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Abstract

For a positive integer n, let G be K, if n is odd and K, less a
one-factor if n is even. In this paper it is shown that, for non-negative
integers p, ¢ and 7, there is a decomposition of G into p 4-cycles, ¢
6-cycles and r 8-cycles if 4p + 6g + 8r = |E(G)|, ¢ = 0 if n < 6,
and r =0if n < 8.

1 Introduction

Is it possible to decompose K, (n odd) or K,, —I,, (n even, I,, is a one-factor
of K,,) into t cycles of lengths myq,...,m;? Obvious necessary conditions
for finding these cycle decompositions are that each cycle length must be
between 3 and n and the sum of the cycle lengths must equal the number
of edges in the graph being decomposed. That these simple conditions are
sufficient was conjectured by Alspach [3] in 1981. To date, only a few special
cases have been solved, mostly where each m; must take one of a restricted
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number of values [1, 2, 6, 8. In particular, we note that the case where
all the cycles have the same length has recently been completely solved by
Alspach and Gavlas [4] and Sajna [11]. We also note that Rosa [10] has
proved that the conjecture is true for n < 10, and Balister [5] has shown
that the conjecture is true if the cycle lengths are bounded by some linear
function of n and n is sufficiently large.

In this paper, we solve the case where each cycle has length 4, 6 or 8; for
the proof we introduce an innovative extension technique for finding cycle
decompositions of K,,(—I,) from decompositions of K,,, m < n.

Theorem 1 Let n be a positive integer. Let p, q and r be non-negative
integers. Then K, (n odd) or K, — I, (n even) can be decomposed into p
4-cycles, q 6-cycles and r 8-cycles if and only if

|E(K,)| if n is odd,

1. 4p+6q+87“={ |E(K,, — I,)| if n is even, and

2. the cycles all have length at most n.

Our novel extension technique is described in the next section. The
proof of Theorem 1 is in the final section.
Definitions and notation. An edge joining v and v is denoted (u,v). A

path of length k —1 is denoted (v1, ..., vx) where v; is adjacent to v; 41, 1 <
1 < k—1, but a path of length zero—that is, a single vertex—will be denoted
simply v rather than (v1). A k-cycle is denoted [vq,...,vg], where v; is

adjacent to v;41, 1 <i < k—1, and v; is adjacent to vg. A path-graph is a
collection of vertex-disjoint paths and is described by listing the paths. A
path-graph containing only paths of lengths zero or one is a matching.

2 An extension technique

In this section we introduce a technique that we can use to obtain cy-
cle decompositions of K, (—I,) from cycle decompositions of K,,(—1I)
when m < n.

First we define a different type of decomposition. Let n, s and t be
non-negative integers. An (s, t)-decomposition of K, may be either even
or odd. An odd (s,t)-decomposition contains the following collection of
subgraphs:

e path-graphs Py,..., Ps, and
o cycles Csyq,...,Csqy;
with the following properties:
e their edge-sets partition the edge-set of K,,, and

e cach vertex is in precisely s of the subgraphs Py, ... Ps,Csi1,...,Csyy.



An even (s, t)-decomposition of K, is the same as an odd (s, t)-decomposition
except that it also contains a matching Py which contains every vertex.

Example 1. We display an odd (4, 2)-decomposition of K7:

P (1,5,2,4),(3,7)
Py = (1,6,2,7)

Py = (3,6,5),2

Py = (4,7,5),6

Cs = [1,3,5,4,6,7]
Co = [1,2,3,4].

Now we introduce the idea of extending a decomposition of K, to
a decomposition of K,. Let Pi,...Ps,Cst1,...,Csqy be an odd (s,t)-
decomposition of K,,. For n > m, n odd, identify the vertices of K,, with
m of the vertices of K,,. If K, has a decompostion into cycles C1,...,Csy¢
such that, for 1 < i < s, C; is a supergraph of P;, then we call this decom-
position an extension of the decomposition of K,,. Similarly, for n > m,
n even, an even (s,t)-decompostion of K,,, Py,...Ps,Csi1,...,Cs1¢, can
be extended to a decomposition of K, less a one-factor I, into cycles
C1,...,Csyy if we have the additional property that I, is a supergraph
of P().

Theorem 2 Let m, n, s and t be non-negative integers with m < n and
s = |(n—1)/2|. Let D = (Py,)P1,...Ps,Cs11,...,Csyy be an (s,1)-
decomposition of K., that is even or odd as the parity of n.

Then D can be extended to a decomposition of K, (less a one-factor I,

if n is even) into cycles C1,...,Csyy if and only if,
for1<i<s, n—-m > |V(P)|—|E(PR)|, and, (1)
if n is even, |E(Py)| > m—mn/2. (2)

Notice that since each vertex of V (K, \ K,,) must be in s of the cycles, it
must be in each C;, 1 < i < s, since the other cycles are subgraphs of K.
Therefore C;, 1 < i < s, has length |V(F;)| +n —

Before we prove Theorem 2, let us see how it can be used. We consider
four examples.

Example 2. Let D be the (4, 2)-decomposition of K7 shown in Example 1.
Apply Theorem 2 with n =9, m = 7, s = 4 and ¢t = 2. Checking that
(1) is satisfied is easy if we notice that |V (P;)| — |E(F;)| is equal to the
number of paths in P; (remember that we count an isolated vertex as a
path). By Theorem 2, there exists a cycle decomposition C1,...,Cg of Ky
where C;, 1 <i <4 is a supergraph of P;. As C; has length \V( I +n—
m, C7 will be an 8-cycle and C5, C3 and C4 will be 6-cycles. We display



an example of a cycle decomposition obtained by extending D.

C, = [1,5,2,4,9,7,3,8
C, = [1,6,2,7,8,9]
C; = [2,9,3,6,5,8]
C, = [4,7,5,9,6,8]
Cs = [1,3,5,4,6,7]
Co = [1,2,3,4)].

In the following three examples, we begin with a cycle decomposition
of K,(—I,,). By making slight changes to this decomposition—we take
the edges from one of the cycles, or from the one-factor I,,, and use them
to create path-graphs—we obtain an (s, t)-decomposition of K,,. Then we
apply Theorem 2 to obtain a cycle decomposition of K,, for some n > m.
This method of obtaining a cycle decomposition of a complete graph from
a cycle decomposition of a smaller complete graph will help us to give an
inductive proof of Theorem 1 in the final section.

Example 3. Let A be a decomposition of K;( into p 4-cycles, ¢ 6-cycles
and r 8-cycles and a one-factor ;9 where the vertices are labelled so that

Ly =(1,2),(3,4),(5,6),(7,8),(9,10).

Label the cycles C7 ..., Csiptq+r and let

P o= (1,2),(3,4),5
P, = (5,6),7

Py = (7,8),9

P o= (9,10),1

P = 2,34

Ps = 6,8,10.

Let D = Py,...,Ps,Cq,...,Cpiqrr and notice that it is a decomposition
of K19. As the cycles Cr, ..., Csyptqtr form a decomposition of K19 — Iio,
each vertex v € V(Kjg) will be in four of them (consider degrees). Each
vertex is also in two of the path-graphs displayed above. Thus each vertex
is in 6 of the graphs of D, and D is an odd (6,p + ¢ + r)-decomposition
of Ky9. Apply Theorem 2 with n =13, m =10, s=6 and t = p+ g+ (it
is easy to check that (1) is satisfied). The decomposition of Kj3 obtained
contains all the cycles of D and also cycles C1, ..., Cg that are supergraphs
of the path-graphs P, ..., Ps. Thus C; has length 8 and C};, 2 < i < 6, has
length 6, and the decomposition of K73 contains p 4-cycles, g + 5 6-cycles
and r + 1 8-cycles.

Hence, if we require a decomposition of K13 into p’ 4-cycles, ¢’ 6-cycles
and 7’ 8-cycles, we can obtain it from a decomposition of Kig into p = p/



4-cycles, ¢ = ¢’ — 5 6-cycles and r = r’ — 1 8-cycles. Of course, we require
that ¢’ > 5 and 7’ > 1 so that p, ¢ and r are non-negative.

Example 4. Let m = 1 mod 4, m > 9. Suppose that we have a decompo-
sition A of K, into p 4-cycles, ¢ 6-cycles and r 8-cycles, where ¢ > 1. We
are going to use this to find a decomposition of K,,14 so let n = m+4 and
s =(n—1)/2. Let D be a decomposition of K,, that contains all the cycles
of A except one of the 6-cycles which we may assume is C' = [1, 2,3, 4,5, 6].
Label the other cycles Cs41, ..., Csyptqgt+r—1. D also contains s path-graphs
that contain the edges of C' and also isolated vertices. If m =9, then s =6
and the path-graphs are

P = (1,2),6,7
P, = (2,3),1,7
Py = (3,4),2,8
P, = (4,5),3,8
P; = (56),4,9
Ps (1,6),5,9

If m = 13, then there are two further path-graphs

P, = 10,11,12,13
Py = 10,11,12,13.

For m > 17, there are further path-graphs Py, ..., Ps, where, for 1 < i <

(5 - 8)/27
Prio; = Psyo; =41+ 10,40+ 11,40 4+ 12,4¢ 4 13.

As the cycles of D form a decomposition of K,, — C, v € V(K,,) \ C will
be in s — 2 of them; v is also in 2 of the path-graphs. If v € C, then
it is in only s — 3 of the cycles of D, but is in 3 of the path-graphs. As
every vertex is in s of the graphs of D, it is an odd (s,p + ¢ + r — 1)-
decomposition of K,,. Use D to apply Theorem 2 with n, m and s as
defined and t = p+ ¢+ r — 1. The decomposition of K, obtained contains
all the cycles of D and also cycles C1,...,Cs that are supergraphs of the
path-graphs Py, ..., Ps, and C;, 1 <14 < s, has length |[V(P;)|+n—m = 8.
The decomposition of K, that is obtained contains p 4-cycles, ¢ — 1 6-
cycles and r + s 8-cycles. Thus we can obtain a decomposition of K,,, n =
1mod 4, n > 13, into p’ 4-cycles, ¢’ 6-cycles and 7’ 8-cycles from a cycle
decomposition of K,,_4 whenever ' > s.

Example 5. An example for complete graphs of even order. Let A be a
decomposition of K,, — I,,, m > 8 even, into p 4-cycles, q 6-cycles and r
8-cycles, where p > 1. We are going to find a decomposition of K,,14 so
letn=m+4,s=(n—2)/2and t = p+q+r—1. Let one of the 4-cycles be



C =[1,2,3,4]. Let D be a decomposition of K,, that contains the cycles
of A—C (labelled Cgt1,...,Csyt), a matching Py = I,,, and s path-graphs
that contain the edges of C. If m = 8, the path-graphs are

P = (1,2),5,6
P, = (2,3),5,6
P3 = (37 4)3 7; 8
Py, = (1,4),7,8
P, = 1,2,3,4.
If m = 10, then Ps, ..., P5 are as above and
P = (1,2),9,10
P; = 5,6,9,10.

For m > 12, let P, = (1,2),m — 1,m, P,,..., P5 be as above and

Ps = 5,6,9,10

P; = 9,10,11,12

Py = 11,12,13,14

P, = m—-3m-2m-—1m.

Notice that D is an even (s, t)-decomposition of K, (it is easy to check that
every vertex is in Py and s of the other graphs in D). Thus from D, a cycle
decomposition of K,, — I, is obtained by applying Theorem 2 with n, m, s
and ¢ as defined. The decomposition of K,, — I, obtained contains cy-
cles Cy,...,Cq of length, for 1 <i <s, |[V(P;)| +n —m = 8. Therefore it
contains p—1 4-cycles, g 6-cycles and r+s 8-cycles, and we note that we can
obtain a decomposition of K, — I,,, n > 12 even, into p’ 4-cycles, ¢’ 6-cycles
and 7’ 8-cycles from a cycle decomposition of K,,_4 — I,,_4 whenever r > s.

Proof of Theorem 2: Necessity: for 1 < i < s, C; contains the edges
of P; plus at most 2(n —m) edges from F(K,,) \ E(K,,). As it has length
|V(P;)| +n —m, we have

|E(P)| +2(n—m) = [V(B)| +n—m.

Rearranging, (1) is obtained. Similarly, I,, contains the edges of Py plus at
most n —m edges from E(K,)\ E(K,,). As I,, has n/2 edges,

|E(Py)|+n—m>n/2.

Rearranging, (2) is obtained.

Sufficiency: to simplify the presentation we will prove only the (slightly
trickier) case where n is even. Thus s = (n — 2)/2. Let the vertices of K,
be v1,...,Um.



First consider the case m = n — 1. From (1) and (2) we find that,
forl1 <i<s,

[E(P;)]
[E(Fo)l

|[V(P;)| — 1, and

>
> n/2-1.

In fact, we must have equality in each case since Py is a matching on n — 1
vertices and, for 1 < i < s, P; is acyclic. Thus each P;, 1 < i < s, must be
a single path and Py contains n/2 — 1 independent edges and an isolated
vertex. FEach vertex has degree n — 2 in K,_;, isin s = (n — 2)/2 of
the subgraphs Py, ..., Ps,Cs41,...,Csyt, and has degree at most 2 in each
of these subgraphs. Thus the vertex that has degree 0 in Py must have
degree 2 in each of the other subgraphs that contain it, and each vertex
of degree 1 in Py, must have degree 1 in one of the other subgraphs that
contain it and degree 2 in the rest; that is, it must be the endvertex of
precisely one of the paths P;, 1 < ¢ < s. Therefore we obtain the cycle
decomposition of K,, from D, the (s,t)-decomposition of K,_1, by adding
edges (vj,vyn), 1 <j <n—1, to the subgraphs in the following way. If v; is
an endvertex in P;, then the new edge (v;,v,,) is placed in the subgraph P;.
Hence P; becomes a cycle of length |V(P;)|+ 1. Finally, if v; is the isolated
vertex in Py, then (vj,v,,) is the additional edge required to form the one-
factor I,,.

Now we show that if m < n — 1, then D can be extended to D', an
even (s, t)-decomposition of K,,+1, so that (1) and (2) are satisfied with m
replaced by m + 1. By repeating this argument a finite number of times an
even (s, t)-decomposition of K,,_; that satisfies (1) and (2) with m replaced
by n — 1 can be found.

To obtain D’, a new vertex v,,41 is added to K,,. It must be joined to
each vertex of K, by one edge and each of these m additional edges must
be added to exactly one of the path-graphs or the matching of D. Note
that as s = [(n —1)/2] we require that v,,11 is in all s of the path-graphs,
so it must be added as an isolated vertex to any path-graph that has been
given no new edges.

We need a way to decide which subgraph each new edge should be placed
in. Construct a bipartite multigraph B with vertex sets {F{, ..., P!} and
{vi,.. v} For 1 <4 <5, 1 <j<m,ifwv; €P, then join P/ to v}
by 2 — dp,(v;) edges. Also join Pj to v; by 1 — dp,(v;) edges. In fact, we
think of B as being constructed as follows: for 1 < i < s, join P/ to v;- by
two edges if v; € P; and join Py to v; by one edge; then for each edge (v;, vi)
in P, 0 <i<s, delete the edges (P/,v}) and (P}, v}).

If v; is in x of the cycles in D, then it is in s —x of the path-graphs; it is
also in the matching Py. As it is incident with 2z edges in the cycles, it is
incident with m — 1 — 2z edges in the matching and path-graphs. When B
is constructed, we begin by placing 2(s — ) + 1 edges at v}. For 0 <i <s,

for each edge incident at v; in P;, we delete an edge (P, vé) in B. Therefore

dp(vj) =2(s —x) +1—(m—1-2z) =n—m. (3)



When we construct B, we first place 2|V (P;)| edges at P/, 1 < i < s.
Then for each edge (vj,vx) in P;, we delete two of these edges: (P}, v})
and (P/,v}). Thus, by (1), for 1 <i <s,

dp(P)) =2([V(P)| - |E(P)]) < 2(n—m). (4)
Using a similar argument, by (2),
dp(Pg) = |V (Po)l — |E(Po)| < n—m. (5)

We need the following: a set F of sets is a laminarset if, for all X, Y € F,
either X CY,or Y C X or XNY =0; wesay z =y if |y] <z < [y]
(note that the relation is not symmetric).

Lemma 3 [9] If F and G are laminar sets of subsets of a finite set M
and h is a positive integer, then there exists a set L C M such that

|LNX|~|X|/h for every X € FUG.

We construct two laminar sets F and G which contain subsets of E(B).
Let F contain sets Py, ..., PS, where P/, 0 < ¢ < s, contains the set of all
edges incident with P/ in B. Also if v;, and v;, are endvertices of a path in
P, then let {(P/,v},), (P;,v},)} be a set in F (call these endvertex-sets).

17 " j2
Let G contain sets v7,...,v;,, where v}, 1 < j < m, contains the set of all

rFmo
edges incident with v in B.

Apply Lemma 3 with M = E(B) and h = n — m to obtain a set of
edges L that, by (3), (4) and (5), contains exactly one edge incident with
v}, 1 < j <m, at most two edges incident with P/, 1 <7 < s, and at most
one edge incident with Py. Also L contains at most one edge from each
endvertex-set.

Now we extend D to D'. For 1 < j < n, if (P/,v}) is in L, then
(Um+1,v5) is placed in P;. Then v,,4+1 is added as an isolated vertex to
any P; to which no new edges have been added. Since L contains exactly
one edge incident with each v;, each new edge is placed in exactly one
subgraph. There is only an edge (P},v}), 1 <i<s, 1 <j <m,in B if v;
has degree less than 2, so after the new edges are added v; has degree at
most 2 in P;. Since L contains at most two edges incident with P;,; 1 <7 < s,
Um+1 has degree at most 2 in each P;, 1 < i < s. As L contains at most
one edge from each endvertex-set, v,,+1 cannot have been joined to both
ends of a path in P; (thus creating a cycle). Therefore P;, 1 <i < s, is still
a path-graph. By a similar argument, P, is still a matching.

We must check that (1) and (2) remain satisfied with m replaced by m+
1. First (1): note that |V(P;)| increases by one (as the new vertex is
adjoined to every path-graph) and F(P;) increases by at most two. If
initially we have

n—m—22>|V(P)|—|E(FR),



then clearly (1) remains satisfied. If
n—m—1=[V(P)]—[E(P)],

then, arguing as for (4), dg(P}) = 2(|V(B;)| — |[E(P)|) =2(n —m) — 2 >
n —m (since n —m > 2). So L contains at least one edge incident with P/
and at least one edge is added to P; and (1) remains satisfied. If

n—m=|V(B)| - |E(P)],

then dp(P!) = 2(n — m), and L contains two edges incident with P/ and
hence two edges are added to P; and (1) remains satisfied.
Finally, if initially we have

|E(Py))|—1>m—n/2,
then (2) remains satisfied. If
|E(FPo)| =m —mn/2,

then dg(P}) =n —m, and L contains an edge incident with P} and hence
an edge is added to Py and (2) remains satisfied. o

3 Proof of Theorem 1

The necessity of the conditions is clear.

Sufficiency: as we remarked in the Introduction, all possible cycle de-
compositions of K, have been found for n < 10 [10]. For n > 10, we
assume that cycle decompositions for K/, n’ < n, are known. Then we use
two techniques to find decompositions of K,,. Some cases are found using
Theorem 2 to extend a decomposition of K, n’ < n. The second method
is to consider K, as the union of several edge-disjoint subgraphs. Each
cycle required in the decomposition of K, is assigned to one of the sub-
graphs in such a way that the total number of edges in the cycles assigned
to a subgraph is equal to the number of edges in that subgraph. Thus
the problem of decomposing K, becomes the problem of decomposing its
subgraphs. If a subgraph is a smaller complete graph, then we can assume
the decomposition exists, and if it is a complete bipartite graph, we can use
the following result of Chou, Fu and Huang.

Theorem 4 [7] The complete bipartite graph K., , can be decomposed into p
4-cycles, q 6-cycles and r 8-cycles if and only if

1. m and n are even,
2. no cycle has length greater than 2min{m,n},

3. mn =4p+ 6q + 8r, and



4. ifm=n=4, thenr # 1.

First suppose that n is odd. Note that if n = 3 mod 4, K,, has an odd
number of edges and cannot have a decompisition into cycles of even length.

Case 1. n = 13. We require a decomposition of K3 into p 4-cycles, ¢
6-cycles and r 8-cycles. Note that

4p + 6q + 8r = |E(K13| =T78.

Thus ¢ is odd since 78 # 0 mod 4. In Section 2, we saw that we could
find a decomposition of K3 by extending a decomposition of Ky if r > 6
(Example 4) or by extending a decomposition of Kjq if ¢ > 5 (Example 3).
We may now assume that ¢ € {1,3} and r < 5, which implies that 4p >
78 — (3 x 6) — (5 x 8) = 20, that is, p > 5.

Consider K3 as the union of K5, K9 and Kg 4 where K5 is defined on
the vertex set {1,...,5}, Ky on the vertex set {5,...,13}, and K4 g on the
vertex sets {1,...,4} and {6,...,13}. Let C =[1,6,2,7]. Let H; = Ks;UC
and Hy = Kga4 — C. Note that H; is the union of two 4-cycles and a
6-cycle. K13 is the union of K9, H; and H,. For the remaining cases,
we assign the cycles required in the decomposition of K3 to these three
subgraphs. (A decomposition of Hj is found by finding a decomposition
of Kg 4 that contains, as well as the required cycles, a further 4-cycle which
can be labelled [1,6,2,7] and discarded.) Two 4-cycles and a 6-cycle are
assigned to Hy. There are at most two further 6-cycles which are assigned
to Kg. Up to three 8-cycles are assigned to Hs; any remaining 8-cycles
(there are at most two more) are assigned to Ky. This only leaves some
4-cycles to be assigned, and clearly the number of edges not accounted for
in Hy and Ky is, in both cases, positive and equal to 0 mod 4.

Case 2. n = 17. We require a decomposition of K7 into p 4-cycles, g
6-cycles and r 8-cycles. Note that

4p 4 6q + 8r = | E(K17)| = 136.

If r > (n—1)/2 =8, then, as seen in Example 4, we can apply Theorem 2
to obtain the decomposition of K7 from a decomposition of K73.

For the remaining cases, let K17 = K9 U K9 U Kgg. We will assign the
required cycles to these three subgraphs. Suppose that 4p+ 8r > 64. Then
we can assign all of the 8-cycles (since r < 8) and some 4-cycles to Kgg
so that the assigned cycles have precisely 64 edges. There remain to be
assigned some 4-cycles and 6-cycles which have a total of 72 edges. Thus
either 4p > 36 or 6¢ > 36 and we can assign cycles all of the same length
to a Kg. We assign the remaining cycles to the other Ky.

If 4p + 8r < 64, then 6g > 136 — 64 = 72. We can assign six 6-cycles to
each Ky and the remaining cycles to Ky g.

10



Case 3. n > 21 odd. We require a decomposition of K, into p 4-cycles, ¢
6-cycles and r 8-cycles. If r > (n—1)/2, then, as seen in Example 4, we can
apply Theorem 2 to obtain the decomposition of K, from a decomposition
of K,,—4. Otherwise r < (n—1)/2. Let K,, = K,,_12U K13 U K,,_1312. We
assign the required cycles to these subgraphs.

Suppose that 4p + 8 > |E(K,,—13,12)|. Then we can assign all of the
8-cycles and some 4-cycles to K,,_13,12 (since 8 < 4(n —1) < 12(n — 13)
for n > 21). We are left with 4-cycles and 6-cycles to assign to K, _12
and Ki3. We can assign cycles all of the same length to the smaller of these
graphs (which is either Ky or Kj3—both have a number of edges equal
to 0 mod 4 and 0 mod 6) and the remaining cycles to the other.

If4p—|—87" < |E(Kn—13,12)|7 then 6q > ‘E(K7L_12)|+|E(K13)|. ‘We cannot
simply assign 6-cycles to K, _12 and K3 however, since |E(K,,_12)]| is not
equal to 0 mod 6 for all n = 1 mod 4. If 6¢ > |E(K,—13.12)| + |E(K13)],
then we can assign 6-cycles to K,,_13,12 and K;3 and any remaining cycles
to K, _12. If 6 < |E(Kn_13712)|+|E(K13)|, then 4p+8r > |E(Kn_12)| > 16
(as n > 21). One of the following must be true.

|[E(Kp—12)] = 0mod 6
|E(Kn-12)|+8 = 0Omod6
|E(Kn_12)‘ +16 = Omod6

We assign 6-cycles to Ki3 and to K, _12, except that to K, 1o we also
assign 4-cycles and 8-cycles with a total of 8 or 16 edges if the number of
edges in K,,_12 is 2 mod 6 or 4 mod 6, respectively. The remaining edges
are assigned to K13 12.

Case 4. n = 12. We require a decomposition of K15 — I15 into p 4-cycles, g
6-cycles and r 8-cycles. Then

4p + 6q + 8r = ‘E(Klg — 112)| = 60,

and so ¢ is even. In Example 5, we saw that if r > (n—2)/2 = 5, we can use
Theorem 2 to extend a decomposition of Kg to obtain the required cycle
decomposition of Ko — I15. Otherwise let K15 — I1o = (Kg — Ig) U (Kg —
Is) U Kg,6. We will assign the required cycles to these subgraphs.

Note that 4p + 6 > 60 — 32 = 28 (since r < 4). If ¢ =0, then p > 7
and we can assign 4-cycles to each Kg. If ¢ = 2, we assign the two 6-cycles
to one K¢ and 4-cycles to the other Kg. If ¢ > 4, we assign 6-cycles to
each Kg. In each case the remaining cycles are assigned to Kg .

Case 5. n > 14 even. We require a decomposition of K,, — I, into p
4-cycles, q 6-cycles and r 8-cycles. In Example 5, we saw that if r >
(n —2)/2, we can use Theorem 2 to extend a decomposition of K, _4 to
find the required cycle decomposition of K,, — I,,. Otherwise let K,, — I,, =
(K¢ — 1) U (Kp—g — In—6) U Kg n—¢. We will assign the required cycles to
these subgraphs.
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‘We have

dp+69 = |E(K,—1,)|—8r
nn—2)/2 —4(n —4)
(n? — 10n + 32)/2
44

v

Y

)

as n > 14. Therefore 4p > 22 or 6¢ > 22 and we can assign cycles all

of 1

ength 4 or all of length 6 to K¢ — Is. Note that the number of edges

in K¢n—6 is 0 mod 12. If ¢ > n — 6, we assign only 6-cycles to K¢ ,—¢.
Otherwise we assign all the 6-cycles to K¢ ,,—¢ if ¢ is even, or all but one
of them if ¢ is odd. Then the number of remaining edges is also 0 mod 12
So we can assign as many 4-cycles as necessary. All remaining cycles are

assigned to K,,_g. O
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