On the number of $(r, r+1)$-factors in an $(r, r+1)$-factorization of a simple graph

A. J. W. Hilton

April 18, 2006

Abstract

For integers $d \geq 0, s \geq 0$ a $(d, d+s)$-graph is a graph in which the degrees of all the vertices lie in the set $\{d, d+1, \ldots, d+s\}$. For an integer $r \geq 0$, an $(r, r+1)$-factor of a graph G is a spanning $(r, r+1)$-subgraph of G. An $(r, r+1)$-factorization of a graph G is the expression of G as the edge-disjoint union of $(r, r+1)$-factors.

For integers $r, s \geq 0, t \geq 1$, let $f(r, s, t)$ be the smallest integer such that, for each integer $d \geq f(r, s, t)$, each $(d, d+s)$-simple graph has an $(r, r+1)$-factorization with $x(r, r+1)$-factors for at least t different values of x. In this note we evaluate $f(r, s, t)$.

1 Introduction

For integers $d \geq 0, s \geq 0$ a $(d, d+s)$-graph is a graph in which the degrees of all the vertices lie in the set $\{d, d+1, \ldots, d+s\}$. For an integer $r \geq 0$, an $(r, r+1)$-factor of a graph G is a spanning $(r, r+1)$-subgraph of G. An $(r, r+1)$-factorization of a graph G is the expression of G as the edge-disjoint union of $(r, r+1)$-factors.

A proper edge-colouring of a graph G corresponds to a $(0,1)$-factorization of the graph. Therefore, by Vizing's Theorem [11], a (0,1)-factorization of a simple graph G with $x(0,1)$-factors exists for each $x \geq \Delta(G)+1$, where $\Delta(G)$ is the maximum degree of G (for large x, most of these $(0,1)$-factors would inevitably be the graph with vertex set $V(G)$ but with no edges). For $r \geq 1$, however, if a graph G has an $(r, r+1)$-factorization, then the number x of $(r, r+1)$-factors in the factorization is bounded above by $\left\lfloor\frac{1}{2} \Delta(G)\right\rfloor$. As an example of the type of phenomenon we are concerned with in this paper, consider a regular simple graph G of degree 29. All such graphs have (2,3)-factorizations into $x(2,3)$-factors for each $x \in\{10,11,12,13,14\}$, but for no other values of x.

For integers $r, s \geq 0, t \geq 1$, let $f(r, s, t)$ be the smallest integer such that, for each integer $d \geq f(r, s, t)$, each $(d, d+s)$-simple graph has an $(r, r+1)$-factorization into $x(r, r+1)$-factors for at least t different values of x. Although it is not obvious that the number $f(r, s, t)$ exists for all possible values of r, s, t, we shall in fact determine
$f(r, s, t)$ for all r, s, t. For the corresponding problem for pseudographs (where multiple edges and loops are permitted), the number corresponding to $f(r, s, t)$ does not always exist.

The remarks above about the correspondence between $(0,1)$-factorizations and proper edge-colourings of simple graphs lead quickly to the following conclusion.

Lemma 1. For integers $s \geq 0, t \geq 1, f(0, s, t)=0$.
Proof. For any value of $d \geq 0$, by Vizing's Theorem, if $x \geq d+s+1$ then any $[d, d+s]$-simple graph has a proper edge-colouring with x colours.

From now on we shall suppose that $r \geq 1$.
Most of the published results on this topic just consider the case when $t=1$. The first noteworthy result was due to Era [5] and Egawa [4]. They proved in 1986:
Theorem 2. For integers $r \geq 1$,

$$
f(r, 0,1)= \begin{cases}r^{2} & \text { if } r \text { is even } \\ r^{2}+1 & \text { if } r \text { is odd }\end{cases}
$$

A much shorter proof of this was later provided by Hilton [7], who also proved:
Theorem 3. For integers $r \geq 1$,

$$
f(r, 1,1)= \begin{cases}r^{2}+r & \text { if } r \text { is even } \\ r^{2}+r+1 & \text { if } r \text { is odd }\end{cases}
$$

Finally in 2005 in [9], Hilton and Wojciechowski evaluated $f(r, s, 1)$:
Theorem 4. For integers $r \geq 1, s \geq 0$,

$$
f(r, s, 1)= \begin{cases}r^{2}+r s & \text { if } r \text { is even and } 0 \leq s \leq 1 \\ r^{2}+r s+1 & \text { if } r \text { is odd and } 0 \leq s \leq 1 \\ r^{2}+r s+r+1 & \text { if } s \geq 2\end{cases}
$$

Our main result here extends Theorem 4 to general values of t.
Theorem 5. For integers $s \geq 0, r, t \geq 1$,

$$
f(r, s, t)= \begin{cases}t r^{2}+t r+s r-r & \text { if } r \text { is even and } 0 \leq s \leq 1, \\ t r^{2}+t r+s r-r+1 & \text { if } r \text { is odd and } 0 \leq s \leq 1, \\ t r^{2}+t r+s r+1 & \text { if } s \geq 2 .\end{cases}
$$

For the corresponding problem for multigraphs (without loops) we make the following definition. For integers $r, s \geq 0, t \geq 1$, let $f_{m}(r, s, t)$ be the least integer, if there is one, such that, for each $d \geq f_{m}(r, s, t)$, all $[d, d+s]$-multigraphs have an $(r, r+1)$-factorization into $x(r, r+1)$-factors for at least t different values of x; if there is no such least integer, let $f_{m}(r, s, t)=\infty$. Here the m in $f_{m}(r, s, t)$ stands for 'multigraph'.

Specializations of a result of Akiyama and Kano [1] when r is even and of Cai [3] when r is odd yield the following result.

Theorem 6. For positive integers r, s,

$$
f_{m}(r, s, 1) \leq \begin{cases}(3 r+1)(r+s-1) & \text { if } r \text { is even, } \\ (3 r+1)(r+s) & \text { if } r \text { is odd. }\end{cases}
$$

These bounds do not seem to be the best possible. Some improved bounds are given for the cases $s=0$ and $s=1$ in [7], where there is also a conjecture made about the value of $f_{m}(r, 0,1)$. At present, multigraphs seem to be much more difficult to deal with than simple graphs.

2 Background information

The fundamental result which lies behind the proofs of Theorems 3 and 4, and of our main theorem, Theorem 5, is a result of Hilton and de Werra [8] on equitable colourings of simple graphs.

An edge-colouring of a pseudograph G (i.e. a graph in which loops and multiple edges are allowed) is a map $\lambda: E(G) \rightarrow \mathcal{C}$, where \mathcal{C} is a set of colours (loops being counted as edges). An edge-colouring is equitable if for each vertex v of G and any two colours $C_{1}, C_{2} \in \mathcal{C}$, the number of edges incident with v and coloured C_{1} differs by at most one from the corresponding number of edges coloured C_{2}; here a loop on v coloured C_{i} counts as two edges on v. For an integer $k \geq 2$, the k core of a pseudograph G is the subpseudograph induced by the vertices of G whose degrees are divisible by k. The theorem of Hilton and de Werra is:
Theorem 7. Let k be an integer, $k \geq 2$, and let G be a simple graph. If the k-core of G contains no edges, then G has an equitable edge-colouring with k colours.

The proof in [8] of Theorem 7 is an extensive elaboration of Vizing's argument introduced in [11]. Theorem 7 and a result of Fournier [6] possibly have a common generalization:
Conjecture 1. Let k be an integer, $k \geq 2$, and let G be a simple graph. If the k-core of G is a forest, then G has an equitable colouring with k colours.

Using Theorem 7, the following result about ($r, r+1$)-factorizations of d regular simple graphs was proved in [7]. Theorem 7 was used in the proof of the "hard part", namely part 1.

Theorem 8. Let G be a d-regular simple graph, and let x and r be integers with $r \geq 1$.

1. G has an $(r, r+1)$-factorization with exactly $x(r, r+1)$-factors if

$$
\frac{d}{r+1}<x<\frac{d}{r}
$$

or if r is odd and $x=\frac{d}{r+1}$, or if r is even and $x=\frac{d}{r}$.
2. If r is even and $(r+1) \mid d$, then there are d-regular simples graphs G which are, and d-regular simple graphs G which are not $(r, r+1)$-factorizable into $x=\frac{d}{r+1}(r, r+1)$-factors; if r is odd and $r \mid d$, then there are d-regular simple graphs which are, and d-regular simple graphs which are not $(r, r+1)$ factorizable into $x=\frac{d}{r}(r, r+1)$-factors.
3. If $x \notin\left[\frac{d}{r+1}, \frac{d}{r}\right]$, then no d-regular simple graph is $(r, r+1)$-factorizable into $x(r, r+1)$-factors.

For simple $(d, d+1)$-graphs, the following similar result was also proved in [7].

Theorem 9. Let d, r and x be integers with $d \geq r \geq 1$.

1. If

$$
\frac{d+1}{r+1}<x<\frac{d}{r}
$$

or

$$
x= \begin{cases}\frac{d}{r} & \text { if } r \text { is even }, \\ \frac{d+1}{r+1} & \text { if } r \text { is odd },\end{cases}
$$

then any simple $(d, d+1)$-graph G has an $(r, r+1)$-factorization into $x(r, r+$ $1)$-factors.
2. If $x \geq 2$ and

$$
x= \begin{cases}\frac{d}{r} & \text { if } r \text { is even } \\ \frac{d+1}{r+1} & \text { if } r \text { is } \text { odd }\end{cases}
$$

then some simple $(d, d+1)$-graphs do and some do not have an $(r, r+1)$ factorization into $x(r, r+1)$-factors.
3. If $x \notin\left[\frac{d+1}{r+1}, \frac{d}{r}\right]$, then the only simple $(d, d+1)$-graphs G having an $(r, r+1)$ factorization into $x(r, r+1)$-factors occur when

$$
\left\{\begin{array}{l}
x=\frac{d}{r+1} \quad \text { and } G \text { is } d \text {-regular, or } \\
x=\frac{d+1}{r} \quad \text { and } G \text { is }(d+1) \text {-regular. }
\end{array}\right.
$$

Moreover, when these conditions pertain, some but not all such graphs have an $(r, r+1)$-factorization.

$3(d, d+s)$-simple graphs with $(r, r+1)$-factorizations

In this section we give an analogue to Theorems 8 and 9 for $(d, d+s)$-simple graphs in the case when $s \geq 2$.

Theorem 10. Let d, r, s, x be integers with $d \geq r \geq 1$ and $s \geq 2$.

1. If

$$
\frac{d+s}{r+1}<x<\frac{d}{r}
$$

then any simple $(d, d+s)$-graph G has an $(r, r+1)$-factorization into $x r$ factors.
2. If $x=\frac{d+s}{r+1}$ or $\frac{d}{r}$, then some simple $(d, d+s)$-graphs do and some do not have an $(r, r+1)$-factorization into $x(r, r+1)$-factors.
Proof. 1. Let G be a $(d, d+s)$-simple graph and let $\frac{d+s}{r+1}<x<\frac{d}{r}$. Let $v \in V(G)$. Then

$$
r<\frac{d}{x} \leq \frac{\mathrm{d}(v)}{x} \leq \frac{d+s}{x}<r+1
$$

so $x \nmid \mathrm{~d}(v)$. Thus the core of G contains no edges, and so, by Theorem 7, G has an equitable edge-colouring with x colours. But

$$
\frac{\mathrm{d}(v)}{r+1} \leq \frac{d+s}{r+1}<x<\frac{d}{r} \leq \frac{\mathrm{d}(v)}{r}
$$

so the degree of v in each colour class is either r or $r+1$. Thus the equitable edge-colouring corresponds to an $(r, r+1)$-factorization with $x(r, r+1)$-factors.
2. We show first that if $x=\frac{d+s}{r+1}$ or $\frac{d}{r}$, then some simple $(d, d+s)$-graphs do have an $(r, r+1)$-factorization into $x(r, r+1)$-factors.

Let $r \mid d$ and put $x=\frac{d}{r}$. Then any Class $1 d$-regular simple graph is the union of $d 1$-factors, and so can be expressed as the union of $x r$-factors. Thus it can be expressed as the union of $x(r, r+1)$-factors.

Now let $(r+1) \mid(d+s)$ and put $x=\frac{d+s}{r+1}$. Then any Class $1(d+s)$-regular simple graph can be expressed as the union of $x(r+1)$-factors, and so is the union of $x(r, r+1)$-factors.

Next we show that is $x=\frac{d+s}{r+1}$ or $\frac{d}{r}$, then some simple $(d, d+s)$-graphs do not have an $(r, r+1)$-factorization into $x(r, r+1)$-factors.

Let

$$
d=r^{2}+r s+r=r(r+s+1)
$$

so that

$$
d+s=r^{2}+r s+r+s=(r+1)(r+s) .
$$

Then

$$
\frac{d+s}{r+1}=r+s<r+s+1=\frac{d}{r} .
$$

We first construct a $(d, d+s)$-simple graph G_{1} which has the property that if its $(r, r+1)$-factorizations have $x_{1}(r, r+1)$-factors then $x_{1} \leq r+s$. Then we construct a $(d, d+s)$-simple graph G_{2} which has the property that if its $(r, r+1)$ factorizations have $x_{2}(r, r+1)$-factors then $x_{2} \geq r+s+1$. Thus the disjoint union of G_{1} and G_{2} is a $(d, d+s)$-graph with no $(r, r+1)$-factorizations.

Construction of G_{1}.

(i) r odd, d even. Then s is even. Let G_{1} be a regular simple graph of degree d and odd order. Then the union of $r+s+2$ or more $(r, r+1)$-factors has degree at least $r(r+s+2)=d+r>d$, which is too large. Moreover any $(r, r+s)$-factorization of G_{1} into $r+s+1(r, r+1)$-factors would have all its factors regular of degree r, which is impossible since G_{1} has odd order.
(ii) r odd, d odd. Then s is odd. Let G_{1} have one vertex of degree $d+1$, the remainder having degree d. Then G_{1} has odd order. An example of such a graph can be made by removing $\frac{1}{2}(d+1)$ independent edges from K_{d+2}. As above, there is no $(r, r+1)$-factorization of G_{1} with more than $r+s+1$ $(r, r+1)$-factors. Moreover, any $(r, r+1)$-factorization of G_{1} with $r+s+1$ $(r, r+1)$-factors would have all bar one factor regular of degree r. But this is impossible since G_{1} has odd order.
(iii) r even. Let G_{1} have one vertex of degree $d+2$, the rest having degree d. Such a graph can be made by removing a cycle of length $d+2$ from K_{d+3}. As in (i), there is no $(r, r+1)$-factorization of G_{1} with more than $r+s+1$ $(r, r+1)$-factors. Moreover any $(r, r+1)$-factorization of G_{1} with $r+s+1$ $(r, r+1)$-factors would have two $(r, r+1)$-factors each with one vertex of degree $r+1$, the rest having degree r. But since r is even, this is impossible.

Thus in each case $x_{1} \leq r+s$.

Construction of G_{2}. Note that if r is even, then d is even.
(i) r even, s even. Then $d+s$ is even. Let G_{2} be a simple regular graph of degree $d+s$ and odd order. The union of $r+s-1$ or fewer $(r, r+1)$-factors has degree at most $(r+1)(r+s-1)=d+s-r-1<d+s$, and so it is not large enough. Moreover we cannot factorize G_{2} into $r+s(r, r+1)$-factors, for then all $(r, r+1)$-factors would be $(r+1)$-regular; this is impossible as $r+1$ and the order of G_{2} are both odd.
(ii) r even, s odd. The $d+s$ is odd. Let G_{2} be a simple graph with one vertex of degree $d+s-1$ and the remaining vertices of degree $d+s$. Since $d+s$ is odd, G_{2} has odd order. Such a graph can be obtained from K_{d+s+2} by deleting $\frac{1}{2}(d+s-1)$ independent edges and a $K_{1,2}$ which is disjoint from all these independent edges. As above, there is no $(r, r+1)$-factorization with fewer than $r+s(r, r+1)$-factors. Moreover in any $(r, r+1)$-factorization of G_{2} with $r+s(r, r+1)$-factors, all bar one of the $(r, r+1)$-factors would be regular of degree $r+1$, which is impossible since $r+1$ and the order of G_{2} are both odd.
(iii) r odd. Then $d+s-2$ is even. Let G_{2} have one vertex of degree $d+s-2$ and the remainder have degree $d+s$. Such a graph may be obtained from
K_{d+s+2} by removing $\frac{1}{2}(d+s-2)$ independent edges and a $K_{1,3}$ which is disjoint from these independent edges. As in (i) above, there is no $(r, r+1)$ factorization of G_{2} with fewer than $r+s(r, r+1)$-factors. Moreover in any $(r, r+1)$-factorization into $r+s(r, r+1)$-factors, two of the $(r, r+1)$ factors would have one vertex of degree r and the remainder of degree $r+1$. But this is impossible since r is odd.

Thus in each case, $x_{2} \geq r+s+1$.
For integers $s \geq 0, d \geq r \geq 1$, let $S(d, s, r)$ be the set of integers x such that, for all simple $(d, d+s)$-graphs G, G has an $(r, r+1)$-factorization into $x(r, r+1)$ factors. From Theorems 8, 9 and 10, we can now show:

Theorem 11. Let $d \geq r \geq 1$. For $s \in\{0,1\}$

$$
S(d, s, r)= \begin{cases}\left(\frac{d+s}{r+1}, \frac{d}{r}\right] & \text { if } r \text { is even }, \\ {\left[\frac{d+s}{r+1}, \frac{d}{r}\right)} & \text { if } r \text { is odd, }\end{cases}
$$

and for $s \geq 2$

$$
S(d, s, r)=\left(\frac{d+s}{r+1}, \frac{d}{r}\right)
$$

Proof. Suppose first that $s=0$. By Theorem 8(1), it follows that

$$
\begin{cases}\left(\frac{d}{r+1}, \frac{d}{r}\right] \subseteq S(d, 0, r) & \text { if } r \text { is even } \\ {\left[\frac{d}{r+1}, \frac{d}{r}\right) \subseteq S(d, 0, r)} & \text { if } r \text { is odd }\end{cases}
$$

By Theorem 8(2), the end values $x=\frac{d}{r+1}$ if r is even and $x=\frac{d}{r}$ if r is odd do not lie in $S(d, 0, r)$. By Theorem 8(3), values of x smaller than $\frac{d}{r+1}$ or larger than $\frac{d}{r}$ are not in $S(d, 0, r)$. Therefore

$$
S(d, 0, r)= \begin{cases}\left(\frac{d}{r+1}, \frac{d}{r}\right] & \text { if } r \text { is even } \\ {\left[\frac{d}{r+1}, \frac{d}{r}\right)} & \text { if } r \text { is odd }\end{cases}
$$

The argument if $s=1$ is identical, using Theorem 9 instead of Theorem 8.
Next suppose that $s=2$. Since any $(d, d+1)$-graph or any $(d+1, d+2)$-graph is also a $(d, d+2)$-graph, it follows from the $s=1$ case that

$$
\begin{aligned}
S(d, 2, r) & \subseteq S(d, 1, r) \cap S(d+1,1, r) \\
& = \begin{cases}\left(\frac{d+1}{r+1}, \frac{d}{r}\right] \cap\left(\frac{d+2}{r+1}, \frac{d+1}{r}\right]=\left(\frac{d+2}{r+1}, \frac{d}{r}\right] & \text { if } r \text { is even, } \\
{\left[\frac{d+1}{r+1}, \frac{d}{r}\right) \cap\left[\frac{d+2}{r+1}, \frac{d+1}{r}\right)=\left[\frac{d+2}{r+1}, \frac{d}{r}\right)} & \text { if } r \text { is odd. }\end{cases}
\end{aligned}
$$

By Theorem 10(2), the end-values $\frac{d+2}{r+1}$ and $\frac{d}{r}$ do not lie in $S(d, 2, r)$. Thus

$$
S(d, 2, r) \subseteq\left(\frac{d+2}{r+1}, \frac{d}{r}\right)
$$

But by Theorem 10(1)

$$
\left(\frac{d+2}{r+1}, \frac{d}{r}\right) \subseteq S(d, 2, r)
$$

Therefore

$$
S(d, 2, r)=\left(\frac{d+2}{r+1}, \frac{d}{r}\right)
$$

Now let $s \geq 2$. As an induction hypothesis, suppose that, for $2 \leq \sigma \leq s$,

$$
S(d, \sigma, r)=\left(\frac{d+\sigma}{r+1}, \frac{d}{r}\right)
$$

Since any $(d, d+s)$-graph or any $(d+1, d+s+1)$-graph is also a $(d, d+s+1)$ graph, it follows that

$$
\begin{aligned}
S(d, s+1, r) & \subseteq S(d, s, r) \cap S(d+1, s, r) \\
& =\left(\frac{d+s}{r+1}, \frac{d}{r}\right) \cap\left(\frac{d+s+1}{r+1}, \frac{d+1}{r}\right) \\
& =\left(\frac{d+s+1}{r+1}, \frac{d}{r}\right)
\end{aligned}
$$

But by Theorem 10(1),

$$
\left(\frac{d+s+1}{r+1}, \frac{d}{r}\right) \subseteq S(d, s+1, r)
$$

so that

$$
S(d, s+1, r)=\left(\frac{d+s+1}{r+1}, \frac{d}{r}\right)
$$

Therefore, by induction, $S(d, s, r)=\left(\frac{d+s}{r+1}, \frac{d}{r}\right)$ for all $s \geq 2$.

4 Proof of Theorem 5

We now turn to the proof of Theorem 5.
Proof. There are t distinct values of x such that any simple $(d, d+s)$-graph has an $(r, r+1)$-factorization with $x(r, r+1)$-factors if and only if $S(d, s, r)$ contains t distinct integers. By Theorem 11, this occurs if and only if, for some integer x,

$$
\begin{array}{lll}
\frac{d+s}{r+1}<x \quad \text { and } \quad x+t-1 \leq \frac{d}{r} & \text { if } s \in\{0,1\} \text { and } r \text { is even, } \\
\frac{d+s}{r+1} \leq x \quad \text { and } \quad x+t-1<\frac{d}{r} & \text { if } s \in\{0,1\} \text { and } r \text { is odd } \\
\frac{d+s}{r+1}<x \quad \text { and } \quad x+t-1<\frac{d}{r} & \text { if } s \geq 2
\end{array}
$$

Suppose $s \in\{0,1\}$ and r is even. If $d=t r^{2}+t r+s r-r-1$ and $S(d, s, r)$ contains t distinct integers, then let $x \in \mathbb{Z}$ be as large as possible such that

$$
x+t-1 \leq \frac{d}{r}=t r+t-1+s-\frac{1}{r}
$$

then $x=t r+s-1$. But $\frac{d+s}{r+1}=t r+s-1<x$, a contradiction. Therefore $f(r, s, t) \geq$ $t r^{2}+t r+s r-r$.

Next suppose $s \in\{0,1\}$ and r is odd. If $d=t r^{2}+t r+s r-r$ and $S(d, s, r)$ contains t distinct integers, then let $x \in \mathbb{Z}$ be as small as possible such that $x \geq \frac{d+s}{r+1}$. Then $x \geq t r+s-1+\frac{1}{r+1}$. Therefore $x=t r+s$. But $\frac{d}{r}=t r+t+s-1>x+t-1$, so $t r+s>x$, a contradiction. Therefore $f(r, s, t) \geq t r^{2}+t r+s r-r+1$.

Now suppose that $s \geq 2$. If $d=t r^{2}+t r+s r$ and $S(d, s, r)$ conatins t distinct integers then let $x \in \mathbb{Z}$ be as large as possible such that $x+t-1<\frac{d}{r}=\operatorname{tr}+t+s$. Then $x=t r+s$. But $\frac{d+s}{r+1}=t r+s<x$, a contradiction. Therefore

$$
f(r, s, t) \geq t r^{2}+t r+s r+1
$$

Return now to the case when $s \in\{0,1\}$ and r is even. Let $d \geq t r^{2}+t r+s r-r$, say $d=t r^{2}+t r+s r-r+\varepsilon$. Then $\frac{d}{r}=t r+t+s-1+\frac{\varepsilon}{r}$. Choose an integer x as large as possible so that $x+t-1 \leq \frac{d}{r}$. Then

$$
x+t-1=t r+t+s-1+\left\lfloor\frac{\varepsilon}{r}\right\rfloor
$$

so $x=\operatorname{tr}+s+\left\lfloor\frac{\varepsilon}{r}\right\rfloor$. Now

$$
\frac{d+s}{r+1}=\frac{t r^{2}+t r+s r-r+s+\varepsilon}{r+1}
$$

so $\frac{d+s}{r+1}=t r+s-1+\frac{1+\varepsilon}{r+1}$. Put $\varepsilon=p r+q$ where $0 \leq q<r$. Then $x=t r+s+p$. Also

$$
\begin{aligned}
\frac{d+1}{r+1} & =t r+s-1+\frac{p r+q+1}{r+1}=t r+s-1+p+\frac{q+1-p}{r+1} \\
& =t r+s+p+\frac{q-r-p}{r+1}=x+\frac{q-r-p}{r+1} \\
& <x
\end{aligned}
$$

since $r>q$ and $p \geq 0$. Therefore $f(r, s, t) \leq t r^{2}+t r+s r-r$. Therefore $f(r, s, t)=$ $t r^{2}+t r+s r-r$.

Next suppose that $s \in\{0,1\}$ and r is odd. Let $d \geq t r^{2}+t r+s r-r+1$, say $d=t r^{2}+t r+s r-r+1+\varepsilon$. Then $\frac{d}{r}=t r+t+s-1+\frac{\varepsilon+1}{r}$. Choose $x \in \mathbb{Z}$ as large as possible so that $x+t-1<\frac{d}{r}=t r+t+s-1+\frac{\varepsilon+1}{r}$. Then $x+t-1=$ $t r+t+s-1+\left\lfloor\frac{\varepsilon}{r}\right\rfloor$, so $x=t r+s+\left\lfloor\frac{\varepsilon}{r}\right\rfloor$. Now $\frac{d+s}{r+1}=t r+s-1+\frac{2+\varepsilon}{r+1}$. Put $\varepsilon=p r+q$ where $0 \leq q<r$. Then $x=t r+s+p$ and $\frac{d+s}{r+1}=t r+s-1+\frac{2+p r+q}{r+1}$, so

$$
\frac{d+s}{r+1}=\operatorname{tr}+p+s+\frac{q+1-r-p}{r+1}=x+\frac{q+1-r-p}{r+1} \leq x
$$

since $r \geq q+1$ and $p \geq 0$. Therefore $f(r, s, t) \geq t r^{2}+t r+s r-r+1$. Therefore $f(r, s, t)=t r^{2}+t r+s r-r+1$.

Finally suppose that $x \geq 2$. Let $d \geq t r^{2}+t r+s r+1$, say $d=t r^{2}+t r+s r+1+\varepsilon$. Then $\frac{d}{r}=t r+t+s+\frac{1+\varepsilon}{r}$. Choose an integer x as large as possible so that $x+t-1<$ $\frac{d}{r}=t r+t+s+\frac{1+\varepsilon}{r}$. Then $x-t-1=t r+t+s+\left\lfloor\frac{\varepsilon}{r}\right\rfloor$, so $x=t r+s+1+\left\lfloor\frac{\varepsilon}{r}\right\rfloor$. Now $\frac{d+s}{r+1}=t r+s+\frac{1+\varepsilon}{r+1}$. Put $\varepsilon=p r+q$, where $0 \leq q<r$. Then $x=t r+s+1+p$ and

$$
\frac{d+s}{r+1}=t r+s+\frac{1+\varepsilon}{r+1}=x+\frac{q-r-p}{r+1}<x
$$

since $r>q$ and $p \geq 0$. Therefore $f(r, s, t) \geq t r^{2}+t r+s r+1$, so it follows that $f(r, s, t)=t r^{2}+t r+s r+1$, as asserted.

References

[1] J. Akiyama and M. Kano, Almost regular factorizations of graphs, J. Graph Theory 9 (1985), 123-128.
[2] J. Akiyama and M. Kano, Factors and factorizations of graphs - a survey, J. Graph Theory 9 (1985), 1-42.
[3] M.-C. Cai, [a, b]-factorization of graphs, J. Graph Theory 15 (1991), 283301.
[4] Y. Egawa, Era's conjecture on $[k, k+1]$-factorizations of regular graphs, Ars Combin. 21 (1986), 217-220.
[5] H. Era, Semiregular factorizations of regular graphs, in Graphs and Applications: Proceedings of the first Colorado symposium on Graph Theory (F. Harary and J. Maybee, eds), John Wiley and Sons, New York, 1984, pp. 101-116.
[6] J.-C. Fournier, Colorations des arêtes d'un graphe (Colloque sur la Théorie des Graphes, Bruxelles, 1973), Cahiers Centre d'Études Recherche Opér. 15 (1973), 311-314.
[7] A. J. W. Hilton, $(r, r+1)$-factorizations of $(d, d+1)$-graphs, Discrete Math., to appear.
[8] A. J. W. Hilton and D. de Werra, A sufficient condition for equitable edgecolourings of simple graphs, Discrete Math. 128 (1994), 179-201.
[9] A. J. W. Hilton and J. Wojciechowski, Semiregular factorization of simple graphs, AKCE Int. J. Graphs Comb. 2 (2005), 57-62.
[10] M. Plummer, Factors and factorizations in graphs: an update, Discrete Math., to appear.
[11] V. G. Vizing, On an estimate of the chromatic class of a p-graph (in Russian), Diskret. Analiz. 3 (1964), 25-30.

School of Mathematical Sciences,
Queen Mary, University of London, Mile End Road,
London, E1 4NS
England
e-mail: a.hilton@qmul.ac.uk

