obtained. For the single-view data, models based on the γ
angle and theα

β
ratio describe errors successfully. Adding in two-

view features allows for better modelling of the stereo-view half of
the dataset for most participants, and while the best features seem to
be subject-dependent, vergence angles featured in most of the best
models.



Of the two naı̈ve participants who had each completed 10 runs,
one appeared to make extensive use of these stereo features,while
the other’s “best” features came entirely from the monocular set. The
set of best-performing features for each of these two participants (ac-
cording to the procedure described in Section 4.2) was used to cre-
ate two separate 4D feature-error-space models (one per participant).
These two distributions were used to draw the correspondingrows of
plots in Figure 9, representing the first eight of the full 48-condition
set. The top row shows the results for S1 (who used stereo fea-
tures), while the bottom shows the equivalent likelihood maps and
end-points for S2. Note that average end-points were used for these
plots, so some mis-match of endpoints and distribution centres is due
to the fact that the actual goal locations varied.

6. CONCLUSIONS

In this paper, we have explored a number of ways in which a view-
based model might describe datasets gathered from human subjects
performing a simple homing task. The results fit the different shapes
of the data distributions, which are due to different configurations
of visual landmarks, very convincingly, and appear to support to the
hypothesis that humans employ a view-based strategy when faced
with this simple homing task in virtual reality.

This now puts us into a position to compare view-based mod-
els to equivalent 3D models in a bid to probe possible mechanisms
described in Section 2. Preliminary modelling using a 3D recon-
struction algorithm (not shown here) has shown a quite different pat-
tern of predicted behaviour. Future experiments will also explore the
pattern of navigation errors in a richer or more natural visual envi-
ronment.
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