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Abstract

For a positive integer n, let G be Kn if n is odd and Kn less a
one-factor if n is even. In this paper it is shown that, for non-negative
integers p, q and r, there is a decomposition of G into p 4-cycles, q
6-cycles and r 8-cycles if 4p + 6q + 8r = |E(G)|, q = 0 if n < 6,
and r = 0 if n < 8.

1 Introduction

Is it possible to decompose Kn (n odd) or Kn−In (n even, In is a one-factor
of Kn) into t cycles of lengths m1, . . . ,mt? Obvious necessary conditions
for finding these cycle decompositions are that each cycle length must be
between 3 and n and the sum of the cycle lengths must equal the number
of edges in the graph being decomposed. That these simple conditions are
sufficient was conjectured by Alspach [3] in 1981. To date, only a few special
cases have been solved, mostly where each mi must take one of a restricted
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number of values [1, 2, 6, 8]. In particular, we note that the case where
all the cycles have the same length has recently been completely solved by
Alspach and Gavlas [4] and Šajna [11]. We also note that Rosa [10] has
proved that the conjecture is true for n ≤ 10, and Balister [5] has shown
that the conjecture is true if the cycle lengths are bounded by some linear
function of n and n is sufficiently large.

In this paper, we solve the case where each cycle has length 4, 6 or 8; for
the proof we introduce an innovative extension technique for finding cycle
decompositions of Kn(−In) from decompositions of Km, m < n.

Theorem 1 Let n be a positive integer. Let p, q and r be non-negative
integers. Then Kn (n odd) or Kn − In (n even) can be decomposed into p
4-cycles, q 6-cycles and r 8-cycles if and only if

1. 4p + 6q + 8r =
{

|E(Kn)| if n is odd,
|E(Kn − In)| if n is even, and

2. the cycles all have length at most n.

Our novel extension technique is described in the next section. The
proof of Theorem 1 is in the final section.

Definitions and notation. An edge joining u and v is denoted (u, v). A
path of length k−1 is denoted (v1, . . . , vk) where vi is adjacent to vi+1, 1 ≤
i ≤ k−1, but a path of length zero—that is, a single vertex—will be denoted
simply v1 rather than (v1). A k-cycle is denoted [v1, . . . , vk], where vi is
adjacent to vi+1, 1 ≤ i ≤ k − 1, and v1 is adjacent to vk. A path-graph is a
collection of vertex-disjoint paths and is described by listing the paths. A
path-graph containing only paths of lengths zero or one is a matching.

2 An extension technique

In this section we introduce a technique that we can use to obtain cy-
cle decompositions of Kn(−In) from cycle decompositions of Km(−Im)
when m < n.

First we define a different type of decomposition. Let n, s and t be
non-negative integers. An (s, t)-decomposition of Kn may be either even
or odd. An odd (s, t)-decomposition contains the following collection of
subgraphs:

• path-graphs P1, . . . , Ps, and

• cycles Cs+1, . . . , Cs+t;

with the following properties:

• their edge-sets partition the edge-set of Kn, and

• each vertex is in precisely s of the subgraphs P1, . . . Ps, Cs+1, . . . , Cs+t.
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An even (s, t)-decomposition of Kn is the same as an odd (s, t)-decomposition
except that it also contains a matching P0 which contains every vertex.

Example 1. We display an odd (4, 2)-decomposition of K7:

P1 = (1, 5, 2, 4), (3, 7)
P2 = (1, 6, 2, 7)
P3 = (3, 6, 5), 2
P4 = (4, 7, 5), 6
C5 = [1, 3, 5, 4, 6, 7]
C6 = [1, 2, 3, 4].

Now we introduce the idea of extending a decomposition of Km to
a decomposition of Kn. Let P1, . . . Ps, Cs+1, . . . , Cs+t be an odd (s, t)-
decomposition of Km. For n > m, n odd, identify the vertices of Km with
m of the vertices of Kn. If Kn has a decompostion into cycles C1, . . . , Cs+t

such that, for 1 ≤ i ≤ s, Ci is a supergraph of Pi, then we call this decom-
position an extension of the decomposition of Km. Similarly, for n > m,
n even, an even (s, t)-decompostion of Km, P0, . . . Ps, Cs+1, . . . , Cs+t, can
be extended to a decomposition of Kn less a one-factor In into cycles
C1, . . . , Cs+t if we have the additional property that In is a supergraph
of P0.

Theorem 2 Let m, n, s and t be non-negative integers with m < n and
s = b(n − 1)/2c. Let D = (P0, )P1, . . . Ps, Cs+1, . . . , Cs+t be an (s, t)-
decomposition of Km that is even or odd as the parity of n.

Then D can be extended to a decomposition of Kn (less a one-factor In

if n is even) into cycles C1, . . . , Cs+t if and only if,

for 1 ≤ i ≤ s, n−m ≥ |V (Pi)| − |E(Pi)|, and, (1)
if n is even, |E(P0)| ≥ m− n/2. (2)

Notice that since each vertex of V (Kn \Km) must be in s of the cycles, it
must be in each Ci, 1 ≤ i ≤ s, since the other cycles are subgraphs of Km.
Therefore Ci, 1 ≤ i ≤ s, has length |V (Pi)|+ n−m.

Before we prove Theorem 2, let us see how it can be used. We consider
four examples.

Example 2. Let D be the (4, 2)-decomposition of K7 shown in Example 1.
Apply Theorem 2 with n = 9, m = 7, s = 4 and t = 2. Checking that
(1) is satisfied is easy if we notice that |V (Pi)| − |E(Pi)| is equal to the
number of paths in Pi (remember that we count an isolated vertex as a
path). By Theorem 2, there exists a cycle decomposition C1, . . . , C6 of K9

where Ci, 1 ≤ i ≤ 4 is a supergraph of Pi. As Ci has length |V (Pi)|+ n−
m, C1 will be an 8-cycle and C2, C3 and C4 will be 6-cycles. We display
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an example of a cycle decomposition obtained by extending D.

C1 = [1, 5, 2, 4, 9, 7, 3, 8]
C2 = [1, 6, 2, 7, 8, 9]
C3 = [2, 9, 3, 6, 5, 8]
C4 = [4, 7, 5, 9, 6, 8]
C5 = [1, 3, 5, 4, 6, 7]
C6 = [1, 2, 3, 4].

In the following three examples, we begin with a cycle decomposition
of Km(−Im). By making slight changes to this decomposition—we take
the edges from one of the cycles, or from the one-factor Im, and use them
to create path-graphs—we obtain an (s, t)-decomposition of Km. Then we
apply Theorem 2 to obtain a cycle decomposition of Kn for some n > m.
This method of obtaining a cycle decomposition of a complete graph from
a cycle decomposition of a smaller complete graph will help us to give an
inductive proof of Theorem 1 in the final section.

Example 3. Let ∆ be a decomposition of K10 into p 4-cycles, q 6-cycles
and r 8-cycles and a one-factor I10 where the vertices are labelled so that

I10 = (1, 2), (3, 4), (5, 6), (7, 8), (9, 10).

Label the cycles C7 . . . , C6+p+q+r and let

P1 = (1, 2), (3, 4), 5
P2 = (5, 6), 7
P3 = (7, 8), 9
P4 = (9, 10), 1
P5 = 2, 3, 4
P6 = 6, 8, 10.

Let D = P1, . . . , P6, C7, . . . , Cp+q+r and notice that it is a decomposition
of K10. As the cycles C7, . . . , C6+p+q+r form a decomposition of K10− I10,
each vertex v ∈ V (K10) will be in four of them (consider degrees). Each
vertex is also in two of the path-graphs displayed above. Thus each vertex
is in 6 of the graphs of D, and D is an odd (6, p + q + r)-decomposition
of K10. Apply Theorem 2 with n = 13, m = 10, s = 6 and t = p + q + r (it
is easy to check that (1) is satisfied). The decomposition of K13 obtained
contains all the cycles of D and also cycles C1, . . . , C6 that are supergraphs
of the path-graphs P1, . . . , P6. Thus C1 has length 8 and Ci, 2 ≤ i ≤ 6, has
length 6, and the decomposition of K13 contains p 4-cycles, q + 5 6-cycles
and r + 1 8-cycles.

Hence, if we require a decomposition of K13 into p′ 4-cycles, q′ 6-cycles
and r′ 8-cycles, we can obtain it from a decomposition of K10 into p = p′
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4-cycles, q = q′ − 5 6-cycles and r = r′ − 1 8-cycles. Of course, we require
that q′ ≥ 5 and r′ ≥ 1 so that p, q and r are non-negative.

Example 4. Let m ≡ 1 mod 4, m ≥ 9. Suppose that we have a decompo-
sition ∆ of Km into p 4-cycles, q 6-cycles and r 8-cycles, where q ≥ 1. We
are going to use this to find a decomposition of Km+4 so let n = m+4 and
s = (n−1)/2. Let D be a decomposition of Km that contains all the cycles
of ∆ except one of the 6-cycles which we may assume is C = [1, 2, 3, 4, 5, 6].
Label the other cycles Cs+1, . . . , Cs+p+q+r−1. D also contains s path-graphs
that contain the edges of C and also isolated vertices. If m = 9, then s = 6
and the path-graphs are

P1 = (1, 2), 6, 7
P2 = (2, 3), 1, 7
P3 = (3, 4), 2, 8
P4 = (4, 5), 3, 8
P5 = (5, 6), 4, 9
P6 = (1, 6), 5, 9.

If m = 13, then there are two further path-graphs

P7 = 10, 11, 12, 13
P8 = 10, 11, 12, 13.

For m ≥ 17, there are further path-graphs P9, . . . , Ps, where, for 1 ≤ i ≤
(s− 8)/2,

P7+2i = P8+2i = 4i + 10, 4i + 11, 4i + 12, 4i + 13.

As the cycles of D form a decomposition of Km − C, v ∈ V (Km) \ C will
be in s − 2 of them; v is also in 2 of the path-graphs. If v ∈ C, then
it is in only s − 3 of the cycles of D, but is in 3 of the path-graphs. As
every vertex is in s of the graphs of D, it is an odd (s, p + q + r − 1)-
decomposition of Km. Use D to apply Theorem 2 with n, m and s as
defined and t = p + q + r − 1. The decomposition of Kn obtained contains
all the cycles of D and also cycles C1, . . . , Cs that are supergraphs of the
path-graphs P1, . . . , Ps, and Ci, 1 ≤ i ≤ s, has length |V (Pi)|+ n−m = 8.
The decomposition of Kn that is obtained contains p 4-cycles, q − 1 6-
cycles and r + s 8-cycles. Thus we can obtain a decomposition of Kn, n ≡
1 mod 4, n ≥ 13, into p′ 4-cycles, q′ 6-cycles and r′ 8-cycles from a cycle
decomposition of Kn−4 whenever r′ ≥ s.

Example 5. An example for complete graphs of even order. Let ∆ be a
decomposition of Km − Im, m ≥ 8 even, into p 4-cycles, q 6-cycles and r
8-cycles, where p ≥ 1. We are going to find a decomposition of Km+4 so
let n = m+4, s = (n−2)/2 and t = p+q+r−1. Let one of the 4-cycles be
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C = [1, 2, 3, 4]. Let D be a decomposition of Km that contains the cycles
of ∆−C (labelled Cs+1, . . . , Cs+t), a matching P0 = Im and s path-graphs
that contain the edges of C. If m = 8, the path-graphs are

P1 = (1, 2), 5, 6
P2 = (2, 3), 5, 6
P3 = (3, 4), 7, 8
P4 = (1, 4), 7, 8
P5 = 1, 2, 3, 4.

If m = 10, then P2, . . . , P5 are as above and

P1 = (1, 2), 9, 10
P6 = 5, 6, 9, 10.

For m ≥ 12, let P1 = (1, 2),m− 1,m, P2, . . . , P5 be as above and

P6 = 5, 6, 9, 10
P7 = 9, 10, 11, 12
P8 = 11, 12, 13, 14

...
...

...
Ps = m− 3,m− 2,m− 1,m.

Notice that D is an even (s, t)-decomposition of Km (it is easy to check that
every vertex is in P0 and s of the other graphs in D). Thus from D, a cycle
decomposition of Kn − In is obtained by applying Theorem 2 with n, m, s
and t as defined. The decomposition of Kn − In obtained contains cy-
cles C1, . . . , Cs of length, for 1 ≤ i ≤ s, |V (Pi)|+ n−m = 8. Therefore it
contains p−1 4-cycles, q 6-cycles and r+s 8-cycles, and we note that we can
obtain a decomposition of Kn−In, n ≥ 12 even, into p′ 4-cycles, q′ 6-cycles
and r′ 8-cycles from a cycle decomposition of Kn−4− In−4 whenever r ≥ s.

Proof of Theorem 2: Necessity: for 1 ≤ i ≤ s, Ci contains the edges
of Pi plus at most 2(n−m) edges from E(Kn) \ E(Km). As it has length
|V (Pi)|+ n−m, we have

|E(Pi)|+ 2(n−m) ≥ |V (Pi)|+ n−m.

Rearranging, (1) is obtained. Similarly, In contains the edges of P0 plus at
most n−m edges from E(Kn) \ E(Km). As In has n/2 edges,

|E(P0)|+ n−m ≥ n/2.

Rearranging, (2) is obtained.
Sufficiency: to simplify the presentation we will prove only the (slightly

trickier) case where n is even. Thus s = (n− 2)/2. Let the vertices of Km

be v1, . . . , vm.
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First consider the case m = n − 1. From (1) and (2) we find that,
for 1 ≤ i ≤ s,

|E(Pi)| ≥ |V (Pi)| − 1, and
|E(P0)| ≥ n/2− 1.

In fact, we must have equality in each case since P0 is a matching on n− 1
vertices and, for 1 ≤ i ≤ s, Pi is acyclic. Thus each Pi, 1 ≤ i ≤ s, must be
a single path and P0 contains n/2 − 1 independent edges and an isolated
vertex. Each vertex has degree n − 2 in Kn−1, is in s = (n − 2)/2 of
the subgraphs P1, . . . , Ps, Cs+1, . . . , Cs+t, and has degree at most 2 in each
of these subgraphs. Thus the vertex that has degree 0 in P0 must have
degree 2 in each of the other subgraphs that contain it, and each vertex
of degree 1 in P0, must have degree 1 in one of the other subgraphs that
contain it and degree 2 in the rest; that is, it must be the endvertex of
precisely one of the paths Pi, 1 ≤ i ≤ s. Therefore we obtain the cycle
decomposition of Kn from D, the (s, t)-decomposition of Kn−1, by adding
edges (vj , vn), 1 ≤ j ≤ n− 1, to the subgraphs in the following way. If vj is
an endvertex in Pi, then the new edge (vj , vn) is placed in the subgraph Pi.
Hence Pi becomes a cycle of length |V (Pi)|+1. Finally, if vj is the isolated
vertex in P0, then (vj , vn) is the additional edge required to form the one-
factor In.

Now we show that if m < n − 1, then D can be extended to D′, an
even (s, t)-decomposition of Km+1, so that (1) and (2) are satisfied with m
replaced by m+1. By repeating this argument a finite number of times an
even (s, t)-decomposition of Kn−1 that satisfies (1) and (2) with m replaced
by n− 1 can be found.

To obtain D′, a new vertex vm+1 is added to Km. It must be joined to
each vertex of Km by one edge and each of these m additional edges must
be added to exactly one of the path-graphs or the matching of D. Note
that as s = b(n− 1)/2c we require that vm+1 is in all s of the path-graphs,
so it must be added as an isolated vertex to any path-graph that has been
given no new edges.

We need a way to decide which subgraph each new edge should be placed
in. Construct a bipartite multigraph B with vertex sets {P ′

0, . . . , P
′
s} and

{v′1, . . . , v′m}. For 1 ≤ i ≤ s, 1 ≤ j ≤ m, if vj ∈ Pi, then join P ′
i to v′j

by 2 − dPi(vj) edges. Also join P ′
0 to vj by 1 − dP0(vj) edges. In fact, we

think of B as being constructed as follows: for 1 ≤ i ≤ s, join P ′
i to v′j by

two edges if vj ∈ Pi and join P ′
0 to vj by one edge; then for each edge (vj , vk)

in Pi, 0 ≤ i ≤ s, delete the edges (P ′
i , v

′
j) and (P ′

i , v
′
k).

If vj is in x of the cycles in D, then it is in s−x of the path-graphs; it is
also in the matching P0. As it is incident with 2x edges in the cycles, it is
incident with m− 1− 2x edges in the matching and path-graphs. When B
is constructed, we begin by placing 2(s− x) + 1 edges at v′j . For 0 ≤ i ≤ s,
for each edge incident at vj in Pi, we delete an edge (P ′

i , v
′
j) in B. Therefore

dB(v′j) = 2(s− x) + 1− (m− 1− 2x) = n−m. (3)
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When we construct B, we first place 2|V (Pi)| edges at P ′
i , 1 ≤ i ≤ s.

Then for each edge (vj , vk) in Pi, we delete two of these edges: (P ′
i , v

′
j)

and (P ′
i , v

′
k). Thus, by (1), for 1 ≤ i ≤ s,

dB(P ′
i ) = 2(|V (Pi)| − |E(Pi)|) ≤ 2(n−m). (4)

Using a similar argument, by (2),

dB(P ′
0) = |V (P0)| − |E(P0)| ≤ n−m. (5)

We need the following: a set F of sets is a laminar set if, for all X, Y ∈ F ,
either X ⊆ Y , or Y ⊆ X or X ∩ Y = ∅; we say x ≈ y if byc ≤ x ≤ dye
(note that the relation is not symmetric).

Lemma 3 [9] If F and G are laminar sets of subsets of a finite set M
and h is a positive integer, then there exists a set L ⊆ M such that

|L ∩X| ≈ |X|/h for every X ∈ F ∪ G.

We construct two laminar sets F and G which contain subsets of E(B).
Let F contain sets P ∗

0 , . . . , P ∗
s , where P ∗

i , 0 ≤ i ≤ s, contains the set of all
edges incident with P ′

i in B. Also if vj1 and vj2 are endvertices of a path in
Pi, then let {(P ′

i , v
′
j1

), (P ′
i , v

′
j2

)} be a set in F (call these endvertex-sets).
Let G contain sets v∗1 , . . . , v∗m, where v∗j , 1 ≤ j ≤ m, contains the set of all
edges incident with v′j in B.

Apply Lemma 3 with M = E(B) and h = n − m to obtain a set of
edges L that, by (3), (4) and (5), contains exactly one edge incident with
v′j , 1 ≤ j ≤ m, at most two edges incident with P ′

i , 1 ≤ i ≤ s, and at most
one edge incident with P0. Also L contains at most one edge from each
endvertex-set.

Now we extend D to D′. For 1 ≤ j ≤ n, if (P ′
i , v

′
j) is in L, then

(vm+1, vj) is placed in Pi. Then vm+1 is added as an isolated vertex to
any Pi to which no new edges have been added. Since L contains exactly
one edge incident with each vj , each new edge is placed in exactly one
subgraph. There is only an edge (P ′

i , v
′
j), 1 ≤ i ≤ s, 1 ≤ j ≤ m, in B if vj

has degree less than 2, so after the new edges are added vj has degree at
most 2 in Pi. Since L contains at most two edges incident with Pi, 1 ≤ i ≤ s,
vm+1 has degree at most 2 in each Pi, 1 ≤ i ≤ s. As L contains at most
one edge from each endvertex-set, vm+1 cannot have been joined to both
ends of a path in Pi (thus creating a cycle). Therefore Pi, 1 ≤ i ≤ s, is still
a path-graph. By a similar argument, P0 is still a matching.

We must check that (1) and (2) remain satisfied with m replaced by m+
1. First (1): note that |V (Pi)| increases by one (as the new vertex is
adjoined to every path-graph) and E(Pi) increases by at most two. If
initially we have

n−m− 2 ≥ |V (Pi)| − |E(Pi)|,
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then clearly (1) remains satisfied. If

n−m− 1 = |V (Pi)| − |E(Pi)|,

then, arguing as for (4), dB(P ′
i ) = 2(|V (Pi)| − |E(Pi)|) = 2(n − m) − 2 ≥

n−m (since n−m ≥ 2). So L contains at least one edge incident with P ′
i

and at least one edge is added to Pi and (1) remains satisfied. If

n−m = |V (Pi)| − |E(Pi)|,

then dB(P ′
i ) = 2(n − m), and L contains two edges incident with P ′

i and
hence two edges are added to Pi and (1) remains satisfied.

Finally, if initially we have

|E(P0)| − 1 ≥ m− n/2,

then (2) remains satisfied. If

|E(P0)| = m− n/2,

then dB(P ′
0) = n−m, and L contains an edge incident with P ′

0 and hence
an edge is added to P0 and (2) remains satisfied. 2

3 Proof of Theorem 1

The necessity of the conditions is clear.
Sufficiency: as we remarked in the Introduction, all possible cycle de-

compositions of Kn have been found for n ≤ 10 [10]. For n > 10, we
assume that cycle decompositions for Kn′ , n′ < n, are known. Then we use
two techniques to find decompositions of Kn. Some cases are found using
Theorem 2 to extend a decomposition of Kn′ , n′ < n. The second method
is to consider Kn as the union of several edge-disjoint subgraphs. Each
cycle required in the decomposition of Kn is assigned to one of the sub-
graphs in such a way that the total number of edges in the cycles assigned
to a subgraph is equal to the number of edges in that subgraph. Thus
the problem of decomposing Kn becomes the problem of decomposing its
subgraphs. If a subgraph is a smaller complete graph, then we can assume
the decomposition exists, and if it is a complete bipartite graph, we can use
the following result of Chou, Fu and Huang.

Theorem 4 [7] The complete bipartite graph Km,n can be decomposed into p
4-cycles, q 6-cycles and r 8-cycles if and only if

1. m and n are even,

2. no cycle has length greater than 2 min{m,n},

3. mn = 4p + 6q + 8r, and
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4. if m = n = 4, then r 6= 1.

First suppose that n is odd. Note that if n ≡ 3 mod 4, Kn has an odd
number of edges and cannot have a decompisition into cycles of even length.

Case 1. n = 13. We require a decomposition of K13 into p 4-cycles, q
6-cycles and r 8-cycles. Note that

4p + 6q + 8r = |E(K13| = 78.

Thus q is odd since 78 6≡ 0 mod 4. In Section 2, we saw that we could
find a decomposition of K13 by extending a decomposition of K9 if r ≥ 6
(Example 4) or by extending a decomposition of K10 if q ≥ 5 (Example 3).
We may now assume that q ∈ {1, 3} and r ≤ 5, which implies that 4p ≥
78− (3× 6)− (5× 8) = 20, that is, p ≥ 5.

Consider K13 as the union of K5, K9 and K8,4 where K5 is defined on
the vertex set {1, . . . , 5}, K9 on the vertex set {5, . . . , 13}, and K4,8 on the
vertex sets {1, . . . , 4} and {6, . . . , 13}. Let C = [1, 6, 2, 7]. Let H1 = K5∪C
and H2 = K8,4 − C. Note that H1 is the union of two 4-cycles and a
6-cycle. K13 is the union of K9, H1 and H2. For the remaining cases,
we assign the cycles required in the decomposition of K13 to these three
subgraphs. (A decomposition of H2 is found by finding a decomposition
of K8,4 that contains, as well as the required cycles, a further 4-cycle which
can be labelled [1, 6, 2, 7] and discarded.) Two 4-cycles and a 6-cycle are
assigned to H1. There are at most two further 6-cycles which are assigned
to K9. Up to three 8-cycles are assigned to H2; any remaining 8-cycles
(there are at most two more) are assigned to K9. This only leaves some
4-cycles to be assigned, and clearly the number of edges not accounted for
in H2 and K9 is, in both cases, positive and equal to 0 mod 4.

Case 2. n = 17. We require a decomposition of K17 into p 4-cycles, q
6-cycles and r 8-cycles. Note that

4p + 6q + 8r = |E(K17)| = 136.

If r ≥ (n− 1)/2 = 8, then, as seen in Example 4, we can apply Theorem 2
to obtain the decomposition of K17 from a decomposition of K13.

For the remaining cases, let K17 = K9 ∪K9 ∪K8,8. We will assign the
required cycles to these three subgraphs. Suppose that 4p+8r ≥ 64. Then
we can assign all of the 8-cycles (since r < 8) and some 4-cycles to K8,8

so that the assigned cycles have precisely 64 edges. There remain to be
assigned some 4-cycles and 6-cycles which have a total of 72 edges. Thus
either 4p ≥ 36 or 6q ≥ 36 and we can assign cycles all of the same length
to a K9. We assign the remaining cycles to the other K9.

If 4p + 8r < 64, then 6q > 136− 64 = 72. We can assign six 6-cycles to
each K9 and the remaining cycles to K8,8.
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Case 3. n ≥ 21 odd. We require a decomposition of Kn into p 4-cycles, q
6-cycles and r 8-cycles. If r ≥ (n−1)/2, then, as seen in Example 4, we can
apply Theorem 2 to obtain the decomposition of Kn from a decomposition
of Kn−4. Otherwise r < (n− 1)/2. Let Kn = Kn−12 ∪K13 ∪Kn−13,12. We
assign the required cycles to these subgraphs.

Suppose that 4p + 8r ≥ |E(Kn−13,12)|. Then we can assign all of the
8-cycles and some 4-cycles to Kn−13,12 (since 8r < 4(n − 1) < 12(n − 13)
for n ≥ 21). We are left with 4-cycles and 6-cycles to assign to Kn−12

and K13. We can assign cycles all of the same length to the smaller of these
graphs (which is either K9 or K13—both have a number of edges equal
to 0 mod 4 and 0 mod 6) and the remaining cycles to the other.

If 4p+8r < |E(Kn−13,12)|, then 6q ≥ |E(Kn−12)|+|E(K13)|. We cannot
simply assign 6-cycles to Kn−12 and K13 however, since |E(Kn−12)| is not
equal to 0 mod 6 for all n ≡ 1 mod 4. If 6q ≥ |E(Kn−13,12)| + |E(K13)|,
then we can assign 6-cycles to Kn−13,12 and K13 and any remaining cycles
to Kn−12. If 6q < |E(Kn−13,12)|+|E(K13)|, then 4p+8r > |E(Kn−12)| > 16
(as n ≥ 21). One of the following must be true.

|E(Kn−12)| ≡ 0 mod 6
|E(Kn−12)|+ 8 ≡ 0 mod 6
|E(Kn−12)|+ 16 ≡ 0 mod 6

We assign 6-cycles to K13 and to Kn−12, except that to Kn−12 we also
assign 4-cycles and 8-cycles with a total of 8 or 16 edges if the number of
edges in Kn−12 is 2 mod 6 or 4 mod 6, respectively. The remaining edges
are assigned to Kn−13,12.

Case 4. n = 12. We require a decomposition of K12−I12 into p 4-cycles, q
6-cycles and r 8-cycles. Then

4p + 6q + 8r = |E(K12 − I12)| = 60,

and so q is even. In Example 5, we saw that if r ≥ (n−2)/2 = 5, we can use
Theorem 2 to extend a decomposition of K8 to obtain the required cycle
decomposition of K12 − I12. Otherwise let K12 − I12 = (K6 − I6) ∪ (K6 −
I6) ∪K6,6. We will assign the required cycles to these subgraphs.

Note that 4p + 6q ≥ 60 − 32 = 28 (since r ≤ 4). If q = 0, then p ≥ 7
and we can assign 4-cycles to each K6. If q = 2, we assign the two 6-cycles
to one K6 and 4-cycles to the other K6. If q ≥ 4, we assign 6-cycles to
each K6. In each case the remaining cycles are assigned to K6,6.

Case 5. n ≥ 14 even. We require a decomposition of Kn − In into p
4-cycles, q 6-cycles and r 8-cycles. In Example 5, we saw that if r ≥
(n − 2)/2, we can use Theorem 2 to extend a decomposition of Kn−4 to
find the required cycle decomposition of Kn − In. Otherwise let Kn − In =
(K6 − I6) ∪ (Kn−6 − In−6) ∪K6,n−6. We will assign the required cycles to
these subgraphs.
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We have

4p + 6q = |E(Kn − In)| − 8r

≥ n(n− 2)/2− 4(n− 4)
= (n2 − 10n + 32)/2
≥ 44,

as n ≥ 14. Therefore 4p ≥ 22 or 6q ≥ 22 and we can assign cycles all
of length 4 or all of length 6 to K6 − I6. Note that the number of edges
in K6,n−6 is 0 mod 12. If q ≥ n − 6, we assign only 6-cycles to K6,n−6.
Otherwise we assign all the 6-cycles to K6,n−6 if q is even, or all but one
of them if q is odd. Then the number of remaining edges is also 0 mod 12
so we can assign as many 4-cycles as necessary. All remaining cycles are
assigned to Kn−6. 2

References

[1] P. Adams, D.E. Bryant and A. Khodkar, 3, 5-cycle decompositions, J.
Combin. Designs 6 (1998), 91–110.

[2] P. Adams, D.E. Bryant, A. Khodkar, On Alspach’s conjecture with
two even cycle lengths, Discrete Math. 223 (2000), 1–12.

[3] B. Alspach, Research Problems, Problem 3, Discrete Math. 35 (1981),
333.

[4] B. Alspach and H. Gavlas, Cycle decompositions of Kn and Kn − I,
J. Combin. Theory B 81 (2001), 77–99.

[5] P.N. Balister, On the Alspach conjecture, Comb. Probab. Comput. 10
(2001), 95–125.

[6] D.E Bryant, A. Khodkar and H.L. Fu, (m,n)-cycle systems, J. Statist.
Planning & Inference 74 (1998), 365–370.

[7] C-C. Chou, C-M. Fu and W-C. Huang, Decomposition of Km,n into
short cycles, Discrete Math. 197/198 (1999), 195–203.

[8] K. Heinrich, P. Horak and A. Rosa, On Alspach’s conjecture, Discrete
Math. 77 (1989), 97–121.

[9] C. St. J. A. Nash-Williams, Amalgamations of almost regular edge-
colourings of simple graphs, J. Combin. Theory B, 43 (1987), 322-342.

[10] A. Rosa, Alspach’s conjecture is true for n ≤ 10, Math. Reports, Mc-
Master University.
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