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Abstract

Forintegersd > 0,5 >0, a (d,d +s)-graph is a graph in which the degrees of all the
vertices lie in the set {d,d + 1,...,d +s}. For an integer r > 0, an (r,r + 1)-factor
of a graph G is a spanning (r,r+ 1)-subgraph of G. An (r,r + 1)-factorization of a
graph G is the expression of G as the edge-disjoint union of (r,r+ 1)-factors.

For integers r,s > 0,1 > 1, let f(r,s,) be the smallest integer such that, for each
integer d > f(r,s,t), each (d,d + s)-simple graph has an (r,r + 1)-factorization
with x (r,r 4 1)-factors for at least 7 different values of x. In this note we evaluate

frs,t).

1 Introduction

For integers d >0, s > 0, a (d,d +s)-graph is a graph in which the degrees of all the
vertices lie in the set {d,d + 1,...,d + s}. For an integer r > 0, an (r,r + 1)-factor
of a graph G is a spanning (r,r + 1)-subgraph of G. An (r,r + 1)-factorization of a
graph G is the expression of G as the edge-disjoint union of (r,r+ 1)-factors.

A proper edge-colouring of a graph G corresponds to a (0, 1)-factorization of
the graph. Therefore, by Vizing’s Theorem [11], a (0, 1)-factorization of a sim-
ple graph G with x (0, 1)-factors exists for each x > A(G) + 1, where A(G) is the
maximum degree of G (for large x, most of these (0, 1)-factors would inevitably
be the graph with vertex set V(G) but with no edges). For r > 1, however, if a
graph G has an (r,r 4 1)-factorization, then the number x of (r,r + 1)-factors in
the factorization is bounded above by | JA(G)]. As an example of the type of phe-
nomenon we are concerned with in this paper, consider a regular simple graph G of
degree 29. All such graphs have (2,3)-factorizations into x (2,3)-factors for each
x €{10,11,12,13,14}, but for no other values of x.

For integers r,s > 0,1 > 1, let f(r,s,t) be the smallest integer such that, for each
integer d > f(r,s,t), each (d,d +s)-simple graph has an (r,r+ 1)-factorization into
x (r,r+ 1)-factors for at least ¢ different values of x. Although it is not obvious that
the number f(r,s,t) exists for all possible values of 7, s, 7, we shall in fact determine



f(r,s,t) for all r,s,z. For the corresponding problem for pseudographs (where mul-
tiple edges and loops are permitted), the number corresponding to f(r,s,#) does not
always exist.

The remarks above about the correspondence between (0, 1)-factorizations and
proper edge-colourings of simple graphs lead quickly to the following conclusion.

Lemma 1. For integers s > 0,t > 1, f(0,s,t) =0.

Proof. For any value of d > 0, by Vizing’s Theorem, if x > d + s+ 1 then any
[d,d + s]-simple graph has a proper edge-colouring with x colours. O

From now on we shall suppose that r > 1.
Most of the published results on this topic just consider the case when ¢ = 1.
The first noteworthy result was due to Era [5] and Egawa [4]. They proved in 1986:

Theorem 2. For integers r > 1,

r? if ris even,

f(r,O,l):{ 241 if ris odd.

A much shorter proof of this was later provided by Hilton [7], who also proved:

Theorem 3. For integers r > 1,

) o
P if ris even,
f(r,l,l)—{ rP4+r+1 ifrisodd.

Finally in 2005 in [9], Hilton and Wojciechowski evaluated f(r,s,1):

Theorem 4. Forintegersr > 1, s >0,

rr+rs ifrisevenand 0 <s <1,
frs, 1) = P24rs+1 ifrisoddand 0 <s <1,
Ptrs+r+1 ifs>2.

Our main result here extends Theorem 4 to general values of ¢.

Theorem 5. Forintegers s >0, r,t > 1,

trr+tr+sr—r ifrisevenand 0 <s <1,
flrs,t) =< tr*+tr+sr—r+1 ifrisoddand0<s<1,
trr +tr+sr+1 if s >2.

For the corresponding problem for multigraphs (without loops) we make the
following definition. For integers r,s >0, ¢ > 1, let f,,(r,s,¢) be the least integer,
if there is one, such that, for each d > f,,(r,s,1), all [d,d + s]-multigraphs have an
(r,r + 1)-factorization into x (r,r + 1)-factors for at least  different values of x; if
there is no such least integer, let f,,(r,s,¢) = co. Here the m in f,,(r,s,t) stands for
‘multigraph’.

Specializations of a result of Akiyama and Kano [1] when r is even and of Cai
[3] when r is odd yield the following result.



Theorem 6. For positive integers t,s,

Br+1)(r+s—1) ifriseven,
fm(rys,1) < { (3r41)(r+s) if ris odd.

These bounds do not seem to be the best possible. Some improved bounds
are given for the cases s = 0 and s = 1 in [7], where there is also a conjecture
made about the value of f,,(r,0,1). At present, multigraphs seem to be much more
difficult to deal with than simple graphs.

2 Background information

The fundamental result which lies behind the proofs of Theorems 3 and 4, and of
our main theorem, Theorem 5, is a result of Hilton and de Werra [8] on equitable
colourings of simple graphs.

An edge-colouring of a pseudograph G (i.e. a graph in which loops and multi-
ple edges are allowed) is a map A : E(G) — C, where ( is a set of colours (loops
being counted as edges). An edge-colouring is equitable if for each vertex v of G
and any two colours C;,C; € C, the number of edges incident with v and coloured
C; differs by at most one from the corresponding number of edges coloured C;;
here a loop on v coloured C; counts as two edges on v. For an integer k > 2, the k-
core of a pseudograph G is the subpseudograph induced by the vertices of G whose
degrees are divisible by k. The theorem of Hilton and de Werra is:

Theorem 7. Let k be an integer, k > 2, and let G be a simple graph. If the k-core
of G contains no edges, then G has an equitable edge-colouring with k colours.

The proof in [8] of Theorem 7 is an extensive elaboration of Vizing’s argument
introduced in [11]. Theorem 7 and a result of Fournier [6] possibly have a common
generalization:

Conjecture 1. Let k be an integer, k > 2, and let G be a simple graph. If the k-core
of G is a forest, then G has an equitable colouring with k colours.

Using Theorem 7, the following result about (r,r + 1)-factorizations of d-
regular simple graphs was proved in [7]. Theorem 7 was used in the proof of
the “hard part”, namely part 1.

Theorem 8. Let G be a d-regular simple graph, and let x and r be integers with
r>1.

1. G has an (r,r+ 1)-factorization with exactly x (r,r + 1)-factors if

d
<x< —
r+1 r

. . _d . . _d
orlfrlsoddandx——rﬂ,orzfrzsevenandx— -



2. Ifrisevenand (r+ 1) | d, then there are d-regular simples graphs G which

are, and d-regular simple graphs G which are not (r,r + 1)-factorizable into
ri—l (r,r+ 1)-factors; if r is odd and r | d, then there are d-regular sim-
ple graphs which are, and d-regular simple graphs which are not (r,r+1)-

factorizable into x = % (r,r+ 1)-factors.

X =

3 Ifx¢ [r%, %], then no d-regular simple graph is (r,r + 1)-factorizable into

x (r,r+ 1)-factors.

For simple (d,d + 1)-graphs, the following similar result was also proved in

[7].
Theorem 9. Let d, r and x be integers withd > r > 1.

1. If
d+1 d
<x< —
r+1 r
or
d . .
< if r is even,
X =
‘rl%l if ris odd,

then any simple (d,d+1)-graph G has an (r,r+ 1)-factorization into x (r,r+
1)-factors.

2. If x> 2 and
% if r is even,
X =

d+1 o
e if ris odd,

then some simple (d,d + 1)-graphs do and some do not have an (r,r + 1)-
factorization into x (r,r + 1)-factors.

3. Ifx¢ [%, 41, then the only simple (d,d + 1)-graphs G having an (r,r+1)-
factorization into x (r,r + 1)-factors occur when
d

x=7 and G is d-regular, or

_

x= d% and G is (d + 1)-regular.

Moreover, when these conditions pertain, some but not all such graphs have
an (r,r+ 1)-factorization.

3 (d,d+s)-simple graphs with (r,r + 1)-factorizations

In this section we give an analogue to Theorems 8 and 9 for (d,d +s)-simple graphs
in the case when s > 2.



Theorem 10. Let d,r,s,x be integers withd > r > 1 and s > 2.

1. If

d+s d

<x< —

r+1 r

then any simple (d,d + s)-graph G has an (r,r + 1)-factorization into x r-
factors.

2. Ifx= % or %, then some simple (d,d + s)-graphs do and some do not have

an (r,r+ 1)-factorization into x (r,r + 1)-factors.

- d+: d
Proof. 1. Let G be a (d,d +s)-simple graph and let £ <x < 4. Letv € V(G).

+1 r

Then 4 d J
r<—§ﬂ§ +s
X X X

<r+1

so x1d(v). Thus the core of G contains no edges, and so, by Theorem 7, G has an
equitable edge-colouring with x colours. But
d(v) < d+s cye d < d(v)
r+1 7 r+1 r r

so the degree of v in each colour class is either r or r 4+ 1. Thus the equitable
edge-colouring corresponds to an (r, 7 + 1)-factorization with x (r,r + 1)-factors.

2. We show first that if x = % or 4, then some simple (d,d + s)-graphs do
have an (r,r + 1)-factorization into x (r,r + 1)-factors.

Let r | d and put x = %. Then any Class 1 d-regular simple graph is the union
of d 1-factors, and so can be expressed as the union of x r-factors. Thus it can be
expressed as the union of x (r,r + 1)-factors.

Now let (r+1) | (d +s) and put x = %. Then any Class 1 (d + s)-regular
simple graph can be expressed as the union of x (r+ 1)-factors, and so is the union
of x (r,r+1)-factors.

Next we show that is x = % or %, then some simple (d,d + s)-graphs do not
have an (r,r + 1)-factorization into x (r,r + 1)-factors.

Let

d=r+rs+r=r(r+s+1)

so that
d+s=r+rs+r+s=(r+1)(r+s).
Then
d+s
r+1
We first construct a (d,d + s)-simple graph G; which has the property that
if its (r,r + 1)-factorizations have x; (r,r + 1)-factors then x; < r+s. Then we
construct a (d,d + s)-simple graph G, which has the property that if its (r,r 4 1)-
factorizations have x, (r,r+ 1)-factors then x, > r+ s+ 1. Thus the disjoint union
of G| and G, is a (d,d + s)-graph with no (r,r + 1)-factorizations.

d
=r4+s<r+s+1=-—.
r



Construction of G;.

®

(ii)

(iii)

r odd, d even. Then s is even. Let G| be a regular simple graph of degree
d and odd order. Then the union of r+ s+ 2 or more (r,r + 1)-factors has
degree at least r(r+s+2) =d+r > d, which is too large. Moreover any
(r,r+s)-factorization of Gy into r+ s+ 1 (r,r + 1)-factors would have all its
factors regular of degree r, which is impossible since G has odd order.

r odd, d odd. Then s is odd. Let G, have one vertex of degree d + 1, the
remainder having degree d. Then G has odd order. An example of such
a graph can be made by removing %(d + 1) independent edges from K.
As above, there is no (r,r + 1)-factorization of G; with more than r+ s+ 1
(r,r 4+ 1)-factors. Moreover, any (r,r + 1)-factorization of Gy with r+s+ 1
(r,r + 1)-factors would have all bar one factor regular of degree r. But this
is impossible since G has odd order.

r even. Let G| have one vertex of degree d + 2, the rest having degree d.
Such a graph can be made by removing a cycle of length d + 2 from K 3.
As in (i), there is no (r,r + 1)-factorization of G; with more than r+ s+ 1
(r,r + 1)-factors. Moreover any (r,r+ 1)-factorization of G; with r+s+ 1
(r,r + 1)-factors would have two (r,r 4 1)-factors each with one vertex of
degree r+ 1, the rest having degree r. But since r is even, this is impossible.

Thus in each case x; < r+s.

Construction of G,. Note that if r is even, then d is even.

®

(i)

(iii)

r even, s even. Then d + s is even. Let G, be a simple regular graph of
degree d +s and odd order. The union of r+s— 1 or fewer (r,r+ 1)-factors
has degree at most (r+1)(r+s—1)=d+s—r—1<d+s, and so it is not
large enough. Moreover we cannot factorize G, into r+ s (r,r 4 1)-factors,
for then all (r,7 + 1)-factors would be (r+ 1)-regular; this is impossible as
r+ 1 and the order of G, are both odd.

r even, s odd. The d + s is odd. Let G, be a simple graph with one vertex
of degree d + s — 1 and the remaining vertices of degree d +s. Since d + s
is odd, G> has odd order. Such a graph can be obtained from K;;,> by
deleting §(d +s— 1) independent edges and a K; » which is disjoint from all
these independent edges. As above, there is no (r,r+ 1)-factorization with
fewer than r+ s (r,r+ 1)-factors. Moreover in any (r,r + 1)-factorization of
G, with r+s (r,r + 1)-factors, all bar one of the (r,r+ 1)-factors would be
regular of degree r+ 1, which is impossible since »+ 1 and the order of G,
are both odd.

r odd. Then d + s — 2 is even. Let G, have one vertex of degree d +s5—2
and the remainder have degree d 4+ s. Such a graph may be obtained from



Kg45+2 by removing %(d + s —2) independent edges and a Kj 3 which is
disjoint from these independent edges. As in (i) above, there is no (r,r + 1)-
factorization of G, with fewer than r+ s (r,r + 1)-factors. Moreover in any
(r,r+ 1)-factorization into r+s (r,r + 1)-factors, two of the (r,r+ 1) factors
would have one vertex of degree r and the remainder of degree r + 1. But
this is impossible since r is odd.

Thus in each case, xp > r+s—+ 1. OJ
For integers s > 0, d > r > 1, let S(d,s,r) be the set of integers x such that,

for all simple (d,d + s)-graphs G, G has an (r,r + 1)-factorization into x (r,r+ 1)-
factors. From Theorems 8, 9 and 10, we can now show:

Theorem 11. Letd > r > 1. For s € {0,1}

<d—|—s d] I
17 if ris even,
Ssr)=q M
N [
|:r—|—17 r> lfr [A) Odd,
and for s > 2
d+s d
S(d,s,r) = <r—‘-1’r> .

Proof. Suppose first that s = 0. By Theorem 8(1), it follows that

( d ,d] C 8(d,0,r) if riseven,
r+1r

d d
[ )QS(d,O,r) if r is odd.

r+1"r
By Theorem 8(2), the end values x = r% if r is even and x = % if r is odd do not

lie in S(d,0,r). By Theorem 8(3), values of x smaller than r% or larger than % are
not in S(d,0,r). Therefore

<d d] e
77 if r is even,
S(d,0,r) = r; ;
[, > if r is odd.
r+1"r

The argument if s = 1 is identical, using Theorem 9 instead of Theorem 8.
Next suppose that s = 2. Since any (d,d + 1)-graph or any (d + 1,d + 2)-graph
is also a (d,d +2)-graph, it follows from the s = 1 case that

Sd,2,r) C S(d,1,r)NS(d+1,1,r)

<d+1d] <d+2 d+1} <d+2 d] s
— | = —| ifriseven,

r+1"r r+1" r r+1"r

d+1 d d+2 d+1 d+2 d e
= , = ,— if r is odd.
r+1"r r+1" r r+1r



By Theorem 10(2), the end-values % and % do not lie in S(d,2,r). Thus

d+2 d
d,2,r)C - .
sa2nc (45.9)

But by Theorem 10(1)

d+2 d
( + 7) gS<d727r)
r+1"r

Therefore
d+2 d>

S 2r)= (+1

Now let s > 2. As an induction hypothesis, suppose that, for 2 < ¢ <,
d+o d
Sd,o,r)=——,— .
(d,0.7) (r—i—l’r)
Since any (d,d + s)-graph or any (d + 1,d + s+ 1)-graph is also a (d,d + s+ 1)-
graph, it follows that

S(d,s+1,r) C S(d,s,r)NS(d+1,s,r)

B d+s d ﬂ d+s+1 d+1
- \r+1r r+1 7

B d+s+1§
- r+1 "r )’

But by Theorem 10(1),

d 1d
(_‘_s—i_>> gS(d,S—}—l,l"),
r+1 'r
so that J 4
S(d,s+1,r) = <+s+>
r+1 'r
d d
Therefore, by induction, S(d,s,r) = ( if,) for all s > 2. O
r r

4 Proof of Theorem 5

We now turn to the proof of Theorem 5.

Proof. There are ¢ distinct values of x such that any simple (d,d + s)-graph has
an (r,r+ 1)-factorization with x (r,r + 1)-factors if and only if S(d,s,r) contains ¢
distinct integers. By Theorem 11, this occurs if and only if, for some integer x,

%<x and x+t—1<% ifse{0,1}and ris even,

s <x and x+t—1<49 ifse{0,1} and ris odd,

d+s d -
o1 <x and x+r—1<7 ifs>2.



Suppose s € {0,1} and r is even. If d =tr*> +tr+sr—r—1 and S(d,s,r)
contains ¢ distinct integers, then let x € Z be as large as possible such that

d 1
x+t—1<—-—=tr+t—14s5——;
r r
then x =tr+s—1. But d“ =tr+s—1 < x, a contradiction. Therefore f(r,s,t) >
tr? +tr+sr—r.

Next suppose s € {0,1} and r is odd. If d = tr*> +tr+sr—r and S(d,s,r)
contains ¢ distinct integers then let x € Z be as small as possible such that x > dj:f
Then x > tr+s— 1+ 5. Therefore x = fr +s. But d =tr+t+s—1>x+1-1,
sotr+s>x,a contradlctlon. Therefore f(r,s,t) > tr +tr+sr—r+1.

Now suppose that s > 2. If d = tr> +tr +sr and S(d,s,r) conatins ¢ distinct
integers then let x € Z be as large as possible such that x+¢ —1 < % =tr+t—+s.
Then x = tr+s. But d“ =tr+s < x, a contradiction. Therefore

f(r,s,t) >tr* +tr4sr+1.

Return now to the case when s € {0,1} and r is even. Let d > tr? +tr+sr—r,
sayd =tr*+tr+sr—r+¢e Then ¢ =tr4t+s5s—1+ £. Choose an integer x as
large as possible so that x+¢—1 < %. Then

SR

€
x+t—1=tr+t+s—1+ PJ )
.
sox=tr+s+ [%J Now

d+s _ trr+tr+sr—r+s+e

r+1 r+1 ’
:m—tr+s—l+m. Put € = pr+q where 0 < g < r. Then x =tr+s+ p.
S0
o= s L = st S
= tr+s+p+ L7l = x+ 450
< x,

since r > g and p > 0. Therefore f(r,s5,t) < tr®> +tr+sr—r. Therefore f(r,s,t) =
trr+tr+sr—r.

Next suppose that s € {0,1} and r is odd. Let d > tr> +tr+sr—r+ 1, say
d=tr’+tr+sr—r+1+¢. Then % = tr—i—t—i—s—l—k#. Choose x € Z as
large as possible so that x+1 —1 < 4 =tr+t+s—1-+ 8“. Then x+t—1=
tr+t+s—1+ 8], sox=1tr+s+ % J Now d“—tr—i-s—l—kprg Pute = pr+gq

where 0 < g < r. Thenx =tr+ s+ p and fif —tr—l—s—l—l—ztirfrq SO

d 1—r— 1—r—
r+1 r+1 r+1

9



since r > ¢+ 1 and p > 0. Therefore f(r,s,t) > tr> +tr+ sr —r + 1. Therefore
f(rs,t) =trr+tr+sr—r+1.

Finally suppose that x > 2. Letd > tr> +tr+sr-+1,sayd = tr> +tr+sr+1+¢.
Then % =tr+t+s+ l—j"’ Choose an integer x as large as possible so thatx+7—1 <
% :tr+t+s+l—J;g. Thenx—t—1=tr+t+s+ L%J, sox=tr+s+1+ L%J Now

% =tr+s—+ Lri‘lc‘ Pute = pr+4gq, where 0 < g <r. Thenx=tr+s+1+p and

d l1+¢ —r—
+S:tr+s+ i :x+q d p<x,
r+1 r+1 r+1
since r > g and p > 0. Therefore f(r,s,¢) > tr> +tr+sr+1, so it follows that
f(r,s,t) =tr? +tr+sr+1, as asserted. O
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