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Abstract It is often assumed that humans generate a

3D reconstruction of the environment, either in egocen-

tric or world-based coordinates, but the steps involved

are unknown. Here, we propose two reconstruction-based
models, evaluated using data from two tasks in immer-

sive virtual reality. We model the observer’s prediction

of landmark location based on standard photogrammet-
ric methods and then combine location predictions to

compute likelihood maps of navigation behaviour. In

one model, each scene point is treated independently
in the reconstruction; in the other, the pertinent vari-

able is the spatial relationship between pairs of points.

Participants viewed a simple environment from one lo-

cation, were transported (virtually) to another part of
the scene and asked to navigate back. Error distribu-

tions varied substantially with changes in scene layout;

we compared these directly with the likelihood maps to
quantify the success of the models. We also measured

error distributions when participants manipulated the

location of a landmark to match the preceding interval,
providing a direct test of the landmark-location stage

of the navigation models. Models such as this, which

start with scenes and end with a probabilistic predic-

tion of behaviour, are likely to be increasingly useful for
understanding 3D vision.
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1 Introduction

Many studies on 3D representation assume that the

parietal cortex generates representations of the scene
in an ego-centric frame, the hippocampus does so in

a world-centred frame and coordinate transformations

account for the passage of information from one frame
to another [Andersen et al., 1997, Burgess et al., 1999,

Snyder et al., 1998, Mou et al., 2006, Burgess, 2006,

O’Keefe and Nadel, 1978, McNaughton et al., 2006].
However, there is little evidence for a well-ordered 3D

representation in cortex underlying each of these puta-

tive representations. In striate cortex, retinotopic loca-

tion and disparity tuning provide an anatomical basis
for encoding the visual direction and depth of objects

relative to the fixation point but this anatomical regu-

larity is not found in other parts of the cortex represent-
ing ego-centric and world-centred relationships [DeAn-

gelis and Newsome, 1999, Cumming and DeAngelis,

2001]. And in relation to psychophysical data, there
have been few attempts to model and test the processes

assumed to underlie the generation of a 3D reconstruc-

tion from images, including the distortions that would

be predicted to arise from such processing, as we do
here.

Of course, 3D reconstruction is not the only way

that a scene could be represented [Gillner and Mallot,

1998, Glennerster et al., 2001, Warren, 2012] and, more
generally, there are many ways to guide actions and

navigate within a 3D environment that do not involve

scene reconstruction [Gibson, 1979, Franz et al., 1998,
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Möller and Vardy, 2006, Stürzl et al., 2008]. Together,

these come under the category of ‘view-based’ methods
of carrying out tasks. By contrast, in the current pa-

per, we focus on reconstruction-based hypotheses for a

scene-matching task and the extent to which these are
able to account for the pattern of errors displayed by

humans faced with the same task. We have examined

view-based predictions for the same task in a previ-
ous paper [Pickup et al., 2011] and we will present a

detailed comparison of the two approaches in a subse-

quent paper. Here, we focus on the hypothesis that the

visual system generates a reconstruction of the scene. If
this is what the visual system does when the observer

is asked to remember their location in a scene, then

we can model the pattern of errors that we would ex-
pect observers to make when they try to return to that

location.

Using a similar “homing” task, it has often been
shown that changing or removing landmarks can bias

or disrupt accurate navigation of bees [Cartwright and

Collett, 1983], ants [Graham and Collett, 2002] and hu-

mans [Mallot and Gillner, 2000, Waller et al., 2001, Foo
et al., 2005]. By contrast, in our study the structure of

the scene remains constant between the reference and

the homing interval but we nevertheless find that the
pattern of errors varies systematically with the struc-

ture of the scene. It is these systematic variations that

are informative about the nature of the representation
the visual system uses. In this paper, we attempt to

reproduce a similar pattern of errors using two variants

of reconstruction-based algorithm.

1.1 Paper Overview

In Section 2, we describe the psychophysical experi-

ment measuring navigation errors in a simple homing
task in a virtual environment. Sections 3 and 4 describe

how a reconstruction algorithm can be used to recover

an estimate of the positions of scene landmarks in an

egocentric coordinate system and how these estimates,
measured in two intervals (“reference” and “homing”),

can be combined to form a probabilistic map of navi-

gation end-point locations. We call this the “basic” re-
construction model. Section 5 describes an alternative

way of combining the distributions of position estimates

that emphasises the relative location of landmarks, so
we refer to this as the “shape-based” model.

Section 6 introduces a different type of experiment

that allows us to obtain an estimate of the distribution

of errors on participants’ representation landmark lo-
cation (rather than their own location). We compare

this to the equivalent distribution that is inferred as

part of the modelling of the first experiment. Section 7

compares the ability of the “basic” and “shape-based”

models to account for the data and Section 8 discusses
our results in the context of models of spatial represen-

tation.

2 Experiment 1: Navigation to a

previously-viewed location

Participants viewed a simple scene in immersive vir-

tual reality and were then teleported to a different lo-
cation in the scene from where they had to return to

the original location. The paradigm is similar to a pre-

vious experiment by Waller et al. [2001]. Waller et al.
[2001] tried to distinguish different components of the

information that participants might be using in a hom-

ing task. In their experiment, they identified two candi-
date locations predicted by two simple heuristics: first,

to keep all the landmarks at the same distance from

the observer in the two intervals or, second, to keep

all the angles between landmarks constant. They found
evidence in favour of distance information being im-

portant although they admit that the type of virtual

environment they used may have contributed to this
outcome. Most of the time, only one landmark was vis-

ible at a time in their experiment, so angles between

landmarks were rarely available visually, forcing par-
ticipants to rely more heavily on distance information.

Unlike Waller et al., we kept the environment the same

between the learning and test phases so there was al-

ways a correct location to which participants could re-
turn. Naturally, this location is the most likely one, as

is confirmed by our modelling, but the distribution of

navigation errors that participants make around this
point and, in particular, the variation in this distribu-

tion with the location of the landmarks in the scene, is

something we attempt to predict using a reconstruction
model. The experiment and data have been presented

by Pickup et al. [2011] but are reproduced here for clar-

ity before introducing the modelling.

2.1 Methods

Five participants took part in the experiment, all with

normal or corrected-to-normal visual acuity. Partici-
pants viewed the virtual scene using an NVIS SX111

head mounted display with horizontal field of view of

102 deg, vertical FOV 64 deg and binocular overlap

of 50 deg. The location and orientation of the head
mounted display were tracked at 240 Hz using a Vicon

MX3/T20S 9 camera tracking system that was used to

update the binocular visual display (1280 by 1024 in
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Fig. 1 Plan view of the stimulus layout. The 48 possible layouts are shown across the three panels, each showing four
possible positions of the central pole (green dots), and four possible centres of the viewing zones (black circles), i.e. 16 different
configurations per panel. The “goal point”, to which the participant had to return in the second interval, was always within
the viewing zone. The magenta cross at the base of each plot represents the participant’s position relative to the poles at the
start of the second interval. Versions (a) and (b) are identical up to scale. Versions (a) and (c) differ in the spatial separation
of the set of poles (see text), but are otherwise similar.

each eye) at 60 Hz with a latency of 2 frames. The cal-
ibration procedure that allows the left and right eye’s

viewing frustums to be calculated from the 6 degrees of

freedom tracking data is described by Gilson and Glen-

nerster [2012]. The size of the physical room in which
the participants could walk was 3.5 by 3.5m. The stim-

uli consisted of 3 very long poles coloured red, green and

blue so that they could be easily distinguished. Other
than the poles, the image was black. The poles were de-

signed so that the only information about their 3D lay-

out was the angles subtended at the eye between pairs
of poles and the change in these angles with changes

in viewpoint (either by the participant walking or from

binocular viewing). The poles were always one pixel

wide (anti-aliased) for all viewing distances. The poles
extended far above and far below the participant and

when the participant looked up or down by 35◦ the im-

age went black. This prevented participants from ever
seeing anything close to a “plan view”. The purpose of

this minimalist display was to restrict the number of

parameters necessary to model the participant’s navi-
gation errors and to allow different types of model to

be distinguished.

The layouts of the poles we used are illustrated in

Figure 1. In each case, the red and blue poles and the

centre of the viewing zone in the first interval lie on a

circle. This means that viewed from each of the four
viewing zones shown in a panel of Figure 1, the an-

gle between the red and blue poles is constant (15◦ for

panels (a) and (b), 20◦ for panel (c)).

A trial would start when the participant was within
a 20cm × 80cm viewing zone which was always in the

same physical location within the room. It allowed the

participant to move laterally to view the stimulus with

motion parallax but without the freedom to explore fur-
ther. The long axis of the viewing zone was always at

right angles to a line joining the centre of the viewing

zone and the midpoint between the red and blue poles.
The participant was instructed to remember their lo-

cation with respect to the poles. This first “reference”

interval ended when the participant pressed a button
and, after a 500ms blank interval, the poles reappeared

but the participant had been transported virtually (i.e.

without physically moving) to a new location in the

scene, shown by the magenta cross in Figure 1. The
task was to navigate back to the location in the scene

at which they pressed the button ending interval one,

i.e. the “goal point”. When participants were satisfied
that they had reached the goal point they pressed a

button on a hand-held device recording the location

of their cyclopean point at that moment and the trial
ended. An image then appeared showing a plan view of

a schematic head showing their location in the physical

room and an outline of the viewing zone to which they

had to return to start the next trial.

2.2 Results

The main results of Experiment 1 are shown at the end

of the paper in Figures 11 and 12 where they can be in-
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Fig. 2 Four examples of navigation-error data, shown as a plan view in a 4m×4m box. The magenta pluses indicate points
in the room which subjects reported as being the same as the goal point (black dot). The distribution of these points depends
on the geometry of the condition: those with a small visual angle between poles tend to have a more “radial” distribution,
e.g. conditions (a) and (c), where the green and blue poles were seen as being close together when viewed from the goal point.
In conditions (b) and (d), the poles appear more uniformly spaced, and the recorded end-points are more dispersed.

terpreted in relation to the modelling which is described

in subsequent sections. However, Figure 2 illustrates a

portion of the data and shows what the main character-
istics are that need to be modelled. The black dot shows

the goal point to which participants had to return in the

homing interval and the crosses show their endpoints. It
is clear that the spatial distribution of endpoints is af-

fected by the layout of the poles. Figure 2(c) and 2(d)

are extreme examples. In (c), the spread of points is
mainly along the line joining the goal point and the

central pole while in (d) the pattern in reversed.

In order to gather data that could be plotted in the
clear way shown here, i.e. with many trials repeated

using exactly the same goal point, we adapted the pro-

tocol slightly. Instead of defining the goal point based
on the participant’s location in the viewing zone of in-

terval one when they pressed the button, we inserted an

“interval 1a” during which the participant saw a static,
stereo image of the scene from a fixed viewpoint and

this defined the goal point to which they should try to

return in the “homing” interval.

The real data (i.e. the points we analysed and which

are shown in Figures 11) were gathered using only the

original two-interval paradigm where the goal position
was never exactly the same for different repetitions of a

given condition. This does not present any difficulty for

modelling, since the goal point was always known, but

distributions of errors are more difficult to make out
“by eye” when plotted on a unified coordinate frame

(see Figure 12), motivating the use of illustrative “vi-

sualisation” data as shown in Figure 2.

3 3D pole position model

If participants are to use a 3D reconstruction in order

to recognise a location, there are two steps that must
be involved. The first of these, which we consider in this

section, is to describe how a reconstruction from one lo-

cation can be generated, including the associated errors.

The second, which applies to interval two, is to find a lo-
cation in the room for which the 3D model of the poles

generated in that location best matches the 3D model

obtained in the first interval. Errors might then arise if
the reconstruction from one location is similar to the

reconstruction generated from a different location. In

this section, we describe our reconstruction model, and
in Section 4, we will combine multiple reconstructions

from different viewpoints in order to build probabilis-

tic maps representing the likely end-points in homing

tasks.

Our starting assumption for a reconstruction-based
model is that at each point in the virtual reality space,

a participant has access to a reconstruction of the scene

which they have built up using stereopsis and motion

parallax. Both provide information about the 3D layout
of the scene from multiple viewpoints. In the derivation

below, we assume that the observer is able to move from

side to side, i.e. in a direction perpendicular to the line
of sight. This is a good approximation to their move-

ments in the first interval, since the viewing zone was

narrow and oriented in this direction but, of course, we
had no control over the participant’s movement in the

second interval. We discuss reasons why the model is

likely to be robust to a fairly wide range of paths taken

by the observer. The following section derives an ex-
pression for the expected mean and covariance of the

distribution of errors for the three poles for each inter-

val.
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3.1 Deriving the distribution over pole positions

The model builds up a reconstruction of the 3-pole

scene in an egocentric coordinate frame by assuming

there is a set of N cameras all pointing at the central
(green) pole and the cameras lie in a strip that extends

a distance ±w along the x-axis (where here w = 40cm),

as shown in Figure 3. N and w are free parameters in
the model. This mirrors the configuration of the “start

zone” in interval one which allowed for 80cm of free mo-

tion left and right along an axis perpendicular to the

direction in which the green (central) pole lay, while
allowing minimal motion in depth (up to ±10cm). Par-

ticipants were asked to step side-to-side within the start

zone. We used the above parameters in the reconstruc-
tion model. Since all the information about the 3D room

can be captured in its 2D plan view, we consider 1D im-

ages of this 2D space, instead of 2D images of the whole
3D virtual environment. The “image noise” on any one

of these hypothetical 1D measurements is taken to be

Gaussian with a standard deviation of σ, i.i.d. for each

measurement.

The reconstruction we carry out is in an “egocen-

tric” coordinate frame centred on the middle of the

start zone, with the line drawn from there to the cen-
tral pole taken to define the depth axis. This defines

the coordinate frame within which the position of each

hypothetical camera is specified, as described below.
The pole position distributions we obtain as (M j ,Cj)

are therefore defined within this egocentric coordinate

system.

Assume the poles are Xj (3-vectors representing 2D
points xj), and mij is the image of the jth point in the

ith camera. Let the projection matrix for the ith camera

be P i; this is a 2× 3 matrix with focal length one unit,
aligned on the viewing strip facing the central pole.

This operates on the 2D homogeneous coordinates of

the egocentric coordinate system (i.e. 3-vectors repre-
senting a 2D pole location) and transforms them into

1D homogeneous coordinates (2-vectors) representing

image coordinates. An excellent introduction to multi-

view geometry and working with homogeneous coordi-
nates can be found in Hartley and Zisserman [2004].

For a single imaged point, mij , the likelihood of ob-

taining this image point, conditioned on the pole posi-
tion, is

p (mij |Xj) =
1

σ
√
2π

exp

{

− (mij − d (P iXj))
2

2σ2

}

, (1)

where d(.) is the de-homogenizing operation, which turns
homogeneous 2-vectors representing 1D image points

into scalar values. Assuming the noise is independent,

the negative log likelihood of multiple imaged points in

multiple cameras can therefore be represented as

− log {p (m|Y )} =
K
∑

i=1

N
∑

j=1

1

2σ2
(mij − d (P iXj))

2

+KN log
{

σ
√
2π
}

, (2)

where there are N poles and K cameras, and Y is the

stack of pole locations i.e. a 6-vector representing the
three 2D points.

To obtain a basic estimate of the distribution of the
poles given a set of images, we assume there are no

interesting priors on Y and obtain a maximum likeli-

hood estimate, i.e. find values of Xj for each j so as to
minimise the negative log likelihood.

The non-linearities introduced by the projective op-
eration make it difficult to obtain a closed-form solu-

tion for the distribution over Y . In order to keep fur-

ther computations with these distributions tractable,
we fit Gaussian approximations to each one, so that

each pole has a 2-vector mean, M j (its true location),

and 2× 2 covariance matrix, Cj . The distribution over
Y is simply made up of these three, so there will be

a 6-vector mean and a block-diagonal 6× 6 covariance

matrix. The three 2D Gaussians are obtained by first

considering that the negative log likelihood above can
be separated out into three components (one per pole)

plus a constant term

− log {p (m|Y )} = ν1 (X1) + ν2 (X2) + ν3 (X3)

+3K log
{

σ
√
2π
}

(3)

where

νj (Xj) =
N
∑

i=1

1

σ2
(mij − d (P iXj))

2
. (4)

Note that the contribution to the negative log likelihood

that comes from each pole’s position Xj is independent

of the other poles.

We then take the Taylor expansion of νj by treating
it as a function of xj and yj (the x- and y-components

of the jth pole, Xj), and expanding about the true pole

location, M j . The definition of a Taylor expansion in

two variables up to the second-order term is

f (x0 + δx, y0 + δy) = f(x0, y0) + [δx, δy]

[

∂f
∂x
∂f
∂y

]

+ [δx, δy]

[

∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

]

[

δx
δy

]

.(5)

If the true pole position is M = [x0, y0, 1]
T , then a

general point X can be represented as

X = [x0 + δx, y0 + δy, 1]T , (6)
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(a) (b) (c) (d)

Fig. 3 Four examples of the pole-position models, corresponding to the four sets of pole and goal positions in Figure 2.
The shapes represent the hypothesized uncertainties over pole locations. Note that the covariances vary according to the
distance from the pole to the viewing strip (heavy magenta line). In each model, the pole positions are recorded in egocentric
coordinates, here represented by the thin x– and y–axes, so the coordinate frame is independent of the coordinate frame of
the room for each condition.

and substituting this into (5) gives

f (X) = νj (M j) + 0 + (X −M j)
T
Bj (X −M j) .(7)

The first term of the RHS is a constant with respect to

X, and the zero comes from taking the gradient at the
true pole position M j , which should be the maximum

of νj .B is the matrix of second-order partial derivatives

of νj evaluated at M j , and the overall distribution is

therefore approximated as a Gaussian with

νj (Xj) ≈ N (M j ,Cj) (8)

Cj = 2B−1

j . (9)

This means that for a pole at M j , the uncertainty

in its location is described by the covariance matrix
Cj . The matrix Bj from which Cj is found can be

found analytically from (4) by taking the partial second

derivatives with respect to Xj and evaluating it at the
pole’s location.

An example of the types of models this gives for

the pole position uncertainty is given in Figure 3. In
Section 6 we will compare this to pole position uncer-

tainty data from human subjects, but first we will con-

sider how to combine these pole-position-reconstruction

models to form likelihood maps predicting navigation
errors.

4 Combining models to form maps

We now have the foundation of a reconstruction-based

model, but still need additional steps in order to explain

the homing behaviour of participants. The problem of a
human recognising an exact location in interval two can

be viewed as the task of finding a location in the room

for which the 3D model of the poles best matches that

obtained in the first interval. Navigation errors then

arise when the the current pole position model is suffi-

ciently similar to the “template” or “goal-point” model

generated in interval one.

Using the Gaussian model described in Section 3.1,

we compute an egocentric pole-position model for every
location (putative end-point) in a wide region around

the poles. We then compare each model to the one com-

puted at the goal point. End-points for which the model
agrees well with the goal-point model should be as-

signed a higher likelihood in our map than end-points

at which the appearance of the poles is less similar.

Overall, high likelihoods in this map mean that we ex-
pect participants to press the button more often at this

location. A map like this is desirable because the prob-

abilities can be compared directly with observed data
for any number of configurations and with other similar

models [e.g. Pickup et al., 2011].

A likelihood map over the 2D plane is built up one

point at a time by considering the distances between

two probability distributions: the model is built with a

coordinate frame based around the centre of the view-
ing strip in interval one, and a second model is built

using the current point under consideration at the cen-

tre of the viewing strip. The y-axis is aligned with the
green pole and the x-axis is perpendicular to this (see

Figure 3). This means that at each point, two egocen-

tric maps of the world are compared. The comparison
is made using the probability distributions on the pole

positions, as follows.

The distance between probability distributions can
be taken in a number of ways, e.g. the KL divergence of

one distribution with respect to the other, or the Maha-

lanobis distance of one set of pole means with respect
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to the distribution from the goal location. The mea-

sure we use is the Bhattacharyya distance between the
two maps, because it is symmetric, and has a simple

Gaussian form, although using measures such as the

others, above, makes little difference to the resulting
maps. The Bhattacharyya distance between two Gaus-

sians with means M1 and M2 and covariances C1 and

C2 is given by

D =
1

8
(M1 −M2)

T
C−1 (M1 −M2)

+
1

2
log

(

|C|
√

|C1| |C2|

)

(10)

C =
C1 +C2

2
. (11)

The distance between the two distributions is taken

to be proportional to the negative log of the likelihood
of the observer being at the same location. So, in our

task, for some location X, the likelihood of matching

the goal point is

L (X) =
1

Z
exp {−λD} (12)

where λ is included as a free parameter determining how

quickly the likelihood should decay with the magnitude

of the Bhattacharyya distance, D; it is analogous to
a precision (i.e. 1/variance) term in a Gaussian. The

normalizing factor Z is the integral of the exponent over

the whole of the 2D plane, and thus is also a function

of λ and the other parameters of the reconstruction
procedure. This allows us to calculate, for any point X

on the ground plane, the positions of the three poles

in camera (egocentric) coordinates as MR, MG and
MB with uncertainties over pole positions given by the

covariances CR, CG and CB .

Taking the set of poles as a single six-dimensional

Gaussian distribution with a block-diagonal covariance

matrix (i.e. by stacking the three mean vectors and ar-
ranging the three 2 × 2 covariances along the diagonal

of a larger 6 × 6 covariance matrix), we get a single

Gaussian representing the three pole locations as seen
from a single point. The likelihood L for any point X

on the ground plane can then be found using the Bhat-

tacharyya distance between the 6D Gaussian for the
view centred on the goal point, and the Gaussian cen-

tred on the point X.

4.1 Example Maps

Figure 4 illustrates the generation of end-point like-
lihood maps using the data shown in Figure 2. The

model parameters were set to plausible values: 20 cam-

eras spaced along a line 80cm in length (i.e. matching

(d)(c)

(b)(a)

Fig. 4 Likelihood maps for the four example conditions of
Figure 2, made using the “basic” map model of Section 4.
Condition (d), with particularly high angular uncertainty, is
well-captured by this model, but the more “radial” distribu-
tions of (a) and (c) are poorly explained.

the width of the viewing zone), and an “image noise”

standard deviation of 0.05 given a focal length of 1m.

480 data points (ten from each of the 48 conditions
described in Figure 1) from a single participant were

used to learn an optimal value for the λ parameter de-

termining “decay rate” in the Bhattacharyya distance
comparison. How well the model fitted these data is de-

scribed later (Figure 11) but, for illustrative purposes,

the fitted model is shown in Figure 4 in the example

conditions from Figure 2. Our assumption in using the
example points for illustration is that both these and

the main set of 480 data points are sampled from the

same underlying distribution. Note that the elongated
“radial” distributions of end-points for cases (a) and (c)

are not captured well by this model, though the more

loosely clustered points in the other two cases are bet-
ter explained. In Section 5, we will explore a modified

version of the 3D model that is better able to account

for this pattern of errors.

4.2 Normalization

In order to be able to compare the performance of

various maps, and to evaluate how well they explain

the observed data, it is necessary to turn them into
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fully-normalized probability distributions. We do this

by finding the value of Z in equation (12), where one
distribution is taken to be the reference distribution

learnt over the poles in interval one, described by the

mean and covariance M0 and C0, while the other dis-
tribution varies across the plane. Specifically,

Z =

∫∫

exp

{−λ

8
δTΣ−1δ +

−λ

2
log

(

Σ

S

)}

dxdy, (13)

where

δ = M0(φ)−M(x, y,φ) (14)

Σ =
1

2
(C0(φ) +C (x, y,φ)) (15)

S =
√

|C0(φ)||C (x, y,φ) |, (16)

and where φ denotes the set of free parameters in the

3D model of Section 3. Thus the normalizing constant
Z depends on the values of the parameters φ, and on

λ, which is the free parameter introduced in Section 4.

It also depends on the reference model (M0,C0), so
it must be re-calculated for each different configuration

of the experiment, in terms of locations of the poles

relative to the goal point.

The value of Z is calculated numerically out to a
distance of several metres (e.g. 10m) from the poles in

the x and y directions, beyond which point it is assumed

to be virtually zero. The integral is performed using four
calls the dblquad function from Matlab: since the best

match is expected to be at the location where the point

X coincides exactly with the goal point, this point is
included explicitly in the integral by splitting the region

into four rectangles such that the central corner shared

by all four regions is the goal location. This prevents the

numerical integral routine missing particularly narrow
peaky distributions.

4.3 Assumptions used in the interval-two model

In the computations described above, for every point

on the end-point likelihood map (such as Figure 4) the
pole location probabilities are calculated in exactly the

same way as they are at the goal location, i.e. using a

viewing strip. In the experiments, the participants were
free to walk around the virtual reality area in inter-

val two, so no such restriction was made on the space

of views of the poles available to them in this inter-
val. In particular, all the views leading up to a can-

didate end-point could have been integrated together,

potentially, into a single pole-position likelihood distri-

bution in the current egocentric coordinates. Assuming,
instead, that participants restricted their movement to

a narrow viewing strip similar to interval one is clearly

an approximation.

(a) (b) (c)

Fig. 5 Three egocentric models of pole position, built using
variations on the positioning and number of cameras used. In
each case, the overall shape of the covariances is the same,
though in the case with more cameras, the extent shrinks no-
ticeably. (a) The standard viewing strip, as used in our model;
(b) The viewing strip with standard width, but incorporat-
ing views from closer or further away; (c) a viewing strip with
additional views from behind, as one might expect if a par-
ticipant has approached the goal location from the starting
point.

The consequences of this approximation are min-

imised by three factors. First, anecdotally, the partici-

pants did indeed often stand still at an end-point and
make the same side-to-side stepping motions as they

had been instructed to make in interval one, in order to

decide whether they really had reached their goal point

although they were not instructed to behave in any par-
ticular way in interval two. Second, the starting point

for interval two was always farther away from the poles

than the goal point was (as shown in Figure 1). Because
the uncertainty on pole location in the reconstruction

model is assumed to arise originally from image noise,

views from farther away have less influence on the over-
all distribution for estimating pole position than views

closer up, so integrating views along this walking path

would have less influence on the distribution than if, for

example, participants had walked right up to the poles
then backed away to the correct distance. None of the

participants did this. Finally, the addition of a small

number of extra hypothetical views does not change the
pole position model drastically. In Figure 5, we show the

pole distribution for some alternative configurations of

the hypothetical cameras. In the case where there are
additional views considered – eight instead of four – a

general shrinking of the uncertainty is of course seen.

If it was the case that all the interval-two covariances

were in fact smaller, the maps themselves would not
change much because when the models are learnt, this

tightening of the distribution is compensated for by a

change in the fitted λ value.
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5 Shape-based map

The model described above forms an account of a “ba-

sic” photogrammetric reconstruction followed by com-

parison of two reconstructions from separate intervals.
In this section, we explore a variation of the model that

incorporates an element of sensitivity to relative posi-

tions, since this is known to be important in human
vision [e.g. Westheimer, 1979].

We can see that with the “basic” 3D model, defined

above, the condition on which its predictions looked
least convincing was Figure 4(c), where the green pole

appeared much closer to the blue pole than the red one.

For all participants, errors tended to show a greater

spread in depth for this condition and a smaller spread
laterally, whereas the “basic” model does not show this

pattern. An alternative model in which the relative po-

sitions of the poles are the pertinent piece of informa-
tion remembered from interval one might fare better.

We explored a model that computed a distribution over

e.g. the red-to-green vector recorded in egocentric co-
ordinates (and the same for the other two possible pole

pairs). In this formulation, for a given pole configura-

tion, the red-to-green vector will then be identical for

any position of the viewing point along a line from the
green pole, since this line defines the orientation of the

coordinate frame. Figure 6 illustrates this, showing how

two viewing points along one such line give rise to sim-
ilar means but different covariances in the estimate of

relative pole positions, while unrelated viewing posi-

tions give rise to quite different estimates of relative
pole position.

The algorithm for creating a shape-based descrip-

tion of this type is

1. Find a description of landmarks from the goal point

in egocentric coordinates: (MR,CR), (MG,CG) and

(MB ,CB) (see Section 3).
2. Transform these means into relative-location means

by taking pairwise differences (red-to-green, blue-

to-green, red-to-blue), i.e.

Mα = MG −MR, (17)

Mβ = MG −MB , (18)

Mγ = MB −MR. (19)

3. Transform the associated covariance for each mean,

remembering that the uncertainty adds, e.g. :

Cα = CG +CR. (20)

4. Stack the three 2D Gaussians to give a single 6D

shape-based description of the view of the land-
marks from this goal location.

Once the description has been found for the goal point,

the Bhattacharyya difference between this and the de-

’Shape’ RepresentationEgocentric CoordinatesRoom Coordinates

Fig. 6 Illustrations of components of the “shape” model. The
left column shows the room with three poles and two view-
point (pluses). The magenta viewpoint, used for reference,
is the same on the top and bottom rows. The middle col-
umn shows the pole locations, with associated uncertainties
(at three standard deviations); the reference view ellipses are
thick, and the second view of each is drawn in thinner ellipses,
with colours matched to their respective poles. The third col-
umn shows the pole-position-difference distributions, where
each difference is taken in the egocentric coordinate frame.
From left to right, the three ellipses represent the blue-to-
green vector, (Mβ ,Cβ), the red-to-green vector, (Mα,Cα),
and the red-to-blue vector, (Mγ ,Cγ). Again, the thin ellipses
represent the views from locations marked in black in the
room-space plot, and the thick ellipses mark the views from
the reference location. Notice that on the top row, where the
two viewpoints (pluses) and the green pole are co-linear, the
shape model descriptions align, whereas on the bottom row
where the viewing angles are different, they do not.

scriptions calculated for other points on the 2D ground
plane can be found exactly as for the “basic” model.

The shape-based model predictions for the navi-

gation data are shown in Figure 7 for our four ex-
ample conditions. This gives the model much better

power to explain elongated conditions like those of Fig-

ure 2(c), but at a cost, because now the more radially-
distributed data are less well-described than in the ba-

sic map, i.e. Figure 4(d) shows a better fit than Fig-

ure 7(d).

In some ways, the “relative” or “shape-based” model

described here is a minor extra step added to the ba-

sic model and we are deliberately treating it as such in
this paper. This means that the uncertainty that arises,

for example, in estimating the location of a pole in the

basic model will propagate through and affect the pre-

dictions of the shape-based model. That is what makes
this a type of reconstruction-based model. However,

in another sense, because it is starting to use relative

rather than absolute position information, this model



10 Lyndsey C. Pickup et al.

(d)(c)

(b)(a)

Fig. 7 Likelihood maps for the four example conditions of
Figure 2, made using the shape-based map model of Section 5.
This model assumes that participants remember the layout
of the poles relative to one another. A remembered layout
from a particular angle therefore matches well to a similar
layout seen from slightly farther away, allowing the model to
explain the elongated distributions of points in (a) and (c)
much better than the basic model of Figure 4.

is a step down a quite different road, ultimately leading
to the abandonment of any type of reconstruction. For

example, one could use the relative image locations of

pairs of poles as input features to the model and con-

sider independent noise on each of these input measure-
ments. That would be an entirely different, view-based

approach, as raised in the Introduction and discussed

in a previous paper [Pickup et al., 2011].

The reconstruction model suggests that observers

are substantially less sensitive to variations in the depth
of a pole than they are to variations in lateral posi-

tion (Figure 3). This would, at first sight, seem to run

counter to evidence from stereoscopic experiments [e.g.
Westheimer and McKee, 1979] which suggest the re-

verse ratio. However, the more relevant data for this ex-

periment are probably those using stimuli with a large
disparity pedestal between the reference and the tar-

get [McKee et al., 1990] where stereo thresholds can be

substantially poorer than those for lateral deviations.

Here, we designed a method to measure the sensitiv-
ity of observers to variations in the position of a given

pole in our experiment and so provide a direct empir-

ical test of the distribution of uncertainties over pole

position calculated using the reconstruction algorithm,

as shown in Figure 3. The results allowed us to modify
the reconstruction stage of the model, as described in

the next section.

6 Experiment 2: Verifying one component of

the reconstruction model

In the model presented so far, we set all the parameters
in one go; that is, we chose the “decay” parameter, λ

(Section 4) for the model-comparison step at the same

time as “internal” parameters, φ, for the reconstruction
part of the model. In this section, we describe a new

experiment that allowed us to separate out the recon-

struction parameters and fit them separately, leaving λ
as a free parameter to be learnt in a subsequent step.

There are two arguments for doing this. First, the
reconstruction step itself can be validated in isolation.

Second, learning fewer parameters at once reduces the

danger of over-fitting and leads to better generalization
for the model as a whole. Briefly, the experiment al-

lowed us to probe the underlying shape of the human

uncertainty function over pole location. We used the
data to fit the standard deviation, σ, of the noise as-

sumed on the images of the poles, the focal length of the

cameras, the number of cameras used, and the width of

the strip of cameras (see Section 6.3).

6.1 Methods

Participants were shown the three poles from a view-

ing zone, exactly as in interval one of the trials in Ex-

periment 1, and were asked to remember the layout of

the poles. Once participants had memorized the lay-
out, they pressed a button, which led to a 0.5s blank

inter-stimulus interval.

In the second interval, the participant remained in

the same location in the virtual scene (unlike Exper-

iment 1) and two of the poles remained in the same
place while the third pole was displaced. It was always

the same pole that was displaced throughout a whole

run although the displacement varied from trial to trial.
Participants were told in advance which pole would

be displaced. The participant’s task was to move the

shifted pole back to the location it had occupied during
the first interval. They did this using a hand-held point-

ing device with which they could “push” or “drag” the

pole in two dimensions while pressing a button on the

device. Participants indicated that they were satisfied
that the location of the pole matched that in the first

interval by pressing a different button on the device, ad-

vancing them to the next trial. The moving pole always
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(h)(g)(f)(e)

(d)(c)(b)(a)

Fig. 8 Eight examples from Experiment 2 for one of the participants. The open circles represent the correct location of each
pole, and the filled dots represents the locations at which the participants placed the pole. The horizontal and vertical axes of
the plots correspond to the x and y axes of the ego-centric coordinate system shown in Figure 3. Magenta lines join the true
and estimated pole locations. Grey lines link the randomly-drawn start location of each pole to the estimated location. Each
plot shows results from three separate experiments, in which either the red, green or blue pole was movable. Plots (a)-(h) show
results for eight different configurations of the three poles. Note that in each case, the participant’s own location is not marked
because it lies below the bottom of the plots.

remained vertical, so participants could only manipu-

late its (x, y) coordinate and, like the other poles, its
width in the image was always one pixel (anti-aliased).

6.2 Results

Examples of the data gathered from Experiment 2 are

shown in Figure 8. This figure includes 80 points from
one participant across 16 conditions; in total five sub-

jects completed the task, each providing between 288

and 640 separate pole-position estimates across 32 dif-
ferent conditions. Across the whole dataset, the errors

are greater in depth than in a lateral direction. For the

green-pole conditions (384 trials in total), the standard
deviation projected onto the y-axis was 27.2cm whereas

for the x-axis it was just 11.7cm. Similarly, for the 80

points of Figure 8, which includes all three colours of

pole, the x-axis standard deviation is 11.9cm and the
y-axis standard deviation is 25.2cm.

In general, this pattern of position uncertainty fits

the predictions of the reconstruction model described in

Section 3 and illustrated in Figure 3, i.e. elongated in

the depth direction. More than this, however, the data
allow us to revise the basic and shape models using

parameters derived from this uncertainty distribution,

as described in the next section.

6.3 Fixing the free parameters, φ, using data from

Experiment 2

The free parameters, φ, in the reconstruction model

are: the number of assumed cameras, N , image noise
standard deviation, σ, and camera strip half-width, w

(see Section 3). The model predicts a Gaussian distribu-

tion of position errors for each pole, {M ,C}, for which
we now have a direct estimate. Hence, we were able

learn values for each of these parameters.

In optimizing the data likelihood with respect to

these parameters, we found slightly higher likelihoods
for the observed data when w was allowed to be a lit-

tle larger than its veridical value of 0.4m, which was

the half-width of the starting box in the actual naviga-
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Type P1 P2 P3 P4 P5

Basic -0.10 -0.22 -0.31 -0.17 -0.03

Shape 0.94 0.46 0.39 0.49 0.80

Table 1 Weight values, given as log
10

(λ), for the five par-
ticipants (P1–P5) on each of the two types of reconstruction-
based model. These, along with the parameter values φ ob-
tained in Section 6.3 completely specify each of the models.

tion experiment. This may be the result of people pay-

ing more attention to views at the edges of the view-

ing space than intermediate views. In our modelling,
we limited the width to ±0.4m in order to reflect the

ground truth width of the viewing box.

With the viewing-strip width fixed, σ and N were

optimized. The latter is a discrete value greater than
one, so optimal likelihoods were found for each N as

σ varied, then the results were compared against each

other to find the (N,σ) pair maximising the overall like-
lihood across the data from Experiment 2. This led to a

model using just two cameras, and a noise standard de-

viation of 0.0128m when a focal length of 1m is assumed
for the purposes of building up the imaging parameters

of the hypothetical cameras. Together with the strip

half-width (w = 0.4m), these create the reconstruction

model which best described human uncertainty in the
pole locations in our experiment. Using these same pa-

rameters, φ, for this stage of the model and for all par-

ticipants, we can now return to the second layer of the
3D-based navigation models.

6.4 Revised navigation predictions

Figure 9 shows the updated predictions for our original

navigation data These come from re-running the “ba-

sic” and “shape” models described in Sections 4 and 5
but now using the parameters, φ obtained in Section 6.3

from Experiment 2. Values for the free parameter, λ

(Section 4), are given in Table 1. The shapes of the dis-

tributions have changed little compared to the plots of
Figures 4 and 7 and the basic 3D model still fails to

provide a good account of conditions like Figure 9(c)

while the shape-based model provides a better account
for conditions like Figure 9(h).

It is not inevitable that the agreement between the

two approaches should be so close (i.e. with and with-
out incorporating parameters derived from the data

from Experiment 2). For example, if the covariance ma-

trices for the pole positions are rotated by 90◦, so that

each one describes a data distribution that is elongated
in the lateral direction and narrowed in the depth direc-

tion, the consequences are quite different, as Figure 10

illustrates. The prediction of navigation performance is

much worse in this case for both the “basic” and the

“shape-based” models. This suggests that the data on
sensitivity to pole position from Experiment 2 is at least

compatible with the navigation data we have observed.

7 “Basic” and “shape” reconstruction models

compared

We have discussed the visual comparison of the two

models provided in Figure 9, i.e. the “basic” and “shape”
models from Sections 4 and 5, but in this section we

compare the likelihoods of the whole data set under the

two models. We do this by computing a likelihood map
for the particular pole locations and goal point in any

trial, and then normalizing it to produce a probability

distribution on the 2D plane as described in Section 4.2.
The probability of the observed end-point for that par-

ticular trial under the model can then be read off this

map, and compared to the probability of that same data

point under the competing model. We carried out this
procedure for all 1776 separate human trials in the nav-

igation dataset (5 participants, each providing between

48 and 480 data points). The overall likelihood of the
data under a given model is taken to be the product

of all these probabilities, plotted in Figure 11 as a sum

of negative log likelihoods, where low numbers indicate
that the data are well-explained by the model.

Figure 11 shows the two models compared in this

way. Three of the 48 conditions are highlighted using

coloured symbols: in the red case, the data are better
explained by the shape model than the basic one, but

the converse is true in the blue case. The data in each

of these three coloured conditions come from different
participants and different trials: so, clearly condition is

a crucial factor. The red condition is similar to that

illustrated in Figures 2(c) and 7(c), i.e. one in which
two poles were close to being aligned at the goal loca-

tion and so the data had a tendency to be elongated

in this direction. The shape model does a much bet-

ter job of accounting for this pattern of navigation er-
rors, as can be seen in Figure 7(c) and confirmed by

the red triangles in Figure 11. Conversely, the blue tri-

angles in Figure 11 correspond to a condition that is
more like that shown in Figures 2(d) and 7(d) where

the data form more of a crescent shape and the “basic”

model does a better job of explaining this pattern. Fig-
ure 12 shows the 37 data points corresponding to each

of these three conditions but for practical reasons these

are harder to interpret than Figures 2 and 7. This is

because the goal point the goal point could be selected
anywhere in the 20cm×80cm starting zone, which was

not the case for the example conditions shown in Fig-

ures 2 and 7 (see Section 2.1). Note that this smearing
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(h)(g)(f)(e)

(d)(c)(b)(a)

Fig. 9 Likelihood maps for end-point location using the optimized 3D pole-position model (with parameters found in Section 6)
for four example conditions out of the 48 conditions used in the experiment (see Figure 2 for raw data). (a–d) Maps using the
basic 3D model; (e–h) Maps using the shape-based model.

only affects the illustrations in Figure 12, it does not
affect the modelling in any way, since each of the 1776

trials’ probability maps was calculated separately.

What is clear from Figure 11 is that while both

reconstruction-based models provide an explanation for
a good deal of the variation observed in the human

navigation error dataset, neither model is able to out-

perform the other consistently, and overall they have a
tendency to complement one another.

8 Discussion

We have demonstrated the extent to which a recon-
struction algorithm can account for participants’ per-

formance in a simple navigation task. Any algorithm

that is to predict human behaviour successfully in this
case must vary its output according to changes in the

visual scene and make explicit the way that noise at

various stages in the reconstruction process will affect

the predicted spatial distribution of errors in the task.
We are not aware of algorithms that fulfil these criteria

other than those based on the principles of photogram-

metry, as we have used here.

Many papers have assumed that the brain generates
a 3D reconstruction of the scene without providing a

model of the process underlying its construction in the

way that we have done here [Luneburg, 1950, Blank,
1958, Indow, 1995, Tolman, 1948, Mou et al., 2006,

Burgess, 2006, Maguire et al., 1999, Gallistel, 1989].

While often being quite mathematical in their descrip-

tion, these models are nonetheless descriptions of em-
pirical results fitted post-hoc rather than describing a

reconstruction process and the noise associated with its

different stages. For example, Foley [1991] presents a de-
scription of distortions in perceived distance and direc-

tion based on psychophysical experiments. However, he

provides only a minimal hypothesis about the processes
that might underlie these distortions. In particular, he

suggests that the compression of visual space may be

explained by vergence adaptation occurring over many

seconds or minutes in his experiments. By compression
of visual space he means that “effective binocular paral-

lax”, a value derived from psychophysical judgements,

changes over a small range relative to actual binocular
parallax (vergence angle). This hypothesis turns out to

be contradicted by more recent data: visual space “com-

pression” measured using a related paradigm has been



14 Lyndsey C. Pickup et al.

(h)(g)(f)(e)

(d)(c)(b)(a)

Fig. 10 Likelihood maps for end-point location using an implausible pole-position model in which the covariance ellipses were
rotated through 90◦. These provide an unconvincing account of the navigation experiment data compared to Figure 9.

shown to be very similar for long and short periods of

fixation, e.g. 2-second periods of fixation interspersed

with large changes in vergence so that vergence adap-
tation could not occur [Glennerster et al., 1996]. A more

important criticism, however, is that Foley’s hypothesis

about the cause of a compression in visual space relies

on changes in vergence to different targets. It is mainly
an account that explains the distance estimate of fix-

ated targets rather than being designed to explain dis-

tortions across a whole scene at once (without vergence
changes). If it is true that information is passed from V1

to parietal cortex to hippocampus and that these rep-

resentations underlie our perception of space, then the
modelling of such transformations should refer to more

than a single point at the fovea. In that sense, there is

a large gap between descriptions of visual space such

as Foley’s and current physiological hypotheses about
spatial presentation.

The distortions of space that these models describe

[Luneburg, 1950, Blank, 1958, Indow, 1995, Foley, 1991]

do not predict any shift in the peak of the distribu-

tion of errors in our task: it remains the case that the
most likely location for participants to choose in in-

terval two would be the correct one because the same

distortion would apply in both intervals. Others have

discussed whether the notion of a distorted visual space

remains tenable in the face of increasing psychophysi-

cal evidence against the hypothesis [Glennerster et al.,
1996, Koenderink et al., 2002, Smeets et al., 2002, Cui-

jpers et al., 2003, Svarverud et al., 2012]. Independent

of that debate, the important point here is that for our

task no distortions of the type described by Luneburg
and others would be expected.

Navigation often involves proprioception and vestibu-

lar cues in addition to vision [Foo et al., 2005, Campos

et al., 2010, Tcheang et al., 2010] but in our experiments

these cues on their own were of no value in carrying out
the task. The reconstruction model we have applied

does assume some non-visual information is available

but this is for the purpose of fixing the scale of the visual
reconstruction, for example from vergence or proprio-

ception. These provide information about the length

of the baseline (distance between the optic centres of
a pair of cameras) but otherwise proprioception does

not contribute to the process of comparing the stim-

uli in interval one and two. Any model that tried to

integrate proprioceptive information in this matching
process would need to be quite complicated, involving

a subtraction of two coordinates from visual reconstruc-

tions generated at the start of the first and second inter-
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Comparison of data likelihood under two 3D models

Fig. 11 Scatter plot comparing the negative log likelihood (a
measure of error) of each data point under the 3D-basic and
3D-shape models. Each point represents one trial; data are
plotted together for 5 subjects across 48 different conditions.
Three particular conditions are highlighted using colours;
these are drawn in the navigation-room space in Figure 12.
In the red case, behaviour follows the shape model; in the
blue case, the basic model. The green points belong to a con-
dition on which participants tended to perform well and was
explained equally well by each model.

(a) Errors follow 3D−Shape pattern (b) Errors follow 3D−Basic pattern (c) Errors similar under both models

Fig. 12 Three example conditions from the navigation ex-
periment illustrated in Figure 11 using corresponding colours.
Each endpoint is linked by a black line to its corresponding
goal point (black circle); these goals are not exactly coinci-
dent because each participant was able to select a goal from
anywhere within the viewing box of interval one. The three
coloured dots to the left of each box show the locations of the
poles, and each box is 4m ×4m in size. (a) The red condition
is well-explained with a radial distribution, and so favours the
shape model; (b) the blue condition shows a high uncertainty
laterally, so favours the basic 3D model with its crescent-like
distributions; (c) participants performed consistently and well
on this condition, and end-points lay close to the means of
both models without much spread, so both models performed
well.

vals to get a “homing vector” across the two intervals,

and a conversion of this visual vector into propriocep-
tive coordinates. It is not easy to see how a component

derived in this way would add to the explanatory power

of the model.

Instead, our model relies on matching of represen-
tations generated from visual data. In the end, a full

description of human navigation will have to account

for multiple sources of sensory information and show
how these are integrated. This process will almost cer-

tainly incorporate a mechanism for weighting different

cues according to their reliability [Landy et al., 1995,
Ernst and Banks, 2002, Svarverud et al., 2010, Butler

et al., 2010] but this does not necessarily mean that the

optimal coordinate frame in which to carry out such in-

tegration is necessarily a 3D one, as we have discussed
elsewhere [Svarverud et al., 2010]. Indeed, in relation to

the data we have presented here, some of the conditions

were best explained by a “shape” model which concen-
trates on the 3D relationship between pairs of features.

This approach no longer uses a full reconstruction of

the scene using a single coordinate frame and could be
regarded as one step towards abandoning 3D frames

altogether.

As we raised in the Introduction, reconstruction mod-

els are not the only approach to explaining 3D represen-

tation and performance in our scene-matching task. In
a subsequent paper, we will compare directly the per-

formance of a reconstruction algorithm with that of a

quite different, view-based approach.
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