Cycle decompositions of the complete graph

A.J.W. Hilton
Department of Mathematics
University of Reading
Whiteknights
P.O. Box 220
Reading RG6 6AX
U.K.
Matthew Johnson*
Department of Mathematics
London School of Economics
Houghton Street
London WC2A 2AE
U.K.

Abstract

For a positive integer n, let G be K_{n} if n is odd and K_{n} less a one-factor if n is even. In this paper it is shown that, for non-negative integers p, q and r, there is a decomposition of G into $p 4$-cycles, q 6 -cycles and r-cycles if $4 p+6 q+8 r=|E(G)|, q=0$ if $n<6$, and $r=0$ if $n<8$.

1 Introduction

Is it possible to decompose K_{n} (n odd) or $K_{n}-I_{n}$ (n even, I_{n} is a one-factor of K_{n}) into t cycles of lengths m_{1}, \ldots, m_{t} ? Obvious necessary conditions for finding these cycle decompositions are that each cycle length must be between 3 and n and the sum of the cycle lengths must equal the number of edges in the graph being decomposed. That these simple conditions are sufficient was conjectured by Alspach [3] in 1981. To date, only a few special cases have been solved, mostly where each m_{i} must take one of a restricted

[^0]number of values $[1,2,6,8]$. In particular, we note that the case where all the cycles have the same length has recently been completely solved by Alspach and Gavlas [4] and Šajna [11]. We also note that Rosa [10] has proved that the conjecture is true for $n \leq 10$, and Balister [5] has shown that the conjecture is true if the cycle lengths are bounded by some linear function of n and n is sufficiently large.

In this paper, we solve the case where each cycle has length 4,6 or 8 ; for the proof we introduce an innovative extension technique for finding cycle decompositions of $K_{n}\left(-I_{n}\right)$ from decompositions of $K_{m}, m<n$.

Theorem 1 Let n be a positive integer. Let p, q and r be non-negative integers. Then K_{n} (n odd) or $K_{n}-I_{n}$ (n even) can be decomposed into p 4-cycles, q 6-cycles and r 8-cycles if and only if

1. $4 p+6 q+8 r=\left\{\begin{array}{l}\left|E\left(K_{n}\right)\right| \text { if } n \text { is odd, } \\ \left|E\left(K_{n}-I_{n}\right)\right| \text { if } n \text { is even, and }\end{array}\right.$
2. the cycles all have length at most n.

Our novel extension technique is described in the next section. The proof of Theorem 1 is in the final section.

Definitions and notation. An edge joining u and v is denoted (u, v). A path of length $k-1$ is denoted $\left(v_{1}, \ldots, v_{k}\right)$ where v_{i} is adjacent to $v_{i+1}, 1 \leq$ $i \leq k-1$, but a path of length zero - that is, a single vertex-will be denoted simply v_{1} rather than $\left(v_{1}\right)$. A k-cycle is denoted $\left[v_{1}, \ldots, v_{k}\right]$, where v_{i} is adjacent to $v_{i+1}, 1 \leq i \leq k-1$, and v_{1} is adjacent to v_{k}. A path-graph is a collection of vertex-disjoint paths and is described by listing the paths. A path-graph containing only paths of lengths zero or one is a matching.

2 An extension technique

In this section we introduce a technique that we can use to obtain cycle decompositions of $K_{n}\left(-I_{n}\right)$ from cycle decompositions of $K_{m}\left(-I_{m}\right)$ when $m<n$.

First we define a different type of decomposition. Let n, s and t be non-negative integers. An (s, t)-decomposition of K_{n} may be either even or odd. An odd (s, t)-decomposition contains the following collection of subgraphs:

- path-graphs P_{1}, \ldots, P_{s}, and
- cycles C_{s+1}, \ldots, C_{s+t};
with the following properties:
- their edge-sets partition the edge-set of K_{n}, and
- each vertex is in precisely s of the subgraphs $P_{1}, \ldots P_{s}, C_{s+1}, \ldots, C_{s+t}$.

An even (s, t)-decomposition of K_{n} is the same as an odd (s, t)-decomposition except that it also contains a matching P_{0} which contains every vertex.

Example 1. We display an odd (4, 2)-decomposition of K_{7} :

$$
\begin{aligned}
P_{1} & =(1,5,2,4),(3,7) \\
P_{2} & =(1,6,2,7) \\
P_{3} & =(3,6,5), 2 \\
P_{4} & =(4,7,5), 6 \\
C_{5} & =[1,3,5,4,6,7] \\
C_{6} & =[1,2,3,4]
\end{aligned}
$$

Now we introduce the idea of extending a decomposition of K_{m} to a decomposition of K_{n}. Let $P_{1}, \ldots P_{s}, C_{s+1}, \ldots, C_{s+t}$ be an odd (s, t) decomposition of K_{m}. For $n>m, n$ odd, identify the vertices of K_{m} with m of the vertices of K_{n}. If K_{n} has a decompostion into cycles C_{1}, \ldots, C_{s+t} such that, for $1 \leq i \leq s, C_{i}$ is a supergraph of P_{i}, then we call this decomposition an extension of the decomposition of K_{m}. Similarly, for $n>m$, n even, an even (s, t)-decompostion of $K_{m}, P_{0}, \ldots P_{s}, C_{s+1}, \ldots, C_{s+t}$, can be extended to a decomposition of K_{n} less a one-factor I_{n} into cycles C_{1}, \ldots, C_{s+t} if we have the additional property that I_{n} is a supergraph of P_{0}.

Theorem 2 Let m, n, s and t be non-negative integers with $m<n$ and $s=\lfloor(n-1) / 2\rfloor$. Let $D=\left(P_{0},\right) P_{1}, \ldots P_{s}, C_{s+1}, \ldots, C_{s+t}$ be an (s, t) decomposition of K_{m} that is even or odd as the parity of n.

Then D can be extended to a decomposition of K_{n} (less a one-factor I_{n} if n is even) into cycles C_{1}, \ldots, C_{s+t} if and only if,

$$
\begin{align*}
& \text { for } 1 \leq i \leq s, \quad n-m \geq\left|V\left(P_{i}\right)\right|-\left|E\left(P_{i}\right)\right|, \text { and, } \tag{1}\\
& \text { if } n \text { is even, } \quad\left|E\left(P_{0}\right)\right| \geq m-n / 2 \tag{2}
\end{align*}
$$

Notice that since each vertex of $V\left(K_{n} \backslash K_{m}\right)$ must be in s of the cycles, it must be in each $C_{i}, 1 \leq i \leq s$, since the other cycles are subgraphs of K_{m}. Therefore $C_{i}, 1 \leq i \leq s$, has length $\left|V\left(P_{i}\right)\right|+n-m$.

Before we prove Theorem 2, let us see how it can be used. We consider four examples.

Example 2. Let D be the (4,2)-decomposition of K_{7} shown in Example 1. Apply Theorem 2 with $n=9, m=7, s=4$ and $t=2$. Checking that (1) is satisfied is easy if we notice that $\left|V\left(P_{i}\right)\right|-\left|E\left(P_{i}\right)\right|$ is equal to the number of paths in P_{i} (remember that we count an isolated vertex as a path). By Theorem 2, there exists a cycle decomposition C_{1}, \ldots, C_{6} of K_{9} where $C_{i}, 1 \leq i \leq 4$ is a supergraph of P_{i}. As C_{i} has length $\left|V\left(P_{i}\right)\right|+n-$ m, C_{1} will be an 8 -cycle and C_{2}, C_{3} and C_{4} will be 6 -cycles. We display
an example of a cycle decomposition obtained by extending D.

$$
\begin{aligned}
C_{1} & =[1,5,2,4,9,7,3,8] \\
C_{2} & =[1,6,2,7,8,9] \\
C_{3} & =[2,9,3,6,5,8] \\
C_{4} & =[4,7,5,9,6,8] \\
C_{5} & =[1,3,5,4,6,7] \\
C_{6} & =[1,2,3,4] .
\end{aligned}
$$

In the following three examples, we begin with a cycle decomposition of $K_{m}\left(-I_{m}\right)$. By making slight changes to this decomposition-we take the edges from one of the cycles, or from the one-factor I_{m}, and use them to create path-graphs - we obtain an (s, t)-decomposition of K_{m}. Then we apply Theorem 2 to obtain a cycle decomposition of K_{n} for some $n>m$. This method of obtaining a cycle decomposition of a complete graph from a cycle decomposition of a smaller complete graph will help us to give an inductive proof of Theorem 1 in the final section.

Example 3. Let Δ be a decomposition of K_{10} into $p 4$-cycles, $q 6$-cycles and r 8-cycles and a one-factor I_{10} where the vertices are labelled so that

$$
I_{10}=(1,2),(3,4),(5,6),(7,8),(9,10) .
$$

Label the cycles $C_{7} \ldots, C_{6+p+q+r}$ and let

$$
\begin{aligned}
P_{1} & =(1,2),(3,4), 5 \\
P_{2} & =(5,6), 7 \\
P_{3} & =(7,8), 9 \\
P_{4} & =(9,10), 1 \\
P_{5} & =2,3,4 \\
P_{6} & =6,8,10 .
\end{aligned}
$$

Let $D=P_{1}, \ldots, P_{6}, C_{7}, \ldots, C_{p+q+r}$ and notice that it is a decomposition of K_{10}. As the cycles $C_{7}, \ldots, C_{6+p+q+r}$ form a decomposition of $K_{10}-I_{10}$, each vertex $v \in V\left(K_{10}\right)$ will be in four of them (consider degrees). Each vertex is also in two of the path-graphs displayed above. Thus each vertex is in 6 of the graphs of D, and D is an odd $(6, p+q+r)$-decomposition of K_{10}. Apply Theorem 2 with $n=13, m=10, s=6$ and $t=p+q+r$ (it is easy to check that (1) is satisfied). The decomposition of K_{13} obtained contains all the cycles of D and also cycles C_{1}, \ldots, C_{6} that are supergraphs of the path-graphs P_{1}, \ldots, P_{6}. Thus C_{1} has length 8 and $C_{i}, 2 \leq i \leq 6$, has length 6 , and the decomposition of K_{13} contains $p 4$-cycles, $q+56$-cycles and $r+18$-cycles.

Hence, if we require a decomposition of K_{13} into $p^{\prime} 4$-cycles, $q^{\prime} 6$-cycles and $r^{\prime} 8$-cycles, we can obtain it from a decomposition of K_{10} into $p=p^{\prime}$

4-cycles, $q=q^{\prime}-56$-cycles and $r=r^{\prime}-18$-cycles. Of course, we require that $q^{\prime} \geq 5$ and $r^{\prime} \geq 1$ so that p, q and r are non-negative.

Example 4. Let $m \equiv 1 \bmod 4, m \geq 9$. Suppose that we have a decomposition Δ of K_{m} into $p 4$-cycles, $q 6$-cycles and $r 8$-cycles, where $q \geq 1$. We are going to use this to find a decomposition of K_{m+4} so let $n=m+4$ and $s=(n-1) / 2$. Let D be a decomposition of K_{m} that contains all the cycles of Δ except one of the 6 -cycles which we may assume is $C=[1,2,3,4,5,6]$. Label the other cycles $C_{s+1}, \ldots, C_{s+p+q+r-1} . D$ also contains s path-graphs that contain the edges of C and also isolated vertices. If $m=9$, then $s=6$ and the path-graphs are

$$
\begin{aligned}
P_{1} & =(1,2), 6,7 \\
P_{2} & =(2,3), 1,7 \\
P_{3} & =(3,4), 2,8 \\
P_{4} & =(4,5), 3,8 \\
P_{5} & =(5,6), 4,9 \\
P_{6} & =(1,6), 5,9 .
\end{aligned}
$$

If $m=13$, then there are two further path-graphs

$$
\begin{aligned}
& P_{7}=10,11,12,13 \\
& P_{8}=10,11,12,13 .
\end{aligned}
$$

For $m \geq 17$, there are further path-graphs P_{9}, \ldots, P_{s}, where, for $1 \leq i \leq$ $(s-8) / 2$,

$$
P_{7+2 i}=P_{8+2 i}=4 i+10,4 i+11,4 i+12,4 i+13 .
$$

As the cycles of D form a decomposition of $K_{m}-C, v \in V\left(K_{m}\right) \backslash C$ will be in $s-2$ of them; v is also in 2 of the path-graphs. If $v \in C$, then it is in only $s-3$ of the cycles of D, but is in 3 of the path-graphs. As every vertex is in s of the graphs of D, it is an odd $(s, p+q+r-1)$ decomposition of K_{m}. Use D to apply Theorem 2 with n, m and s as defined and $t=p+q+r-1$. The decomposition of K_{n} obtained contains all the cycles of D and also cycles C_{1}, \ldots, C_{s} that are supergraphs of the path-graphs P_{1}, \ldots, P_{s}, and $C_{i}, 1 \leq i \leq s$, has length $\left|V\left(P_{i}\right)\right|+n-m=8$. The decomposition of K_{n} that is obtained contains $p 4$-cycles, $q-16$ cycles and $r+s 8$-cycles. Thus we can obtain a decomposition of $K_{n}, n \equiv$ $1 \bmod 4, n \geq 13$, into $p^{\prime} 4$-cycles, $q^{\prime} 6$-cycles and $r^{\prime} 8$-cycles from a cycle decomposition of K_{n-4} whenever $r^{\prime} \geq s$.

Example 5. An example for complete graphs of even order. Let Δ be a decomposition of $K_{m}-I_{m}, m \geq 8$ even, into $p 4$-cycles, $q 6$-cycles and r 8 -cycles, where $p \geq 1$. We are going to find a decomposition of K_{m+4} so let $n=m+4, s=(n-2) / 2$ and $t=p+q+r-1$. Let one of the 4 -cycles be
$C=[1,2,3,4]$. Let D be a decomposition of K_{m} that contains the cycles of $\Delta-C$ (labelled C_{s+1}, \ldots, C_{s+t}), a matching $P_{0}=I_{m}$ and s path-graphs that contain the edges of C. If $m=8$, the path-graphs are

$$
\begin{aligned}
P_{1} & =(1,2), 5,6 \\
P_{2} & =(2,3), 5,6 \\
P_{3} & =(3,4), 7,8 \\
P_{4} & =(1,4), 7,8 \\
P_{5} & =1,2,3,4
\end{aligned}
$$

If $m=10$, then P_{2}, \ldots, P_{5} are as above and

$$
\begin{aligned}
P_{1} & =(1,2), 9,10 \\
P_{6} & =5,6,9,10
\end{aligned}
$$

For $m \geq 12$, let $P_{1}=(1,2), m-1, m, P_{2}, \ldots, P_{5}$ be as above and

$$
\begin{aligned}
P_{6} & =5,6,9,10 \\
P_{7} & =9,10,11,12 \\
P_{8} & =11,12,13,14 \\
\vdots & \vdots \\
P_{s} & =m-3, m-2, m-1, m .
\end{aligned}
$$

Notice that D is an even (s, t)-decomposition of K_{m} (it is easy to check that every vertex is in P_{0} and s of the other graphs in D). Thus from D, a cycle decomposition of $K_{n}-I_{n}$ is obtained by applying Theorem 2 with n, m, s and t as defined. The decomposition of $K_{n}-I_{n}$ obtained contains cycles C_{1}, \ldots, C_{s} of length, for $1 \leq i \leq s,\left|V\left(P_{i}\right)\right|+n-m=8$. Therefore it contains $p-14$-cycles, $q 6$-cycles and $r+s 8$-cycles, and we note that we can obtain a decomposition of $K_{n}-I_{n}, n \geq 12$ even, into $p^{\prime} 4$-cycles, $q^{\prime} 6$-cycles and $r^{\prime} 8$-cycles from a cycle decomposition of $K_{n-4}-I_{n-4}$ whenever $r \geq s$.

Proof of Theorem 2: Necessity: for $1 \leq i \leq s, C_{i}$ contains the edges of P_{i} plus at most $2(n-m)$ edges from $E\left(K_{n}\right) \backslash E\left(K_{m}\right)$. As it has length $\left|V\left(P_{i}\right)\right|+n-m$, we have

$$
\left|E\left(P_{i}\right)\right|+2(n-m) \geq\left|V\left(P_{i}\right)\right|+n-m
$$

Rearranging, (1) is obtained. Similarly, I_{n} contains the edges of P_{0} plus at most $n-m$ edges from $E\left(K_{n}\right) \backslash E\left(K_{m}\right)$. As I_{n} has $n / 2$ edges,

$$
\left|E\left(P_{0}\right)\right|+n-m \geq n / 2
$$

Rearranging, (2) is obtained.
Sufficiency: to simplify the presentation we will prove only the (slightly trickier) case where n is even. Thus $s=(n-2) / 2$. Let the vertices of K_{m} be v_{1}, \ldots, v_{m}.

First consider the case $m=n-1$. From (1) and (2) we find that, for $1 \leq i \leq s$,

$$
\begin{aligned}
\left|E\left(P_{i}\right)\right| & \geq\left|V\left(P_{i}\right)\right|-1, \text { and } \\
\left|E\left(P_{0}\right)\right| & \geq n / 2-1
\end{aligned}
$$

In fact, we must have equality in each case since P_{0} is a matching on $n-1$ vertices and, for $1 \leq i \leq s, P_{i}$ is acyclic. Thus each $P_{i}, 1 \leq i \leq s$, must be a single path and P_{0} contains $n / 2-1$ independent edges and an isolated vertex. Each vertex has degree $n-2$ in K_{n-1}, is in $s=(n-2) / 2$ of the subgraphs $P_{1}, \ldots, P_{s}, C_{s+1}, \ldots, C_{s+t}$, and has degree at most 2 in each of these subgraphs. Thus the vertex that has degree 0 in P_{0} must have degree 2 in each of the other subgraphs that contain it, and each vertex of degree 1 in P_{0}, must have degree 1 in one of the other subgraphs that contain it and degree 2 in the rest; that is, it must be the endvertex of precisely one of the paths $P_{i}, 1 \leq i \leq s$. Therefore we obtain the cycle decomposition of K_{n} from D, the (s, t)-decomposition of K_{n-1}, by adding edges $\left(v_{j}, v_{n}\right), 1 \leq j \leq n-1$, to the subgraphs in the following way. If v_{j} is an endvertex in P_{i}, then the new edge $\left(v_{j}, v_{n}\right)$ is placed in the subgraph P_{i}. Hence P_{i} becomes a cycle of length $\left|V\left(P_{i}\right)\right|+1$. Finally, if v_{j} is the isolated vertex in P_{0}, then $\left(v_{j}, v_{n}\right)$ is the additional edge required to form the onefactor I_{n}.

Now we show that if $m<n-1$, then D can be extended to D^{\prime}, an even (s, t)-decomposition of K_{m+1}, so that (1) and (2) are satisfied with m replaced by $m+1$. By repeating this argument a finite number of times an even (s, t)-decomposition of K_{n-1} that satisfies (1) and (2) with m replaced by $n-1$ can be found.

To obtain D^{\prime}, a new vertex v_{m+1} is added to K_{m}. It must be joined to each vertex of K_{m} by one edge and each of these m additional edges must be added to exactly one of the path-graphs or the matching of D. Note that as $s=\lfloor(n-1) / 2\rfloor$ we require that v_{m+1} is in all s of the path-graphs, so it must be added as an isolated vertex to any path-graph that has been given no new edges.

We need a way to decide which subgraph each new edge should be placed in. Construct a bipartite multigraph B with vertex sets $\left\{P_{0}^{\prime}, \ldots, P_{s}^{\prime}\right\}$ and $\left\{v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right\}$. For $1 \leq i \leq s, 1 \leq j \leq m$, if $v_{j} \in P_{i}$, then join P_{i}^{\prime} to v_{j}^{\prime} by $2-d_{P_{i}}\left(v_{j}\right)$ edges. Also join P_{0}^{\prime} to v_{j} by $1-d_{P_{0}}\left(v_{j}\right)$ edges. In fact, we think of B as being constructed as follows: for $1 \leq i \leq s$, join P_{i}^{\prime} to v_{j}^{\prime} by two edges if $v_{j} \in P_{i}$ and join P_{0}^{\prime} to v_{j} by one edge; then for each edge (v_{j}, v_{k}) in $P_{i}, 0 \leq i \leq s$, delete the edges $\left(P_{i}^{\prime}, v_{j}^{\prime}\right)$ and $\left(P_{i}^{\prime}, v_{k}^{\prime}\right)$.

If v_{j} is in x of the cycles in D, then it is in $s-x$ of the path-graphs; it is also in the matching P_{0}. As it is incident with $2 x$ edges in the cycles, it is incident with $m-1-2 x$ edges in the matching and path-graphs. When B is constructed, we begin by placing $2(s-x)+1$ edges at v_{j}^{\prime}. For $0 \leq i \leq s$, for each edge incident at v_{j} in P_{i}, we delete an edge $\left(P_{i}^{\prime}, v_{j}^{\prime}\right)$ in B. Therefore

$$
\begin{equation*}
d_{B}\left(v_{j}^{\prime}\right)=2(s-x)+1-(m-1-2 x)=n-m . \tag{3}
\end{equation*}
$$

When we construct B, we first place $2\left|V\left(P_{i}\right)\right|$ edges at $P_{i}^{\prime}, 1 \leq i \leq s$. Then for each edge $\left(v_{j}, v_{k}\right)$ in P_{i}, we delete two of these edges: $\left(P_{i}^{\prime}, v_{j}^{\prime}\right)$ and $\left(P_{i}^{\prime}, v_{k}^{\prime}\right)$. Thus, by (1), for $1 \leq i \leq s$,

$$
\begin{equation*}
d_{B}\left(P_{i}^{\prime}\right)=2\left(\left|V\left(P_{i}\right)\right|-\left|E\left(P_{i}\right)\right|\right) \leq 2(n-m) \tag{4}
\end{equation*}
$$

Using a similar argument, by (2),

$$
\begin{equation*}
d_{B}\left(P_{0}^{\prime}\right)=\left|V\left(P_{0}\right)\right|-\left|E\left(P_{0}\right)\right| \leq n-m \tag{5}
\end{equation*}
$$

We need the following: a set \mathcal{F} of sets is a laminar set if, for all $X, Y \in \mathcal{F}$, either $X \subseteq Y$, or $Y \subseteq X$ or $X \cap Y=\emptyset$; we say $x \approx y$ if $\lfloor y\rfloor \leq x \leq\lceil y\rceil$ (note that the relation is not symmetric).

Lemma 3 [9] If \mathcal{F} and \mathcal{G} are laminar sets of subsets of a finite set M and h is a positive integer, then there exists a set $L \subseteq M$ such that

$$
|L \cap X| \approx|X| / h \text { for every } X \in \mathcal{F} \cup \mathcal{G} .
$$

We construct two laminar sets \mathcal{F} and \mathcal{G} which contain subsets of $E(B)$. Let \mathcal{F} contain sets $P_{0}^{*}, \ldots, P_{s}^{*}$, where $P_{i}^{*}, 0 \leq i \leq s$, contains the set of all edges incident with P_{i}^{\prime} in B. Also if $v_{j_{1}}$ and $v_{j_{2}}$ are endvertices of a path in P_{i}, then let $\left\{\left(P_{i}^{\prime}, v_{j_{1}}^{\prime}\right),\left(P_{i}^{\prime}, v_{j_{2}}^{\prime}\right)\right\}$ be a set in \mathcal{F} (call these endvertex-sets). Let \mathcal{G} contain sets $v_{1}^{*}, \ldots, v_{m}^{*}$, where $v_{j}^{*}, 1 \leq j \leq m$, contains the set of all edges incident with v_{j}^{\prime} in B.

Apply Lemma 3 with $M=E(B)$ and $h=n-m$ to obtain a set of edges L that, by (3), (4) and (5), contains exactly one edge incident with $v_{j}^{\prime}, 1 \leq j \leq m$, at most two edges incident with $P_{i}^{\prime}, 1 \leq i \leq s$, and at most one edge incident with P_{0}. Also L contains at most one edge from each endvertex-set.

Now we extend D to D^{\prime}. For $1 \leq j \leq n$, if $\left(P_{i}^{\prime}, v_{j}^{\prime}\right)$ is in L, then $\left(v_{m+1}, v_{j}\right)$ is placed in P_{i}. Then v_{m+1} is added as an isolated vertex to any P_{i} to which no new edges have been added. Since L contains exactly one edge incident with each v_{j}, each new edge is placed in exactly one subgraph. There is only an edge $\left(P_{i}^{\prime}, v_{j}^{\prime}\right), 1 \leq i \leq s, 1 \leq j \leq m$, in B if v_{j} has degree less than 2 , so after the new edges are added v_{j} has degree at most 2 in P_{i}. Since L contains at most two edges incident with $P_{i}, 1 \leq i \leq s$, v_{m+1} has degree at most 2 in each $P_{i}, 1 \leq i \leq s$. As L contains at most one edge from each endvertex-set, v_{m+1} cannot have been joined to both ends of a path in P_{i} (thus creating a cycle). Therefore $P_{i}, 1 \leq i \leq s$, is still a path-graph. By a similar argument, P_{0} is still a matching.

We must check that (1) and (2) remain satisfied with m replaced by $m+$ 1. First (1): note that $\left|V\left(P_{i}\right)\right|$ increases by one (as the new vertex is adjoined to every path-graph) and $E\left(P_{i}\right)$ increases by at most two. If initially we have

$$
n-m-2 \geq\left|V\left(P_{i}\right)\right|-\left|E\left(P_{i}\right)\right|
$$

then clearly (1) remains satisfied. If

$$
n-m-1=\left|V\left(P_{i}\right)\right|-\left|E\left(P_{i}\right)\right|,
$$

then, arguing as for $(4), d_{B}\left(P_{i}^{\prime}\right)=2\left(\left|V\left(P_{i}\right)\right|-\left|E\left(P_{i}\right)\right|\right)=2(n-m)-2 \geq$ $n-m$ (since $n-m \geq 2$). So L contains at least one edge incident with P_{i}^{\prime} and at least one edge is added to P_{i} and (1) remains satisfied. If

$$
n-m=\left|V\left(P_{i}\right)\right|-\left|E\left(P_{i}\right)\right|,
$$

then $d_{B}\left(P_{i}^{\prime}\right)=2(n-m)$, and L contains two edges incident with P_{i}^{\prime} and hence two edges are added to P_{i} and (1) remains satisfied.

Finally, if initially we have

$$
\left|E\left(P_{0}\right)\right|-1 \geq m-n / 2,
$$

then (2) remains satisfied. If

$$
\left|E\left(P_{0}\right)\right|=m-n / 2
$$

then $d_{B}\left(P_{0}^{\prime}\right)=n-m$, and L contains an edge incident with P_{0}^{\prime} and hence an edge is added to P_{0} and (2) remains satisfied.

3 Proof of Theorem 1

The necessity of the conditions is clear.
Sufficiency: as we remarked in the Introduction, all possible cycle decompositions of K_{n} have been found for $n \leq 10$ [10]. For $n>10$, we assume that cycle decompositions for $K_{n^{\prime}}, n^{\prime}<n$, are known. Then we use two techniques to find decompositions of K_{n}. Some cases are found using Theorem 2 to extend a decomposition of $K_{n^{\prime}}, n^{\prime}<n$. The second method is to consider K_{n} as the union of several edge-disjoint subgraphs. Each cycle required in the decomposition of K_{n} is assigned to one of the subgraphs in such a way that the total number of edges in the cycles assigned to a subgraph is equal to the number of edges in that subgraph. Thus the problem of decomposing K_{n} becomes the problem of decomposing its subgraphs. If a subgraph is a smaller complete graph, then we can assume the decomposition exists, and if it is a complete bipartite graph, we can use the following result of Chou, Fu and Huang.

Theorem 4 [7] The complete bipartite graph $K_{m, n}$ can be decomposed into p 4-cycles, $q 6$-cycles and $r 8$-cycles if and only if

1. m and n are even,
2. no cycle has length greater than $2 \min \{m, n\}$,
3. $m n=4 p+6 q+8 r$, and

4. if $m=n=4$, then $r \neq 1$.

First suppose that n is odd. Note that if $n \equiv 3 \bmod 4, K_{n}$ has an odd number of edges and cannot have a decompisition into cycles of even length.

Case 1. $n=13$. We require a decomposition of K_{13} into $p 4$-cycles, q 6 -cycles and $r 8$-cycles. Note that

$$
4 p+6 q+8 r=\mid E\left(K_{13} \mid=78\right.
$$

Thus q is odd since $78 \not \equiv 0 \bmod 4$. In Section 2 , we saw that we could find a decomposition of K_{13} by extending a decomposition of K_{9} if $r \geq 6$ (Example 4) or by extending a decomposition of K_{10} if $q \geq 5$ (Example 3). We may now assume that $q \in\{1,3\}$ and $r \leq 5$, which implies that $4 p \geq$ $78-(3 \times 6)-(5 \times 8)=20$, that is, $p \geq 5$.

Consider K_{13} as the union of K_{5}, K_{9} and $K_{8,4}$ where K_{5} is defined on the vertex set $\{1, \ldots, 5\}, K_{9}$ on the vertex set $\{5, \ldots, 13\}$, and $K_{4,8}$ on the vertex sets $\{1, \ldots, 4\}$ and $\{6, \ldots, 13\}$. Let $C=[1,6,2,7]$. Let $H_{1}=K_{5} \cup C$ and $H_{2}=K_{8,4}-C$. Note that H_{1} is the union of two 4 -cycles and a 6 -cycle. K_{13} is the union of K_{9}, H_{1} and H_{2}. For the remaining cases, we assign the cycles required in the decomposition of K_{13} to these three subgraphs. (A decomposition of H_{2} is found by finding a decomposition of $K_{8,4}$ that contains, as well as the required cycles, a further 4-cycle which can be labelled $[1,6,2,7]$ and discarded.) Two 4 -cycles and a 6 -cycle are assigned to H_{1}. There are at most two further 6 -cycles which are assigned to K_{9}. Up to three 8 -cycles are assigned to H_{2}; any remaining 8-cycles (there are at most two more) are assigned to K_{9}. This only leaves some 4 -cycles to be assigned, and clearly the number of edges not accounted for in H_{2} and K_{9} is, in both cases, positive and equal to $0 \bmod 4$.

Case 2. $n=17$. We require a decomposition of K_{17} into $p 4$-cycles, q 6 -cycles and r-cycles. Note that

$$
4 p+6 q+8 r=\left|E\left(K_{17}\right)\right|=136
$$

If $r \geq(n-1) / 2=8$, then, as seen in Example 4, we can apply Theorem 2 to obtain the decomposition of K_{17} from a decomposition of K_{13}.

For the remaining cases, let $K_{17}=K_{9} \cup K_{9} \cup K_{8,8}$. We will assign the required cycles to these three subgraphs. Suppose that $4 p+8 r \geq 64$. Then we can assign all of the 8 -cycles (since $r<8$) and some 4 -cycles to $K_{8,8}$ so that the assigned cycles have precisely 64 edges. There remain to be assigned some 4 -cycles and 6 -cycles which have a total of 72 edges. Thus either $4 p \geq 36$ or $6 q \geq 36$ and we can assign cycles all of the same length to a K_{9}. We assign the remaining cycles to the other K_{9}.

If $4 p+8 r<64$, then $6 q>136-64=72$. We can assign six 6 -cycles to each K_{9} and the remaining cycles to $K_{8,8}$.

Case 3. $n \geq 21$ odd. We require a decomposition of K_{n} into $p 4$-cycles, q 6 -cycles and r-cycles. If $r \geq(n-1) / 2$, then, as seen in Example 4, we can apply Theorem 2 to obtain the decomposition of K_{n} from a decomposition of K_{n-4}. Otherwise $r<(n-1) / 2$. Let $K_{n}=K_{n-12} \cup K_{13} \cup K_{n-13,12}$. We assign the required cycles to these subgraphs.

Suppose that $4 p+8 r \geq\left|E\left(K_{n-13,12}\right)\right|$. Then we can assign all of the 8 -cycles and some 4 -cycles to $K_{n-13,12}$ (since $8 r<4(n-1)<12(n-13)$ for $n \geq 21$). We are left with 4 -cycles and 6 -cycles to assign to K_{n-12} and K_{13}. We can assign cycles all of the same length to the smaller of these graphs (which is either K_{9} or K_{13} —both have a number of edges equal to $0 \bmod 4$ and $0 \bmod 6)$ and the remaining cycles to the other.

If $4 p+8 r<\left|E\left(K_{n-13,12}\right)\right|$, then $6 q \geq\left|E\left(K_{n-12}\right)\right|+\left|E\left(K_{13}\right)\right|$. We cannot simply assign 6 -cycles to K_{n-12} and K_{13} however, since $\left|E\left(K_{n-12}\right)\right|$ is not equal to $0 \bmod 6$ for all $n \equiv 1 \bmod 4$. If $6 q \geq\left|E\left(K_{n-13,12}\right)\right|+\left|E\left(K_{13}\right)\right|$, then we can assign 6 -cycles to $K_{n-13,12}$ and K_{13} and any remaining cycles to K_{n-12}. If $6 q<\left|E\left(K_{n-13,12}\right)\right|+\left|E\left(K_{13}\right)\right|$, then $4 p+8 r>\left|E\left(K_{n-12}\right)\right|>16$ (as $n \geq 21$). One of the following must be true.

$$
\begin{aligned}
\left|E\left(K_{n-12}\right)\right| & \equiv 0 \bmod 6 \\
\left|E\left(K_{n-12}\right)\right|+8 & \equiv 0 \bmod 6 \\
\left|E\left(K_{n-12}\right)\right|+16 & \equiv 0 \bmod 6
\end{aligned}
$$

We assign 6 -cycles to K_{13} and to K_{n-12}, except that to K_{n-12} we also assign 4 -cycles and 8 -cycles with a total of 8 or 16 edges if the number of edges in K_{n-12} is $2 \bmod 6$ or $4 \bmod 6$, respectively. The remaining edges are assigned to $K_{n-13,12}$.

Case 4. $n=12$. We require a decomposition of $K_{12}-I_{12}$ into $p 4$-cycles, q 6 -cycles and r-cycles. Then

$$
4 p+6 q+8 r=\left|E\left(K_{12}-I_{12}\right)\right|=60
$$

and so q is even. In Example 5, we saw that if $r \geq(n-2) / 2=5$, we can use Theorem 2 to extend a decomposition of K_{8} to obtain the required cycle decomposition of $K_{12}-I_{12}$. Otherwise let $K_{12}-I_{12}=\left(K_{6}-I_{6}\right) \cup\left(K_{6}-\right.$ $\left.I_{6}\right) \cup K_{6,6}$. We will assign the required cycles to these subgraphs.

Note that $4 p+6 q \geq 60-32=28$ (since $r \leq 4$). If $q=0$, then $p \geq 7$ and we can assign 4 -cycles to each K_{6}. If $q=2$, we assign the two 6 -cycles to one K_{6} and 4 -cycles to the other K_{6}. If $q \geq 4$, we assign 6 -cycles to each K_{6}. In each case the remaining cycles are assigned to $K_{6,6}$.

Case 5. $n \geq 14$ even. We require a decomposition of $K_{n}-I_{n}$ into p 4 -cycles, $q 6$-cycles and r-cycles. In Example 5, we saw that if $r \geq$ $(n-2) / 2$, we can use Theorem 2 to extend a decomposition of K_{n-4} to find the required cycle decomposition of $K_{n}-I_{n}$. Otherwise let $K_{n}-I_{n}=$ $\left(K_{6}-I_{6}\right) \cup\left(K_{n-6}-I_{n-6}\right) \cup K_{6, n-6}$. We will assign the required cycles to these subgraphs.

We have

$$
\begin{aligned}
4 p+6 q & =\left|E\left(K_{n}-I_{n}\right)\right|-8 r \\
& \geq n(n-2) / 2-4(n-4) \\
& =\left(n^{2}-10 n+32\right) / 2 \\
& \geq 44,
\end{aligned}
$$

as $n \geq 14$. Therefore $4 p \geq 22$ or $6 q \geq 22$ and we can assign cycles all of length 4 or all of length 6 to $K_{6}-I_{6}$. Note that the number of edges in $K_{6, n-6}$ is $0 \bmod 12$. If $q \geq n-6$, we assign only 6 -cycles to $K_{6, n-6}$. Otherwise we assign all the 6 -cycles to $K_{6, n-6}$ if q is even, or all but one of them if q is odd. Then the number of remaining edges is also $0 \bmod 12$ so we can assign as many 4 -cycles as necessary. All remaining cycles are assigned to K_{n-6}.

References

[1] P. Adams, D.E. Bryant and A. Khodkar, 3, 5-cycle decompositions, J. Combin. Designs 6 (1998), 91-110.
[2] P. Adams, D.E. Bryant, A. Khodkar, On Alspach's conjecture with two even cycle lengths, Discrete Math. 223 (2000), 1-12.
[3] B. Alspach, Research Problems, Problem 3, Discrete Math. 35 (1981), 333.
[4] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory B 81 (2001), 77-99.
[5] P.N. Balister, On the Alspach conjecture, Comb. Probab. Comput. 10 (2001), 95-125.
[6] D.E Bryant, A. Khodkar and H.L. Fu, (m, n)-cycle systems, J. Statist. Planning \& Inference 74 (1998), 365-370.
[7] C-C. Chou, C-M. Fu and W-C. Huang, Decomposition of $K_{m, n}$ into short cycles, Discrete Math. 197/198 (1999), 195-203.
[8] K. Heinrich, P. Horak and A. Rosa, On Alspach's conjecture, Discrete Math. 77 (1989), 97-121.
[9] C. St. J. A. Nash-Williams, Amalgamations of almost regular edgecolourings of simple graphs, J. Combin. Theory B, 43 (1987), 322-342.
[10] A. Rosa, Alspach's conjecture is true for $n \leq 10$, Math. Reports, McMaster University.
[11] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Designs 10 (2002), 27-78.
[12] D. Sotteau, Decompositions of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$ J. Combin. Theory B 30 (1981), 75-81.

[^0]: *Current address: Department of Computer Science, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, U.K; email: matthew.johnson2@dur.ac.uk.

