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Abstract

A well known conjecture in graph theory states that every reg-
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1-factorizable. Chetwynd and Hilton [1-factorizing regular graphs of

high degree - an improved bound, Discrete Mathematics, 75 (1989),
103-112] and, independently, Niessen and Volkmann [Class 1 condi-

tions depending on the minimum degree and the number of vertices

of maximum degree, Journal of Graph Theory, 14 (1990), 225-246]

proved the above conjecture under the assumption that λ ≥
√

7−1
2 ≈

5/6. Since these results were published no significant improvement
has been done in terms of lowering the bound on λ. We shall here
obtain a substantial but partial improvement on λ. Specifically, using
the original Chetwynd-Hilton approach and Tutte’s 1-Factor Theorem,

we show that the above bound can be improved to λ >
√

57−3
6 ≈ 3/4,

apart (possibly) from two exceptional cases. We then show that, un-
der the stronger assumption that λ ≥ λ∗, where λ∗ ≈ 0.785, one of
the two exceptional cases cannot occur.

Keywords:1-factorization, 1-factorization conjecture, Tutte’s 1-factor
theorem

MSC 2000: 05C15, 05C70

1 Introduction

All graphs that we shall consider are finite, simple and undirected. Let G
be a graph. The vertex set, edge set, maximum degree and minimum degree
of G will be denoted by V (G), E(G), ∆(G), δ(G), respectively. The order of
G is the number of vertices in G. G is regular if ∆(G) = δ(G), in which
case the common degree of the vertices of G is called the degree of G and
denoted by d. If V1 ⊂ V (G), by G − V1 we shall denote the graph obtained
from G by deleting all the vertices in V1 (together with their incident edges).
Similarly, if E1 ⊂ E(G), by G−E1 we shall denote the graph obtained from
G by deleting all the edges in E1. The notation G−X − Y , where X and Y
are sets of vertices or edges, will be used to denote the graph (G − X) − Y .
The symbol n will be always used in this paper to denote a positive integer.

A matching M of G is a set of mutually nonadjacent edges of G. If M is
a matching, we denote by V (M) the set of vertices of G incident with edges
of M . Two matchings are (edge)-disjoint if they have no common edge. A
matching M is a 1-factor of G if |V (M)| = |V (G)|, and a near 1-factor of G if
|V (M)| = |V (G)|−1. If M is a near 1-factor of G, and v ∈ V (G) is the (only)
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vertex of G such that v /∈ V (M), we say that M misses vertex v, or that v is
missed by M . A 1-factorization of G is a set F of pairwise edge-disjoint 1-
factors of G whose union is E(G). For an introduction to 1-factorization, and
undefined graph theoretic terminology, the reader is referred to Wallis [16].
Clearly, in order to have a 1-factorization, G must be regular and have even
order. However this condition is certainly not sufficient, and the problem
of deciding whether a given graph is 1-factorizable is a difficult problem in
general, which is known to be NP-complete [7]. In apparent contrast with
this result, the following well known conjecture (which first appeared in print
in a 1985 paper by Chetwynd and Hilton [3], but which certainly circulated
informally much earlier) claims that, for a vast class of regular graphs, the
above decision problem is trivial.

Conjecture 1 (1-Factorization Conjecture) Every regular graph of
order 2n and degree d ≥ n is 1-factorizable.

This conjecture is considered very hard and, if it could be proven, would
have important consequences in graph theory as well as other branches of
mathematics. We briefly summarize the history of this conjecture. It has
long been known (and it may be regarded as part of “mathematical folklore”)
that the conjecture holds for complete graphs, i.e. when d = 2n − 1. Since
the choice of the first 1-factor in a 1-factorization of K2n is arbitrary, the
conjecture also holds for d = 2n − 2. Chetwynd and Hilton [3] proved the
conjecture for d = 2n − 3. Rosa and Wallis [12] settled the case d = 2n − 4,
under the assumption that G (the complement of G) is 1-factorizable. The
case d = 2n − 4 and d = 2n − 5 were settled in full generality by Chetwynd
and Hilton in [3] (see also [4]). The case d = 2n − 6 was settled by Niessen
in [9], under the assumption that 2n ≥ 18, and in full by Song [13] and
Song and Yap [14], as a corollary of their determination of the chromatic
index of graphs with exactly five vertices of maximum degree. To the best
of our knowledge, the case d = 2n − 7 of the conjecture is currently open
in general (it certainly holds for n ≥ 20 by Theorem 1 below). In 1985
there was a breakthrough by Chetwynd and Hilton [3], when they proved
that all regular graphs of order 2n and degree d = λ(2n), where λ ≥ 6/7,
are 1-factorizable. This result set a completely new and more interesting
challenge, namely to lower as much as possible the bound on λ, with the aim
of (hopefully) reaching the target λ ≥ 1/2, which would settle Conjecture 1
in its full generality. Substantial progress in this direction was obtained a
few years later by Chetwynd and Hilton [5] and, independently, Niessen and
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Volkmann [10], by means of the following result.

Theorem 1 All regular graphs G of order 2n and degree λ(2n), where

λ ≥
√

7−1
2

, are 1-factorizable.

Notice that
√

7−1
2

≈ 0.823 ≈ 5/6.
In 1997 there was another breakthrough in 1-factorization by Perkovic and

Reed [11], who proved (by probabilistic methods) that the 1-Factorization
Conjecture is “asymptotically true”, i.e. it is true (for any given ε > 0)
for all regular graphs of order 2n and degree d ≥ (1/2 + ε)(2n), provided
n is sufficiently large (depending on ε). This result, which (although never
published) had been also announced many years earlier by Häggkvist, clearly
provides a strong evidence in favour of Conjecture 1.

Unfortunately, in the large time span elapsed from the publication of
Theorem 1, no improvement has been made on the 1-factorization of regular
graphs of order 2n and degree λ(2n), in terms of lowering the bound on λ.
A related result was established by the present authors in [2], where it was

proven that, if λ ≥ 3−
√

3
2

≈ 0.64, then G contains two (distinct) vertices x
and y such that G − x − y is Class 1, and, if λ ≥ 3/4, then, for any pair
of (distinct) vertices x and y, G − x − y is Class 1. Unfortunately we were
unable to deduce from this that, under the same conditions, also G− x (and
hence G) are Class 1. In his Ph.D. thesis [1], the first author considered
the problem of improving the Chetwynd-Hilton bound on λ and obtained
some partial results. The absence from the literature of any definite or even
partial improvement on the Chetwynd-Hilton bound for nearly twenty years,
prompts us to publish some further material from [1], which may hopefully
provide some ground to other researchers for further investigations on this
topic. The results which we will present have been further improved by us
since the first author completed his Ph.D. thesis.

The first result that we shall present will be stated precisely in section 3
in the form of Theorem 5, but may be informally described as follows. Let
G be a regular graph of order 2n and degree λ(2n), where λ >

√
57−3
6

≈ 3/4.
Then we prove that G is 1-factorizable, apart from two possible well described
exceptional cases, which we call Case One and Case Two. These cases are,
in some sense, extremal, because a certain parameter, which will be defined
later, takes its extremal values on these two cases. In all the remaining cases
(i.e. for the vast majority of graphs G), our result establishes directly the
existence of a 1-factorization in G (it does not provides an algorithm, though,
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since our proof is existential). Clearly, in order to claim the 1-factorizability

of all graphs G with λ >
√

57−3
6

, one must rule out these two cases and prove
their impossibility. Unfortunately we could not solve Case Two in general,
even under some stronger assumptions on λ. However, in section 4, we shall
present our second result, namely a proof of the fact that, if λ ≥ λ∗, where
λ∗ ≈ 0.785 is defined as a root of a certain quartic polynomial, then Case
One is impossible1.

We believe that a technique similar to the one used here could lead to
a proof of the impossibility of Case Two for, say, λ ≥ λ0, where λ0 is well
below the Chetwynd-Hilton bound of

√
7−1
2

≈ 0.823. Obviously, by the results
proved in this paper, such a proof would imply the truth of Conjecture 1 for
all graphs G with λ ≥ max{λ∗, λ0}.

2 Preliminary lemmas and results

If G is a graph and S ⊂ V (G), we denote by odd(S) the number of connected
components of odd order in the graph G−S (we call these odd components).
We shall use the following well known theorem of Tutte [15].

Theorem 2 (Tutte’s Theorem) Let G be a graph. Then G has no
1-factor if and only if there exists a set S ⊂ V (G) such that odd(S) > |S|.
A set S as in the statement of Tutte’s Theorem will be called a Tutte Set. We
shall also need the following well known sufficient condition for the existence
of a Hamilton cycle in a graph, due to Dirac [6].

Theorem 3 (Dirac’s Theorem) Let G be a graph of order at least three.
Suppose δ(G) ≥ |V (G)|/2. Then G is Hamiltonian.

The following theorem, due to Chetwynd and Hilton, was proven as the
main result in [5], from which Theorem 1 follows immediately as a corollary.

Theorem 4 Let G be a regular graph of order 2n and degree

d ≥ 5

6
(2n) − p

3
+

1

2
.

Then G is 1-factorizable.

1This result improves the corresponding bound given in the first author’s Ph.D. thesis
[1], which was λ ≥ 0.794.
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Here p = p(G) is defined as maxx6=y∈V (G) p(x, y), where

p(x, y) = |{z ∈ V (G) : z 6= x, z 6= y, zx /∈ E(G), zy /∈ E(G)}|.

We shall use the same approach and part of the original proof of Theorem 4.
Details of this proof may be found either in Chetwynd and Hilton [5], or
Wallis [16]. For some remarks, clarifications and slight improvements the
interested reader is referred to [1] or [2]. However here we shall only use the
following fact from the proof of Theorem 4, which has been derived from the
original paper by Chetwynd and Hilton [5] (apart from a slight improvement
given in [1] and [2]).

Lemma 1 Let G be a regular graph of order 2n and degree d = λ(2n),where

λ ≥ 3−
√

3
2

≈ 0.64. Let w, v∗ be two distinct vertices such that p(w, v∗) =
p(G). There exists a subgraph H∗ of G−w of order q + 1 ≤ 4n− 2d− p− 2,
a matching M0 of H∗ and q − 2 edge-disjoint matchings M1, M2, . . .Mq−2

(each of which edge-disjoint from M0), where each matching Mi satisfies
|Mi| ≤ 1

2
(q + 1 − i), and a set of (not necessarily distinct) vertices ξi, where

ξi /∈ V (Mi), such that G is 1-factorizable if the following conditions are
satisfied:

(a) there exists a set of q−2 pairwise edge-disjoint 1-factors Fi, i = 1, 2, . . . q−
2, of G − w which are edge-disjoint from M0, such that each near 1-
factor Fi misses vertex ξi;

(b)
⋃q−2

i=1 Fi ⊃
⋃q−2

i=1 Mi.

It will be useful to have at our disposal the following upper bound on q.

Lemma 2 Using the notations and hypotheses of Lemma1, we have q+2 ≤
(1 − λ2)(2n).

Proof. From Lemma1, we have

q + 2 ≤ 4n − 2d − p − 1 . (1)

By an easy combinatorial argument (see [5, Lemma 3]), it can be proven that
p satisfies the inequality

p ≥ (2n − d − 1)(2n − d − 2)

2n − 1
. (2)
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By (1) and (2) we have

q + 2 ≤ 4n − 2d − 1 − 1
2n−1

· (2n − d − 1)(2n − d − 2)

= 1
2n−1

· [(2n − 1)(4n − 2d − 1) − (4n2 + d2 + 2 − 4nd − 6n + 3d)]

which simplifies to

q + 2 ≤ 4n2 − d − 1 − d2

2n − 1
.

Thus, in order to prove the lemma, it will suffice to verify that

4n2 − d − 1 − d2

2n − 1
≤ (1 − λ2)(2n).

Using d = λ(2n), we can rewrite this (after some simplifications) as

2n(λ2 + λ − 1) + 1 ≥ 0.

This certainly holds if λ satisfies the inequality

λ2 + λ − 1 ≥ 0,

which holds if λ ≥
√

5−1
2

≈ 0.61 (and hence holds under the stronger hy-
potheses of Lemma1). 2

In [5] the existence of a set of near 1-factors Fi of G − w satisfying the
conditions (a),(b), stated in Lemma 1 was established by considering the
graph

Gi = (G − w) − (F1 ∪ F2 ∪ . . . ∪ Fi−1 ∪ Fi ∪ M0) (3)

and by proving the existence of a near 1-factor Fi+1 of Gi containing the
matching Mi+1 and missing the vertex ξi+1. This is clearly equivalent to
showing the existence of a near 1-factor missing vertex ξi+1 in the graph

G∗
i = (G − w) − (F1 ∪ . . . ∪ Fi ∪ M0)) − V (Mi+1),

where V (Mi+1) denotes the vertex set of the matching Mi+1. Notice that, by
Lemma1, the matchings Mi satisfy the inequality

|V (Mi)| ≤ q − i + 1 for i = 1, . . . , q − 2. (4)
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Chetwynd and Hilton showed that, under the assumption λ ≥
√

7−1
2

,
all graphs G∗

i above are Hamiltonian because they satisfy the conditions of
Dirac’s Theorem (Theorem 3), and hence have the required near 1-factor.

If λ <
√

7−1
2

, we cannot in general claim that G∗
i satisfies Dirac’s condition

for Hamiltonicity, and hence we have to look for other ways to prove that
the conditions of Lemma 1 are satisfied. We shall prove that (under certain
conditions to be specified later) the conditions of Lemma 1 are satisfied by
considering the graph

G∗∗
i = G∗

i − ξi+1

and by proving (using Tutte’s Theorem) that either G∗∗
i has a 1-factor or

that we can redefine the near 1-factors Fi in such a way that the (new) graph
G∗∗

i has a 1-factor.
The starting point of our proof is the following. Assume that t ≤ q − 2

is the largest positive integer such that there exists a set of exactly t near 1-
factors F1, F2, . . . , Ft of G−w which are mutually edge-disjoint, edge-disjoint
from M0, and such that Fi misses vertex ξi and

⋃t

i=1 Fi ⊃
⋃t

i=1 Mi. Clearly,
if t = q − 2, there is nothing to prove, since all conditions of Lemma 1 are
then satisfied. Hence we can assume, without loss of generality, that

t ≤ q − 3. (5)

Consider the graph

G∗∗
t = (G − w) − (F1 ∪ F2 ∪ . . . ∪ Ft ∪ M0)) − (V (Mt+1) ∪ {ξt+1}). (6)

By assumption, G∗∗
t does not have a 1-factor, for, if it had one, then this

would contradict the maximality of t.
By (4), we have

|V (Mt+1)| ≤ q − t. (7)

Let
2n∗ = |V (G∗∗

t )|. (8)

Notice that
2n∗ = 2n − 2 − |V (Mt+1)| . (9)

By (3) and (6), we have

δ(G∗∗
t ) ≥ δ(Gt) − 1 − |V (Mt+1)|, (10)
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and since, by (3), we have

δ(Gt) ≥ d − 1 − (t + 1) = d − t − 2,

and taking (5), (7) and (10) into account, it follows that

δ(G∗∗
t ) ≥ d − q − 3.

Using the bound given by Lemma2 and the identity d = λ(2n), we obtain

δ(G∗∗
t ) ≥ (λ2 + λ − 1)(2n) − 1. (11)

Let τ be defined by the position

t = τ(2n).

By Tutte’s Theorem, G∗∗
t has a Tutte Set, i.e. a set S ⊂ V (G∗∗

t ) such that
odd(S) > |S|, where odd(S) is the number of odd components in the graph
G∗∗

t − S. Let s = |S|, and let z = odd(S). We have, by what we just said,

z > s. (12)

Since G∗∗
t has even order and z has clearly the same parity of |V (G∗∗

t − S)|,
we have

z ≡ s (mod 2). (13)

(12) and (13) imply that
z ≥ s + 2. (14)

Let {Q1, Q2, . . . , Qz} be the odd components of G∗∗
t − S, with |Q1| ≤ |Q2| ≤

. . . ≤ |Qz|. Let qi = |Qi|, for i = 1, 2, . . . , z.
Since Q1 is the smallest odd component of G∗∗

t − S and using (14), we
have

q1 ≤
2n∗

z
≤ 2n∗

s + 2
. (15)

If v ∈ V (Qi), then any edge of G∗∗
t incident with v joins v to either a vertex

in Qi or a vertex in S. Therefore

δ(G∗∗
t ) ≤ (qi − 1) + s. (16)

Thus
qi ≥ δ(G∗∗

t ) + 1 − s. (17)
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By this, (14) and the fact that V (G∗∗
t ) ⊃ S ∪⋃z

i=1 Qi, we have the following:

2n∗ ≥ s +

z
∑

i=1

qi ≥ s + (s + 2)(δ(G∗∗
t ) + 1 − s). (18)

Now, the quadratic

x + (x + 2)(K + 1 − x) = −x2 + Kx + 2K + 2, (19)

where K = δ(G∗∗
t ), is (as a function of x) symmetric with respect to the axis

x = K/2 and increasing for x ≤ K/2 (and hence decreasing for x ≥ K/2.)
For x = 1 and x = K−1, the quadratic takes the value 1+3K = 1+3δ(G∗∗

t ).
By (11), we have

1 + 3δ(G∗∗
t ) ≥ 3(λ2 + λ − 1)(2n) − 2. (20)

The right-hand side of (20) is larger than 2n − 2 (and hence, by (9), larger
than 2n∗) if

3(λ2 + λ − 1) > 1, (21)

i.e. if
3λ2 + 3λ − 4 > 0,

which holds if

λ >
1

6
(
√

57 − 3) ≈ 0.758. (22)

From now on we shall assume that (22) is satisfied. Under this assumption,
(18) can be satisfied only (possibly) if s = 0 or s ≥ δ(G∗∗

t ). This proves the
following.

Theorem 5 Let G be a regular graph of even order 2n and degree λ(2n).
Let λ > 1

6
(
√

57 − 3). Then either G is 1-factorizable, or G∗∗
t has a Tutte Set

S such that either of the following cases occurs:

• Case One S = ∅.

• Case Two |S| ≥ δ(G∗∗
t ).
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In the next section we shall consider Case One in detail and give a full solution
of Case One under some condition on λ stronger than that of Theorem 5,
but still much weaker than the Chetwynd-Hilton condition λ ≥

√
7−1
2

. Case
Two will be not dealt with in this paper, but some remarks on Case Two
will be made at the end.

3 Case One

The main result of this section is the following theorem.

Theorem 6 Let λ∗ be defined as the second largest root of the polynomial
x4 − x3 − 4x2 + 2x + 1. Let G be a regular graph of order 2n and degree
λ(2n), where λ ≥ λ∗. Then either G is 1-factorizable, or G∗∗

t has a Tutte Set
S such that |S| ≥ δ(G∗∗

t ).

Notice that λ∗ ≈ 0.785.
To prove the theorem, we first make some preliminary observations and

prove an auxiliary lemma. Our argument goes as follows. By Theorem 5,
in order to prove Theorem 6, it clearly suffices to prove that G∗∗

t does not
admit the empty set as a Tutte Set. Arguing by contradiction, we assume
that S = ∅ is a Tutte set for G∗∗

t . By (14), G∗∗
t has z ≥ 2 odd components

Q1, Q2, . . . , Qz. By (17), we have

|Qi| ≥ δ(G∗∗
t ) + 1 for each i. (23)

By (11) and (23), we have

|Qi| ≥ (λ2 + λ − 1)(2n), (24)

so that, by (14) and (21), we must have z = 2 and there cannot be connected
components of even order in G∗∗

t . Thus G∗∗
t consists of exactly two compo-

nents Q1 and Q2, both of odd order. We rename these components A and
B, respectively. There are obviously no edges in G∗∗

t joining A and B. Let
EG(A, B) denote the set of edges in G − w − M0 joining A and B. Let α, β
be defined by the relations

|A| = α(2n), (25)

|B| = β(2n). (26)

By (24), we have
α ≥ λ2 + λ − 1, (27)
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and
β ≥ λ2 + λ − 1. (28)

Notice that each vertex in G is non-adjacent to exactly 2n − 1 − λ(2n)
other vertices of G. Hence every vertex in B must be adjacent in G to at
least |A| − (2n − 1 − λ(2n)) vertices of A. It follows that

|EG(A, B)| ≥ |B|(|A| − (2n − 1 − λ(2n)) > |B|(|A| − 2n + λ(2n)). (29)

Using the notations introduced by (25) and (26), we can rewrite (29) as

|EG(A, B)| > β(α − 1 + λ)(2n)2. (30)

As there are no edges joining A and B in G∗∗
t , by (6) and the definition of

EG(A, B), we have

EG(A, B) ⊂ F1 ∪ F2 ∪ . . . , Ft. (31)

Let, for each i = 1, 2, . . . , t, the set Ei be defined as

Ei = EG(A, B) ∩ Fi. (32)

Then, obviously,

EG(A, B) =

t
⋃

i=1

Ei, (33)

and, since the Ei’s are disjoint, this implies that

|EG(A, B)| =
t

∑

i=1

|Ei|. (34)

Call an edge e ∈ EG(A, B) marginal if e ∈ ⋃t

i=1 Mi, and non-marginal oth-
erwise. Denote the set of non-marginal edges by N , i.e. let

N = EG(A, B) \ (

t
⋃

i=1

Mi). (35)

We are ready to prove the following lemma.
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Lemma 3 Suppose that, using the notations introduced above, there exists
an index k, 1 ≤ k ≤ t, such that

(i) |Ek| ≥ (3 − 2λ − 2λ2)(2n);

(ii) Ek ∩ N 6= ∅;

(iii) |Ek| ≥ 2.

Then we have a contradiction.

Proof. Let A0 = A ∩ V (Ek) and let B0 = B ∩ V (Ek). Clearly

|A0| = |B0|. (36)

Let α0 be defined by the relation

|A0| = α0(2n). (37)

With a slight abuse of notation, let A0, B0, A, B, denote the subgraphs of G∗∗
t

induced by A0, B0, A, B, respectively. As two vertices in A0 are non-adjacent
if and only if they are non-adjacent in G∗∗

t , and there are no more than
|A| − δ(A) vertices in A which are non-adjacent to a given vertex of A, we
have

δ(A0) ≥ |A0| − (|A| − δ(A)). (38)

Similarly,
δ(B0) ≥ |B0| − (|B| − δ(B)). (39)

Adding (38) and (39), noticing that |V (G∗∗
t )| = 2n∗ = |A| + |B|, and taking

(36) into account, we have

δ(A0) + δ(B0) ≥ 2|A0| + 2δ(G∗∗
t ) − 2n∗. (40)

We claim that
δ(A0) + δ(B0) ≥ |A0|. (41)

By (40), this holds if

|A0| + 2δ(G∗∗
t ) − 2n∗ ≥ 0.

Using the fact that 2n∗ ≤ 2n−2, and using (11) and (37), it suffices to verify
that

α0 + 2(λ2 + λ − 1) − 1 ≥ 0

13



i.e. that
α0 ≥ 3 − 2λ − 2λ2,

which is assumption (i) of the present lemma. Hence (41) holds.
Let now e1 be a non-marginal edge of Ek (which exists by assumption

(ii) of the present lemma). Let e1 = u1v1, with u1 ∈ A and v1 ∈ B. Let
e2 = u2v2, e3 = u3v3, . . . , e|A0| = u|A0|v|A0| be the remaining edges in Ek,
where ui ∈ A and vi ∈ B for each i = 2, 3, . . . , |A0|. Notice that this set of
edges is non-empty by assumption (iii) of the present lemma. By (41), and
the pigeon-hole principle, there exists an edge ej ∈ Ek, where 2 ≤ j ≤ |A0|,
such that uju1 ∈ E(A0) and vjv1 ∈ E(B0) (see Fig. 1).

A0 B0

ej

e1 u1

uj
vj

v1

Figure 1: The key idea in the proof of Lemma3.

The existence of the quadrilateral v1u1ujvj is the critical part of this
proof. Indeed we can now alter the structure of the 1-factors F1, F2, . . . , Ft

in such a way that it will be possible to obtain a contradiction.
The alteration is done simply by “swapping” the edges of the quadrangle

v1u1ujvj. More precisely, let F̃k be defined as follows:

F̃k = (Fk \ {u1v1, ujvj}) ∪ {u1uj, v1vj}).

Clearly F̃k is still a near 1-factor of G, edge-disjoint from all the Fi’s (for
i 6= k), and edge-disjoint from M0. Consider the graph

G̃∗∗
t = (G−w)−(F1∪F2∪. . .∪Fk−1∪F̃k∪Fk+1∪. . .∪Ft∪M0)−({ξt+1}∪V (Mt+1)).
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This graph, as we shall see, has a 1-factor Ft+1 containing the edge ej, and
this proves that it is possible to remove t + 1 edge-disjoint near 1-factors
F ′

1, F
′
2, . . . , F

′
t+1 from G − w (where F ′

i is defined as Fi for i 6= k and F̃k

for i = k), which are mutually edge-disjoint, edge-disjoint from M0, and
such that F ′

i misses vertex ξi and
⋃t+1

i=1 F ′
i ⊃

⋃t+1
i=1 Mi, thus contradicting the

maximality of t (remember that the edge e1, which is left out from
⋃t+1

i=1 F ′
i , is

non-marginal by assumption). Thus, to complete the proof, we only need to
verify that G̃∗∗

t has a 1-factor containing the edge ej. We can easily construct
one such 1-factor by taking a near 1-factor of A missing vertex vj, a near
1-factor of B missing vertex uj, and adding the edge ujvj. To check that A
and B have the desired near 1-factors, we just need to observe that they are
both Hamiltonian. We give the explicit proof for A. By Dirac’s Theorem, it
suffices to verify that

δ(A) ≥ 1
2
|A|.

As δ(G∗∗
t ) ≤ δ(A), and by (11), it suffices that

|A| ≤ 2(λ2 + λ − 1)(2n) − 2.

Adding |B| to both sides of the previous inequality and using the fact that
|A| + |B| = 2n∗, we can rewrite the previous inequality as

2n∗ ≤ 2(λ2 + λ − 1)(2n) + |B| − 2.

Since |B| ≥ δ(G∗∗
t ) + 1 ≥ (λ2 + λ − 1)(2n) and by (9), it will suffice to show

that
2n ≤ 3(λ2 + λ − 1)(2n).

But this inequality is guaranteed by (21), and hence the proof is completed.
2

Lemma3 enables us to conclude the proof of Theorem 6.

Proof of Theorem 6: We prove that the conditions of Lemma3 are satisfied
by G, which implies a contradiction. Let N be the set of non-marginal edges,
defined by (35). Let Ei be defined as in (32). Notice that Ei is an independent
set of edges (i.e. a matching), for every i = 1, 2, . . . t. Since, by Lemma1, all
the marginal edges are taken from a subgraph H∗ of order q + 1, it follows
that the condition |Ek| > (q + 1)/2 (together with the fact that Ek is a
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matching) guarantees the existence of a non-marginal edge in Ek, which is
condition (ii) of Lemma3. Since, by Lemma2, we have

q + 1

2
<

q + 2

2
≤ (1 − λ2)(2n)

2
,

we can claim that condition (ii) of Lemma3 is satisfied if

|Ek| ≥
(1 − λ2)(2n)

2
.

Therefore, the conditions of Lemma3 are satisfied if

|Ek| ≥ max{(3 − 2λ − 2λ2)(2n), 1
2
(1 − λ2)(2n), 2}. (42)

Using (34), in order to verify that (42) is satisfied, it will suffice to prove
that

d|EG(A, B)|/te ≥ max{(3 − 2λ − 2λ2)(2n), 1
2
(1 − λ2)(2n), 2},

and, using t < q − 2 ≤ (1 − λ2)(2n), it will suffice to verify that

|EG(A, B)|
(1 − λ2)(2n)

≥ max{(3 − 2λ − 2λ2)(2n), 1
2
(1 − λ2)(2n), 1},

where (in the set on the right-hand side of the above inequality) we have
replaced the number 2 by the number 1 using the trivial fact that, if x > y
are real numbers, then the condition y ≥ 1 guarantees the condition dxe ≥ 2.

For convenience, let Θ = Θ(λ, n) be defined as

Θ = max{(3 − 2λ − 2λ2)(2n), 1
2
(1 − λ2)(2n), 1}.

It is easy to see, by solving some simple inequalities, that

Θ =







1−λ2

2
(2n) if λ ≥

√
19−2
3

(3 − 2λ − 2λ2)(2n) if λ ≤
√

19−2
3

(43)

unless n is very small (n ≤ 3), which is certainly a case we do not need to
consider here, since we know (by the results mentioned in the Introduction)
that Conjecture 1 (and consequently Theorem 6) holds for very small values

of n. Notice that
√

19−2
3

≈ 0.786.
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Using (30), it will suffice to verify the inequality

β(α − 1 + λ)(2n)2

(1 − λ2)(2n)
≥ Θ,

which, after taking (27) and (28) into account, is satisfied if

(λ2 + λ − 1)(λ2 + 2λ − 2)(2n) ≥ (1 − λ2)Θ. (44)

Now, by (43), we can claim that (44) is satisfied for λ ≥
√

19−2
3

if we can
prove that

(λ2 + λ − 1)(λ2 + 2λ − 2)(2n) ≥ 1
2
(1 − λ2)2(2n). (45)

After expanding, rearranging and simplifying, (45) becomes

1

2
λ4 + 3λ3 − 4λ +

3

2
≥ 0.

Using elementary calculus (or a calculator), one can verify that the above
inequality, and hence (44), is satisfied under the current assumption λ ≥√

19−2
3

. Therefore we are left only with the verification of the case λ ≤
√

19−2
3

.
In this case, by (43), inequality (44) is equivalent to

(λ2 + λ − 1)(λ2 + 2λ − 2)(2n) ≥ (1 − λ2)(3 − 2λ − 2λ2)(2n).

After expanding, simplifying, and changing sign, this becomes

λ4 − λ3 − 4λ2 + 2λ + 1 ≤ 0. (46)

Let λ+, λ∗ be, respectively, the largest and second largest root of the above
polynomial. It can be checked (e.g. using a calculator), that λ+ >

√
19−2
3

>

λ∗, and therefore (46) is satisfied for λ∗ ≤ λ ≤
√

19−2
3

. Combining this with
what was proven above, we can claim that (44) is satisfied for all λ ≥ λ∗.
Therefore, under the same condition, the hypotheses of Lemma3 are satisfied,
which yields a contradiction by Lemma 3. This contradiction proves that ∅
cannot be a Tutte Set for G∗∗

t , and hence concludes the proof of the theorem.
2
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4 Conclusion

Theorem 6 leaves Case Two as the only open case for establishing the 1-
factorizability of the regular graphs of order 2n and degree λ(2n), with
λ ≥ λ∗. We will not solve this problem in the present paper, as we have
not yet devised a general argument. It is clear from Theorem 5, however,
that, if Case Two occurs, then the Tutte set S ought to be “very large”,
and, correspondingly, there ought to be a large number of very small odd
components in G∗∗

t − S (most of which singleton), and a large number of
edges joining S to G∗∗

t − S. One possible approach could be to prove that,
through a possible re-selection of the near 1-factors F1, F2, . . . Ft, one can de-
crease the number of odd components of G∗∗

t − S, or decrease the difference
odd(S) − |S|, and so forth. It may be useful to single out a special Tutte
Set for G∗∗

t (on which further assumptions can be made), for example by
considering a Gallai-Edmonds decomposition for G∗∗

t (see [8]).
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